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Abstract

urgently.

In this study, we investigated the precursory seismicity changes related to the major earthquakes posed along the
Sumatra-Andaman subduction zone (SASZ) using the region-time-length (RTL) algorithm. Based on the suitable RTL
characteristics of ry = 100 km and ty = 2 years, the anomalous RTL score representing the quiescence stage mostly
started 0.1-5.2 years before the subsequent major earthquake, while no activation stage was illustrated. For the
spatial investigation, the RTL anomalies also clearly illustrated the location of the subsequent major earthquakes.
Thus, in order to determine the prospective areas of upcoming earthquakes, the series of RTL maps calculated
during the recent 5-year (2010-2014) time span was used. The obtained results reveal four risk areas along the SASZ
that might pose a major earthquake in the future, namely (i) Sittwe city, western Myanmiar; (ii) offshore northern
Nicobar Islands; (i) Aceh city, northernmost of Sumatra Island; and (iv) offshore western Sumatra Island. Therefore,
both a tsunami hazard in the Indian Ocean and a seismic hazard in the far-field cities should be recognized
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Background

The present-day activities of the Indian-Eurasian plate
collision, the plate boundary called the Sumatra-
Andaman subduction zone (SASZ), have caused fre-
quent hazardous earthquakes (Fig. 1; Pailoplee and
Choowong 2014). In addition, not only was the last tsu-
nami originated by a M,,-9.0 earthquake on December
26th, 2004 but also paleotsunami evidence supports
that the SASZ is a significant tsunamogenic source
(Jankaew et al. 2008; Monecke et al. 2008). Geographic-
ally, the tsunami hazard created here impacts upon a
number of countries surrounding the Indian Ocean.
Such far-field SASZ earthquakes normally generate
long-period ground motions that directly effect tall
buildings and in particular in Bangkok, the capital city
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of Thailand. Hence, some researchers have attempted
to clarify the seismogenic situation along the SASZ.
Using statistical seismology, the possibility of ap-
plying the frequency-magnitude distribution (FMD;
Gutenberg and Richter 1944) model as an earth-
quake precursor was demonstrated along the SASZ
(e.g., Nuannin et al. 2005; Pailoplee and Choowong
2014). In particular, utilizing the 50 closest earth-
quakes in an individual site of interest, Nuannin
et al. (2005) found that a low-FMD b-value was re-
lated to a high accumulated tectonic stress and so
implied a prospective area of upcoming earthquakes.
Thereafter, using Nuannin et al’s (2005) assumption,
the comparative low-FMD b-value areas along the
northern segment of the SASZ were evaluated, re-
vealing that (i) Sittwe city, western Myanmar, and
(ii) offshore northern Nicobar Islands might be sub-
ject to strong-to-major earthquakes soon (Pailoplee
et al. 2013). However, up to 2014, all the seismic
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risk areas mentioned above are still quiescent and so
should be monitored carefully.

Since the existence of quiescent and activation stages
of earthquakes was reported (Sobolev 1995), an alterna-
tive statistical method called the region-time-length
(RTL) algorithm was developed to investigate such
stages of seismicity (Sobolev and Tyupkin 1997, 1999).
As a result of extended practice, a number of RTL inves-
tigations have revealed the successful correlation be-
tween the quiescent and/or activation stages and the
subsequent moderate-to-major earthquakes in various
seismogenic settings, such as the M,,-7.2 Kobe earth-
quake, Japan (Huang et al. 2001), M,,-6.8 Nemuro earth-
quake, Japan (Huang and Sobolev 2002), M,,-7.3 Izmit
earthquake, Turkey (Huang et al. 2002), Ms-7.3 Tottori
earthquake, Japan (Huang and Nagao 2002), earthquakes
with Mg = 5.0 in northern China (Jiang et al. 2004),
earthquakes with Mg > 6.0 in the Yunnan area (Liu and
Su 2006), M,,-7.3 Chi-Chi earthquake, Taiwan (Chen
and Wu 2006), Ms-8.0 Wenchuan earthquake, China
(Huang 2008), and the latest hazardous event of the
M,-9.0 Tohoku earthquake, Japan (Huang and Ding
2012). In order to constrain the prospective earthquake
sources proposed previously by Pailoplee et al. (2013),
the RTL algorithm was applied in this study to the
most up-to-date seismicity data recorded along the
SASZ.

Methods

The RTL algorithm weights simultaneously the functions
of distance (R(xy,z,t)), time (T(x,y,zt)) and rupture
length (L(x,y,2,t)), as expressed in Eqgs. (1-3), respectively
(Sobolev and Tyupkin 1997, 1999):

R(x,yaza t) = ZEXP (_rl>
=1 To

_Rbg(xayag» t)a (1)

Tbg(x Y2, t) (2)

T(x,y,2.1) [Z exp ()

L(x,y,z,t) [Z exp (— —)] —Lug(%,9,2,t), (3)

where (x,y,z,t) are the investigated site and time, ¢; and /;
are the origin time and rupture length of the ith consid-
ered earthquake and r; is the distance between the investi-
gated site and earthquake focus. For the SASZ region, the
rupture length was given by the empirical relationship be-
tween the rupture length and earthquake magnitude (M),
based mainly on Papazachos et al’s (2004) assumption.
Meanwhile, 7y and ¢, are the characteristic distance and
time span, respectively. The Ryg(x;y,2), Tpg(xy:2), and
Lyg(x,y,2) are the background values of R(x,2), T(x,y,2),
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and L(x,,z), respectively, and # is the number of earth-
quakes satisfying some criteria, as shown in Egs. (4—6):

M;=M,, (4)
7i<Rmax = 219, (5)
£ <T max = 2tp. (6)

In order to limit the variations of the obtained weight-
ing, the RTL score (VrrL(%,),2,t)) was evaluated and nor-
malized as in Eq. (7).

R(x,y,2,t)  Txyzt) Lixyzt)

VRTL(x7y7 z, t) =

R(x’y7 Z7 t) ' T(x7y7 Z’ t) .L(x7y7z7 t)max

(7)

According to Eq. (7), the RTL score varies between -1
and 1, where a RTL score of <0 or >0 implies a quies-
cent or activation stage, respectively, when the back-
ground RTL score = 0.

max max

Results and discussion

Dataset and completeness

The seismicity data compiled by the (i) International
Seismological Center, (ii) US National Earthquake In-
formation Center, and (iii) Global Centroid Moment
Tensor were used in this study. Together, these datasets
recorded a total of 104,780 earthquake events along the
SASZ during 1964-2014. In order to investigate only
the interplate activities of the SASZ, the earthquakes
with a depth >45 km, defined as the subducting slab,
were excluded. The earthquake magnitudes were in the
range of 1.7-9.0 but were reported in the different
magnitude scales of the body-wave (my;), surface-wave
(Mg), and moment (M,,) magnitudes. Therefore, the
different magnitude scales were homogenized to M,,
using the empirical relationships contributed by the
Global Centroid Moment Tensor data available along
the SASZ (Fig. 2a, b).

Using the assumption suggested by Gardner and
Knopoff (1974), 102,017 events of earthquakes were de-
fined as dependent foreshocks or aftershocks and so
were eliminated. The completeness of the earthquake-
detecting procedure was checked using the FMD power-
law. Based on the assumption of the entire-magnitude
range (Woessner and Wiemer 2005), a magnitude of
completeness (Mc) of M,-4.6 was found to cover most
parts of the SASZ (Fig. 2c¢).

In addition, by recognizing the GENAS algorithm
(Habermann 1983, 1987), the mainshock data was found
to have a consistent seismicity with M,, > 4.6 during
1980-2014. The straight line of the cumulative number
of earthquakes (Fig. 2d) indicates no obvious man-made
change in the bulk seismicity rate (Wyss 1991; Zuniga
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) and the adjacent areas showing the epicentral distributions of the

Fig. 1 Map of the Sumatra-Andaman subduction zone (SASZ; grey polygon

completeness mainshocks with a M, 2 4.6 recorded during 1980-2014. The red stars are the major earthquakes with M,, = 7.0
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Fig. 2 Empirical relationships of a M,,-my, and b M,,-Ms. The best fit regression line, its equation, and R” value are shown. ¢ FMD plots of the
mainshocks reported along the SASZ. Triangles indicate the number of earthquakes of each magnitude and squares represent the cumulative
number of earthquakes equal to or larger than each magnitude. Solid lines are the lines of best fit according to Woessner and Wiemer (2005).
d Cumulative number of mainshocks with M,, 2 4.6 detected during 1980-2014. Black squares are the major earthquakes with M,, = 7.0. The
number mentioned above each square is equivalent to the “No.” column in Table 1

and Wiemer 1999). Therefore, all of the remaining 1668
mainshocks with a M, > 4.6 recorded during 1980-2014
were used in this RTL investigation.

Retrospective investigation

In order to (i) test the potential of the RTL algorithm as
a reliable marker of an earthquake precursor and (ii) find
out the suitable RTL characteristics of ry and £, corre-
sponding to R, and Ty, nine major earthquakes that
occurred along the SASZ during 1980-2014 (Table 1)
were investigated retrospectively using the RTL algo-
rithm. The parameter R,,,, was varied between 50 and
250 km with a 10-km space window, while T, was

evaluated between 0.5 and 10.5 years with a 0.5-year
time window. Thus, in total, 400 (20 x 20) characteristic
conditions were tested iteratively.

Temporal investigation

In each epicenter of the demonstrated earthquake
(Table 1), the RTL score was calculated every 14 days
starting from 1980 up to the recorded occurrence of the
earthquake. According to these iterative tests, values of
Riax = 200 km and T,y = 4 years, ie., rp = 100 km and
to = 2 years, allowed detection of the anomalous drop in
the RTL score prior to the occurrence of all recognized
earthquakes (Fig. 3). The minimum RTL score varied
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Table 1 List of earthquake events with M,, = 7.0 posed along the SASZ during 1980-2014
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No. Longitude (degree) Latitude (degree) Depth (km) Date Time Magnitude (M)
1. 98.10 0.10 34 17/11/1984 06:49 7.3
2. 96.09 2.82 30 02/11/2002 01:26 74
3. 95.98 330 30 26/12/2004 00:58 9.0
4. 97.11 2.09 30 28/03/2005 16:09 86
5. 92.38 9.32 16 24/07/2005 15:42 7.3
6. 95.96 277 26 20/02/2008 8.08 74
7. 92.99 14.11 10 10/08/2009 19:55 78
8. 96.74 207 18 06/04/2010 22:15 7.8
9. 93.06 233 20 11/04/2012 08:38 8.6

between -0.13 (Fig. 3d) and -0.96 (Fig. 3i) and were
mostly more than -0.5 lower than the minimum RTL
score, i.e., —1. This indicates that the anomalous drop in
the RTL score was fairly obvious as a quiescence precur-
sor. However, in this study, no prominent evidence of
the activation stage was found, as has also been men-
tioned previously for the M,,-7.2 Kobe earthquake, Japan
(Huang et al. 2001), M,,-6.8 Nemuro earthquake, Japan
(Huang and Sobolev 2002), and M,-7.3 Chi-Chi earth-
quake, Taiwan (Chen and Wu 2006).

Although only 4 years of seismicity data (1980-1984)
were used, the graph illustrates a significant drop in the
RTL score at 1984.69 followed by the M,,-7.3 earthquake
in November 17th, 1984 (Fig. 3a). In the case of the dev-
astating M,,-9.0 earthquake at the end of 2004, the qui-
escence stage was evident from 2002.56 and reached its
minimum RTL value (-0.58) at 2002.87 (Fig. 3c).

Regarding the time span between the occurrences of
an anomalous RTL score and subsequent major
earthquakes, most case studies illustrated a short time
period of 0.1-5.2 years (Fig. 3a—h). This indicates that
monitoring of the RTL measurements with 7o = 100 km
and o = 2 years may be useful for the intermediate-term
(months, years) earthquake forecasting along the SASZ.
Although the RTL anomalies appear almost 15 years
before the M,-8.6 earthquake of 2012, the calculated
RTL score dropped obviously to -0.96 in mid-1997
(Fig. 3i).

In order to examine the reliability of utilized char-
acteristic parameters, both ry and ¢, were varied
(Table 2), and the RTL score at the epicenter of the
M,,-9.0 earthquake was investigated temporally
(Fig. 4a). The correlation coefficients of each varied
ro and f, parameter compared to the utilized ry =
100 km and t, = 2 year values, respectively, were
also evaluated, and the results are summarized in
Table 2. Based on Huang (2005), the correlation co-
efficients that ranged between 0.81 and 0.91 indi-
cated that all the varied cases listed in Table 2
correlated at a significance of 0.05. As a result, one

can conclude that the values of r, = 100 km and
tp = 2 years utilized in this study are meaningful for
RTL investigation along the SASZ and that the seis-
mic quiescence obtained here is not an artifact due
to parameter selections.

Spatial investigation

In order to constrain the potential of the RTL algorithm
for intermediate-term earthquake forecasting, the spatial
distribution of the RTL score was also evaluated in this
study. At first, the area in the vicinity of SASZ was grid-
ded with a 0.25° x 0.25° spacing, and the temporal varia-
tions of RTL scores were evaluated in each grid node.
Thereafter, an average of the RTL score (Q(x,y,z,t1,t,)) at
each grid node (x,,z) over the time span of interest
(¢1,t2) was determined systematically as reported (Huang
et al. 2002) according to Eq. (8):

1 m
Q(x7_y7 zZ, tlatZ) :aZizlvRTL(x’y’z’ t), (8)

where m is the number of RTL score data available in
the time span ¢; to £,.

The spatial distribution of the average RTL score in
the individual time spans of interest for the nine major
earthquakes revealed that all these earthquakes were
generated in the vicinity of a comparatively low RTL
score (Fig. 5). For example, prior to the M,,-7.3 earth-
quake of November 17th, 1984, at the offshore western
Sumatra Island, an anomalous RTL score was evident
0.15 years during 1984.69-1984.84 (Fig. 5a). However,
according to the short utilized seismicity data mentioned
above, some additional anomalies are also shown in the
other regions of Sittwe city and southern Nicobar
Islands (Fig. 5a).

The RTL maps still illustrated clearly the anomalies at
the offshore western Sumatra Island (Fig. 5b, c), where
the anomalous RTL score seen 0.19 vyears during
1997.46-1997.65 was followed by the M,,-7.4 earthquake
on November 2nd, 2002 (Fig. 5b) and the M,,-9.0 earth-
quake of December 26th, 2004, followed 0.12 years of



Sukrungsri and Pailoplee Earth, Planets and Space Page 6 of 10

a M,,=7.3, Date = 17/11/1984 b M,, = 7.4, Date = 02/11/2002
14 1+
g': | 7.3M, g': ¥ 7.4M,
X i ! .
o 04 o 04
g 02 5 02
éa 0 | éa@ 0
2 02 - B 02 -
= 04 - = 04 -
0.6 - 0.6 -
-08 - .08 -
1980 1981 1982 1983 1984 1985 1986 1980 1985 1990 1995 2000 2005
Year (A.D.) Year (A.D.)
(o M,, =9.0, Date = 26/12/2004 d M,, = 8.6, Date = 28/03/2005
14 1+
0 ] 9.0M, s & 8.6M,
) ] : | |
04 - 04 -
g 02 - § 02 -
0 0 et
2 -02 - g -02 -
-4 04 - -4 04 -
0.6 - 0.6 -
0.8 - 0.8 -
1980 1985 1990 1995 2000 2005 2010 1980 1985 1990 1995 2000 2005 2010
Year (A.D.) Year (A.D.)
e M,, = 7.3, Date = 24/07/2005 f M, = 7.4, Date = 20/02/2008
14 1+
g.: . 7.3 M, g': 7.4M,
) n : |
o 04 o 04
g 0.2 - g 0.2 -
@ 0 - @ 0 -
2 -02 - g -02 -
© 04 - © 04 -
0.6 - 0.6 -
-08 - .08 -
1980 1985 1990 1995 2000 2005 2010 1980 1985 1990 1995 2000 2005 2010
Year (A.D.) Year (A.D.)
g M,, = 7.8, Date = 10/08/2009 h M,, = 7.8, Date = 06/04/2010
1 1
08 - 08 -
08 1 ?,: M, 06 £ ?,a. M,
04 - 04 -
£ 02 5 02
@ 0- @ 0-
2 02 - 2 02 -
© .04 - © .04 -
0.6 - 0.6 -
0.8 - 0.8 -
- + + + + i -1 t 1 t t - t 1
1980 1985 18990 1995 2000 2005 2010 2015 1980 1985 1890 1995 2000 2005 2010 2015
Year (A.D.) Year (A.D.)
i M, =286, Date = 11/04/2012
1+
“: -
: ]
04 -
§ 02
@ 0-
2 -02 -
© .04 -
0.6 -
0.8 -
1980 1985 1990 1995 2000 2005 2010 2015
Year (A.D.)
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Table 2 Correlation coefficients of the RTL values between
different characteristic parameters ry and to

Case A ro =100 km, to = 2 years

Case B rn=75km ro=125km t,=175years t,=225years
Correlation  0.82 091 0.81 0.81

of Aand B

the anomalous RTL score during 2002.87-2002.99
(Fig. 5¢). During 2005, two RTL anomalies were evident
along the SASZ, where the average RTL score decreased
down to -0.3 to -0.8 during 2005.02-2005.44 followed
by the M,,-8.6 and M,,-7.3 earthquakes on March 28th
and July 24th of 2005 at the southern Nicobar Islands
and the offshore western Sumatra Island, respectively
(Fig. 5d, e).

Moreover, there were two additional precursory RTL
scores that could be observed at the offshore western
Sumatra Island during 2006.86—2008.05 (1.19 years) and
2007.70-2008.05 (0.35 years) (Fig. 5f, h), which were
followed by earthquakes of M,,-7.4 and M,-7.8 on Feb-
ruary 20", 2008 and April 6™, 2010, respectively. Mean-
while, for the offshore northern Nicobar Islands, the
M,,-7.8 earthquake of August 10th, 2009, was within 1
year of the prominent RTL anomalies seen during
2008.62—2009.58 (Fig. 5g). For the latest major earth-
quake of the SASZ, only one obvious RTL anomaly was
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detected 0.23-year long during 1997.35-1997.58, and
this preceded the M,,-8.6 earthquake of April 11th, 2012
(Fig. 5i). To test the statistical significance of the
obtained RTL anomalies, the earthquake data were syn-
thesized randomly in the study area according to sto-
chastic process (Huang et al. 2002). Thereafter, the RTL
anomalies at nine epicenters of the major earthquakes
demonstrated here were evaluated. From 10,000 iterative
tests with random data, it was revealed that almost all
the anomalies obtained here did not result from a sto-
chastic process (Fig. 4b). According to both the temporal
and spatial relationship between the origin time and lo-
cation of the precursory RTL score and the subsequent
major earthquakes described above, we preferred and
applied the condition of ry = 100 km and ¢, = 2 years for
the present-day investigation of the RTL algorithm as
shown in the next section (the “Present-day investiga-
tion” section).

Present-day investigation

Based on the suitable values of ry and ¢, obtained from
the retrospective test, we then investigated the spatial
distribution of the RTL anomalies for the most up-to-
date seismicity data (2010-2014). As a result, four small
areas showed noticeable RTL anomalies in different time
spans. At Sittwe city, western Myanmar, the anomalous
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quiescence duration: 0.12 year
(A.D. 2002.87-2002.99)
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Fig. 6 Temporal and spatial distributions of the average RTL scores determined during 2010-2014. a 201043-2011.27, b 2011.77-2012.23, and
c 2012.35-2014.57

RTL score appeared for just under 1 year during
2010.43-2011.27 (Fig. 6a), while for the offshore north-
ern Nicobar Islands, the anomalies existed for almost 2
years during 2010.43-2012.23 (Figs. 5b and 6a).

Based on the FMD investigation using the seismicity
data until 2010, Pailoplee et al. (2013) proposed two pro-
spective areas of upcoming earthquakes, namely at Sit-
twe city and the offshore northern Nicobar Islands. This
study, using the anomalous RTL values, concurs with
the previous work of Pailoplee et al. (2013) and supports
the high possibility of a major earthquake soon at Sittwe
city and the northern Nicobar Islands.

In addition, it should be mentioned that other intense
RTL anomalies were also detected around (i) Aceh city,
northernmost of Sumatra Island, and (ii) offshore west-
ern Sumatra Island during 2010.43-2011.27 and
2012.35-2014.57, respectively (Figs. 5¢ and 6a). No sig-
nificant earthquakes have been reported in the vicinity

of these two regions since 2012, and so, these regions
are additionally proposed as being high seismic risk
areas that are likely to experience an earthquake in the
near future.

Conclusions

We investigated retrospectively the seismicity changes
prior to nine major earthquakes generated along the
SASZ by applying the RTL algorithm with the complete-
ness earthquake catalogue. Based on this iterative test,
suitable ry (100 km) and £, (2 years) values were found
and led the RTL algorithm to illustrate the meaningful
quiescence anomalies prior to the occurrence of all nine
major earthquakes, although no activation stage was
prominent. For the duration between the detectable RTL
anomalies and the subsequent major earthquakes, quies-
cence was most frequently detected in the range of 0.1-
5.2 years before the earthquake, which provides the best
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opportunity for the application of this RTL algorithm to
intermediate-term earthquake forecasting at the SASZ
region. As a result, we also evaluated the spatial varia-
tions of the RTL anomalies with the most up-to-date
seismicity data (2010-2014) and concluded that there
are four regions that have a possibility to generate a
major earthquake in the near future (Fig. 6). These were
(i) Sittwe city, western Myanmar, (ii) offshore northern
Nicobar Islands, (iii) Aceh city, northernmost of Sumatra
Island, and (iv) offshore western Sumatra Island. There-
fore, effective mitigation plans for both seismic and tsu-
nami hazards should be developed and implemented.
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