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Analysis and simulation of standing wave
pattern of powerful HF radio waves in
ionospheric reflection region
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Abstract

For the study of the various non-linear effects generated in ionospheric modulation experiments, accurate calculation of
the field intensity variation in the whole reflection region for an electromagnetic wave vertically impinging upon the
ionosphere is meaningful. In this paper, mathematical expressions of the electric field components of the characteristic
heating waves are derived, by coupling the equation describing a wave initially impinging vertically upon the ionosphere
with the Forsterling equation. The variation of each component of the electric field and the total electric field intensity of
the standing wave pattern under a specific density profile are calculated by means of a uniform approximation, which is
applied throughout the region near the reflection point. The numerical calculation results demonstrate that the total
electric field intensity of the ordinary (O)-mode wave varies rapidly in space and reaches several maxima below
the reflection point. Evident swelling phenomena of the electric field intensity are found. Our results also indicate
that this effect is more pronounced at higher latitudes and that the geomagnetic field is important for wave pattern
variation. The electric field intensity of the standing wave pattern of the extraordinary (X)-mode wave exhibits some
growth below the reflection point, but its swelling effect is significantly weaker than that of the O-mode wave.

Keywords: Forsterling function; Uniform approximation; Field intensity of standing wave pattern
Background
For many years, active remote probing by means of
high-frequency (HF) radio waves has been a standard
technique for diagnosing the ionosphere. This is because
the recording and analysis of the reflected or scattered
part of the HF radiation constitutes a convenient
method of determining a number of ionospheric pa-
rameters or of investigating various physical processes
occurring in the ionospheric plasma. The ionosphere is
also treated as a natural space plasma laboratory and
modulated more actively using high-power HF pump
waves, so as to study the interactions of the electro-
magnetic waves and plasma. Research attempts in this
area began with the Platteville heating experiments con-
ducted in Colorado, USA, in the 1960s (Utlaut, 1970;
Utlaut and Cohen, 1971; Utlaut and Violette, 1972). In
ionospheric modification experiments, a powerful HF
electromagnetic wave incident on the ionosphere can
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produce nonlinear effects on time scales ranging from
tens of microseconds to minutes, and on size scales
ranging from meters to kilometers. Strong nonlinear
processes including self-focusing, parametric and res-
onant instability, and accompanying phenomena such
as enhanced airglow production, Langmuir turbulence
(LT), and the generation of geomagnetic-field-aligned
density irregularities (FAI) have been found to occur
(Gondarenko et al. 2003; Stubbe et al. 1984).
A characteristic feature of the instabilities excited

during ionospheric modulation is the existence of a

finite threshold value of the HF pump electric field E
→

intensity, which must be exceeded for these instabilities
to be excited (Fejer, 1979; Fejer, 1981; Fejer et al. 1983).
In order to correctly interpret the observations made in
these experiments, it is therefore essential to be able to

accurately calculate the E
→

wave pattern in the whole
reflection region.
In this regard, the spatial distributions of the pump-

wave E
→

are derived using a wave equation, which is in
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turn derived within the WKB or geometrical optics ap-

proximation. However, it is impossible to obtain the E
→
value

in the vicinity of the reflection (conversion) point, where
the WKB approximation breaks down (Ginzburg, 1970). A
purely numerical simulation method for obtaining the

variation of the pump-wave E
→

in the whole reflection
region is used by Gondarenko et al. 2004. In addition,
the ray tracing method proposed by Field et al. 1990
and Hinkel et al. 1993 yields the spatial distribution of

the pump-wave E
→

by accurately calculating the phase of
the pump-wave propagation path. An ingenious analyt-
ical method devised by Lundborg and Thide 1985, 1986
is used to calculate the variation of the characteristic-

wave E
→

near the reflection region, but only ordinary
(O)-mode waves are considered. As regards Chinese
scholars, the empirical model is mostly used directly, to

estimate the spatial distributions of the pump-wave E
→
;

however, these estimates are accurate to within an
order of magnitude only (Huang and Gu, 2003; Hao
et al. 2013). Of course, purely numerical methods can

obtain the variation of the pump-wave E
→
; however, the

numerical models are very complex and the computa-
tional requirements are high. In addition, analytical
methods always provide more information about the
solution than pure numbers, and analytic formulas are
very quickly evaluated, even on a moderately sized
desktop computer.
We have therefore adopted the “uniform approxima-

tion” analytical method, which is similar to the method
used by Lundborg and Thide 1986, to derive accurate

approximations for the variation of the E
→

of both the O
and the extraordinary (X)-mode characteristic waves. In
contrast to the similar WKB or phase integral approxima-
tions, these approximations do not break down in the re-
flection region (Langer, 1937; Miller and Good, 1953). In
section 2, we provide the mathematical expressions of the

E
→

components of both characteristic mode waves, which
are derived using an approach that couples the equation
describing a wave initially impinging vertically upon the
ionosphere with the Forsterling equation. Then, analytic
solutions of each component calculated using the “uni-
form approximation” method are presented in section 3.

In section 4, we present the numerical results for the E
→

intensity variation of the standing wave pattern of the
O- and X-mode characteristic waves, under a specific
density profile and throughout the whole reflection re-
gion (including the upper-hybrid resonance altitude).
These calculations are conducted for different latitudes
and at different local times in one location. Along with
the real parts of the effective refractive index functions
for the O- and X-mode waves, the swelling factors for
both characteristic mode waves are also calculated.
The field strength obtained for an unmagnetized
plasma is given last and compared with the previously
obtained results. Finally, our conclusions are outlined
in section 5.

Wave formulation
The general equation for wave propagation in an isotropic
inhomogeneous plasma medium can be derived from the
Maxwell equations, which are expressed in the Cartesian
coordinate system in the form (Gurevich, 1978):

ΔE
→
−∇ ∇● E

→� �
þ ω2

c2
ε
0
ω; rð Þ E→¼ 0; ð1Þ

where ε
0
ω; rð Þ ¼ ε ωð Þ−i 4πω σ ωð Þ , σ is the conductivity

tensor and ω is the wave angular frequency. When con-
sidering a plane electromagnetic wave impinging verti-
cally upon the ionosphere, the changes in E

→
depend on

the z-coordinate only. Then, Eq. (1) can be rewritten as:

d2E
dz2

þ ω2

c2
ε 0 ω; zð ÞE ¼ 0: ð2Þ

This equation is applicable to both of the horizontal E
→

components, Ex and Ey. When the background ionosphere
is considered to be a linear plasma layer without absorp-
tion, Eq. (2) becomes:

ε 0 ω; zð Þ ¼ ε zð Þ ¼ n2 zð Þ; σ ¼ 0: ð3Þ
where n2 is the square of the complex refractive index.
Ex and Ey are determined from the one-dimensional
time-independent wave equation:

d2E
dz2

þ k2n2 zð ÞE ¼ 0; ð4Þ

where k = ω/c.
In this paper, we are interested in analyzing the vari-

ation of the E
→

intensity near the reflection point
caused by the initial vertical propagation of the HF
radio waves in the ionosphere. We therefore model
the ionosphere as a cold, magnetoactive, collisional
plasma. In the right-handed Cartesian coordinate sys-
tem we have chosen, the x-, y-, and z-axes respectively
point toward magnetic east, magnetic north, and verti-
cally upward, that is, the z-axis parallel to the k vector
of the radio wave launched from a transmitter on the
ground. The geomagnetic field B0 is considered to lie
in the yoz-plane and to create an angle θ to the nega-
tive z-axis, as shown in Fig. 1. We assume that the
standard magnetoionic notations are suitable for our
model. Then, we have (Rishbeth and Garriott, 1969):



y

z

B

o

θ HF 
electromagnetic
pump waves

Fig. 1 Schematic diagram of Cartesian coordinate system used in
this paper
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X ¼ ω2
pe=ω

2; Y ¼ ωce=ω; Z ¼ ν=ω; ð5Þ

where ωpe and ωce are the electron plasma (angular) fre-
quency and the electron cyclotron frequency, respect-
ively. For the specific expressions of these two terms,
refer to Rishbeth and Garriott 1969. The electron colli-
sion frequency νe = νem + νei, where νem and νei are the
collision frequencies of electrons with neutral particles
and with ions, respectively. The specific expressions of
these collision frequencies are given in detail in Banks
and Kocharts 1973 and Schunk and Walker 1980.

The wave equations for the components of E
→

can be
derived from Maxwell’s equations in the usual, well-
known way, as we have discussed above. Assuming a
time variation of exp[−iωt], we obtain the following wave
equations (Ginzburg, 1970):

d2Ex

dz2
þ k2Q11 zð ÞEx þ k2Q12 zð ÞEy ¼ 0; ð6aÞ

d2Ey

dz2
þ k2Q21 zð ÞEx þ k2Q22 zð ÞEy ¼ 0; ð6bÞ
Ez þ Q31 zð ÞEx þ Q32 zð ÞEy ¼ 0; ð6cÞ
where the functions Qij(z) are given by

Q11 zð Þ ¼ 1−
X zð Þ 1þ iZ½ � 1þ iZ−X zð Þ½ �

D zð Þ ;

Q12 zð Þ ¼ −Q21 zð Þ ¼ −i
X zð Þ 1þ iZ−X zð Þ½ �Y cosθ

D zð Þ ;

Q22 zð Þ ¼ 1−
X zð Þ 1þ iZ½ � 1þ iZ−X zð Þ½ �

D zð Þ

þ X zð ÞY 2 sin2θ
D zð Þ ;

Q31 zð Þ ¼ i
X zð Þ 1þ iZ½ �Y sinθ

D zð Þ ;

Q32 zð Þ ¼ −
X zð ÞY 2 sinθ cosθ

D zð Þ ;

with the common denominator

D zð Þ ¼ 1þ iZ−X zð Þ½ � 1þ iZð Þ2−Y 2
� �

−X zð ÞY 2 sin2θ:

ð7Þ
We can easily see that wave Eqs. (6a) and (6b) are

coupled and, therefore, it is a formidable task to obtain
exact solutions in their current form. However, for a
homogeneous medium, the exact solution of (6a) and (6b)
can be obtained trivially by solving the eigenvalue problem
of the corresponding matrix, which is then constant. This
yields the eigenvalues (Lundborg and Thide, 1986):

n2O=X ¼ 1−
X
2D

n
2 1þ iZð Þ 1þ iZ−Xð Þ−Y 2 sin2θ

∓ Y 4 sin4θ þ 4 1þ iZ−Xð Þ2Y 2 cos2θ
� �1

2
o
;

ð8Þ
and the corresponding eigenvectors described by the
transverse polarization

ρ ¼ Ey=Ex;

ρO=X ¼ i
2 1þ iZ−Xð ÞY cosθ

n
Y 2 sin2θ

� Y 4 sin4θ þ 4 1þ iZ−Xð Þ2Y 2 cos2θ
� �1

2
o
:

ð9Þ
The lower subscripts and signs ∓ (or ±) in Eqs. (8) and

(9) correspond to the O and X modes, respectively.
From Eq. (9), we easily find that the two polarizations
satisfy ρOρX = 1. For convenience in what follows, we pri-
marily use the quantity ρX in our equations, as ρO be-
comes very large in the O-mode reflection region.
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The characteristic waves in the homogeneous medium
are thus the well-known O- and X-mode wave with
complex wave numbers knO or knX, according to (8),
and with polarizations given by (9). However, it must
be remembered that, in an inhomogeneous medium,
these waves are no longer exact solutions of the wave
equations. Obviously, the pump-wave reflection area in
our calculation no longer satisfies this condition. How-
ever, if the medium is slowly varying, one might hope
that there exist approximate solutions under certain
conditions corresponding to the characteristic modes
that are at least less strongly coupled to each other
than the Cartesian field components. It might therefore
be a good idea to transform the dependent variables Ex
and Ey in (6a) and (6b) to new variables corresponding
to the characteristic wave modes for a homogeneous
plasma. The specific conversion procedure is described
in both Lundborg and Thide 1986 and Budden 1966.
Hence, we express the transverse field in terms of the
two Forsterling functions FO and FX, where:

Ex ¼ ρXEy;O þ Ex;X ; Ey ¼ Ey;O þ ρXEx;X ;

Ey;O ¼ ρ2X−1
� �− 1

2FO; Ex;X ¼ ρ2X−1
� �− 1

2FX :

ð10Þ

The new variables FO and FX in Eq. (10) must satisfy

F
00
O þ k2n2O þ q2

� �
FO ¼ q 0FX þ 2qFX

0 ; ð11aÞ

F
00
X þ k2n2X þ q2

� �
FX ¼ q 0FO þ 2qFO

0 ; ð11bÞ

where the coupling function q is defined as

q ¼ i iZ
0
−X

0� �
Y cosθ sin2θ

Y 2 sin4θ þ 4 1þ iZ−Xð Þ2 cos2θ :

ð12Þ

Equations (11a) and (11b) are the Forsterling equa-
tions, which contain no approximations and, hence,
are equivalent to the original equations, (6a) and
(6b). Assuming the solutions of Eqs. (11a) and (11b)
are known, we obtain Ex and Ey from Eq. (10) and,
finally, Ez from Eq. (6c). We can then achieve a for-
mal simplification of these results by introducing the
longitudinal polarization

ρL ¼ Ez=Ex: ð13Þ

Substituting (13) into Eqs. (6c) and (10) yields

ρL;O=X ¼ iY sinθ
1þ iZ−X

n2O=X−1
� �

: ð14Þ

We may now write the exact total field in the form
E ¼ EO þ EX ;

where

EO ¼ 1; ρO; ρL;O
� �

ρX ρ2X−1
� �− 1

2FO

¼ ρX ; 1; ρXρL;O
� �

ρ2X−1
� �− 1

2FO;

EX ¼ 1; ρX ; ρL;X
� �

ρ2X−1
� �− 1

2FX :

ð15Þ

Methods

The new approach presented here describes the E
→

com-
ponents of the characteristic waves by utilizing the For-
sterling functions discussed above. For our purposes, the
wave Eqs. (11a) and (11b) are in a more suitable form
than Eqs. (6a) and (6b), since the coupling, which is
expressed in terms of q, is sufficiently small in our appli-
cations to be neglected. Indeed, according to Eq. (12), q
is proportional to iZ' − X', which is very small in the
slowly varying medium we have chosen. Hence, in such
a medium, Eqs. (11a) and (11b) can in good approxima-
tion be treated as two uncoupled equations, where

F
00
O þ k2n2OFO ¼ 0; ð16aÞ

F
00
X þ k2n2XFX ¼ 0: ð16bÞ

These are the wave equations for the well-known
characteristic modes, i.e., the O and X modes, respect-
ively. It can be seen that the forms of these wave equa-
tions are almost exactly identical to that of Eq. (4). In
the present paper, these equations are treated using a
more comprehensive and versatile uniform approxima-
tion method, which can provide accurate solutions that
are valid throughout entire reflection regions.
In order to apply this method, we consider a differential

equation in the following form (Berry and Mount, 1972):

d2ψ

dϕ2 þ k2P2 ϕð Þψ ¼ 0; ð17Þ

where ϕ(z) is the mapping function, P is the phase value
of the ϕ(z) and ψ is the potential value, the solutions of
ψ has known and Eq. (17) is our so-called “comparison
equation”. Next, we express the solutions of wave Eq.
(16a) in terms of the known ψ in the form:

FO zð Þ ¼ dϕ zð Þ
dz

� 	−1
2

ψ ϕ zð Þð Þ; ð18Þ

and the mapping function ϕ(z) satisfies the equation
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n2 zð Þ ¼ dϕ
dz

� 	2

P2 ϕð Þ− 1

k2
dϕ
dz

� 	1
2 d2

dz2
dϕ
dz

� 	−1
2

; ð19Þ

exactly. Thus, Eq. (18) gives the exact solution of FO(z).
If P2(ϕ) is appropriately chosen, ϕ(z) will be slowly vary-
ing and the second term on the right-hand side of n2(z)
may be neglected on account of the first. Hence, we ob-
tain the first approximation

dϕ
dz

¼ n zð Þ
P ϕð Þ : ð20Þ

As this method functions only if the transition points
of the two wave equations correspond to each other, we
may define ϕ(z) implicitly, using Eq. (17), from

ζ ¼ k
Z ϕ

ϕ1

P ϕ
0

� �
dϕ

0 ¼ k
Z z

t1

n z
0

� �
dz

0
: ð21Þ

Here, we introduce the intermediary variable ζ = ζ(ϕ)
= ζ(ϕ(z)). Hence, ϕ1 is obviously the zero (transition
point) of P2(ϕ) that corresponds to the zero t1 of n

2(z).
In the case of only a single complex reflection point,

we can choose the Airy equation as our comparison
equation, where:

d2ψ

dϕ2 −ϕψ ¼ 0; ð22Þ

Here, we have k2P2(ϕ) = − ϕ, with the zero ϕ1 = 0 cor-
responding to the zero t1 of n

2(z) in Eq. (4). By means of
Eqs. (17) and (21), we then obtain

ϕ zð Þ ¼ −
3i
2
ζ


 �2
3

: ð23Þ

The general solution of Eq. (17) can be expressed in
terms of the Airy functions (Abramowitz and Stegun,
1972), such that:

ψ ϕð Þ ¼ αAi −Reϕ zð Þð Þ þ βBi −Reϕ zð Þð Þs ð24Þ
where α and β are the normalizing factor and the Stokes
coefficient respectively, and the factor α is defined as
(Hinkel et al. 1992):

α ¼ 2 kπ ρ2X znð Þ−1� �� �1=2
En exp i k

Z z0

zn

nO zð Þdz−π

4


 �� 

:

ð25Þ
Here, zn is the base point of the ionosphere and the

value of En is the field intensity at zn, which is deter-
mined by the effective radiated power (ERP) value and
the non-deviation absorption of the HF pump waves.
The physical conditions require the solution FO(z) of Eq.
(18) to decay as z→∞ and, hence, we must choose a ψ
solution that decays in the argϕj j < π

3 region, i.e., we
require β = 0. From Eqs. (18), (19), and (24), we thus ob-
tain the first-order uniform solution of FO(z), such that:

FO zð Þ ¼ α
−ϕ zð Þ
k2n2O zð Þ

" #
Ai −Reϕ zð Þð Þ: ð26Þ

As we have already mentioned, the solution technique
utilizing a uniform approximation of the wave equation,
what we discussed above can also be used to treat the
X mode.

Results and discussion
The approximation method discussed above can only be
employed to derive the solutions for the particular case
having one complex zero of n2(z). This is because the
applicability of the uniform approximation method is in-
herently connected to the behaviors of functions (19)
and (21). The O-mode refractive index has a zero when

X ¼ 1þ iZ; ð27aÞ
i.e., at the same points as for a corresponding nonmag-
netic medium. The X-mode refractive index is zero when

X ¼ 1þ iZ−Y : ð27bÞ
In this paper, we only analyze the variation of the

field intensities of the HF pump-wave standing wave
patterns for over-dense heating mode. In this case, the
emission frequencies of powerful pump waves from the
transmitter are less than the critical frequency value of
the ionospheric F2 layer f0F2, and the pump-wave re-
flection heights are lower than the density peak of the
F2 layer hmF2. As the pump-wave reflection heights in
our calculation lie in the F layer of the ionosphere,
where the electron density monotonically increases
with height, we assume that the electron density profile
is a linear monotonic case, such that:

X ¼ 1þ z−z0
h

; ð28Þ

where z0 is the reflection point (the real part of the com-
plex transition point) of O-mode waves and h is the
scale length of the profile.

From the Ey and Ez components of E
→

in Eq. (15), we
obtain its components perpendicular and parallel to the
geomagnetic field as

E⊥ ¼ cosθEy þ sinθEz; ð29Þ

E∥ ¼ − sinθEy þ cosθEz; ð30Þ

respectively. We now calculate the variation of the field
components in Eqs. (15), (29), and (30), for the linear
electron density profile we assumed in Eq. (28). The
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parameters chosen for our simulation are listed in detail
for three locations in Table 1.
As shown above, not only the parameters of the F

region at Alaska, Wuhan, and Haikou (three daytime
(LT = 1400) locations corresponding to different latitude
areas) were chosen for our calculation but also the pa-
rameters of the Wuhan area at night (LT = 0200). The
latter were selected in order to study the impact of the
day–night differences in the ionospheric background pa-
rameters on the distribution of the HF pump waves.
Here, the emission frequency of the pump wave was
chosen to be 0.9 times the local f0F2, and the ERP of the
pump waves was set to 10 MW. Note that the upper-
hybrid resonance altitude listed in the last line of Table 1
was included in the calculation interval for the O-mode
waves, as many nonlinear phenomena, such as field-
aligned irregularities, optical emissions, and stimulated
electromagnetic emissions, are influenced by the upper-
hybrid resonance. This resonance occurs at the altitude
where the upper-hybrid resonance frequency ωUH equals
ω, and ω2

UH ¼ ω2
pe þ ω2

ce . The simulation results for the

three locations in daytime are shown in Figs. 2, 3, and 4,
while the real parts of the refractive index function for
the O and X modes n2O=X zð Þ are also presented in the

Figs. 2a, c, 3a, c, and 4a, c.
The red dashed vertical line in Fig. 2a represents the

location of the upper-hybrid resonance altitude.
In Fig. 2a, the real part of n2O is far from linear. The

function is rather smooth, whereas its derivative under-
goes a rapid change in the region around z0, where the
Table 1 Selected parameters for linear profile model of F region
at Alaska, Wuhan, and Haikou

Time March 15, 2006

LT1400 LT1400 LT0200 LT1400

Location Alaska Wuhan Haikou

Latitude and
longitude

62.39° N,
145.15° W

30.5° N,
114.35° E

20.01° N,
110.35° E

θ, deg 14.19 44.47 44.47 62.83

f0F2, MHz 4.9933 8.2806 5.6387 9.5937

ω/(2π), MHz 4.494 7.4526 5.0748 8.6343

ωce/(2π), MHz 1.4169 1.2035 1.1996 1.0869

ν/(2π), Hz 309.7 695.8 316.9 955.4

h, km 78.2 96.3 57.3 118.8

z0, km 209 221 267 237

zUH, km 204.02 218.49 263.29 235.12

From top to bottom, the given parameters are the latitude and longitude of
the selected locations, the angle between the geomagnetic field and the
downward vertical, the critical frequency of the ionospheric F2 layer, the wave
frequency, electron cyclotron frequency in the geomagnetic field, the effective
collision frequency, the scale height, the reflection height of O-mode wave,
and the upper-hybrid resonance altitude
value of n2O has a zero (z = z0 = 209 km; the black circle
shown in the figure). However, the derivative remains
monotonic. Furthermore, we find that the refractive
index of the X-mode waves n2X goes to infinity before the
O-mode wave reflection point (z = 208.4 km; the black
dashed vertical line in Fig. 2a); this is referred to as the

plasma resonance region. It can be seen that the E
→

com-
ponents of the O-mode waves vary rapidly in the region

before z0. The E
→

component parallel to the geomagnetic
field E∥ plays a dominant role in all components and
undergoes obvious growth (the blue solid curve in

Fig. 2b), which leads to a rapid increase in the total E
→
in-

tensity; this is usually referred to as swelling. At the
same time, the component perpendicular to the geomag-
netic field E⊥ decreases rapidly in the region near z0 (the
black solid curve in Fig. 2b), and almost vanishes at z0
itself. It is also found that the total electric field |E| (the
red solid curve in Fig. 2b) varies more rapidly and has a
larger amplitude than the electric field for the isotropic
case |E0| (the green dashed curve in Fig. 2b), when the
geomagnetic field is neglected. Here, we define the
pump-wave swelling factor, which is the ratio of the

maximum E
→

amplitudes before the reflection height to
the empirical value. The latter is normally calculated
using the empirical model, as a function of altitude from

the pump-wave ERP, i.e., E≈0:25
ffiffiffiffiffiffiffiffiffi
ERP

p
=z (Gurevich, 1978;

Robinson, 1989). The swelling factor of the O-mode waves
for the Alaska case is approximately 10.97.
In Fig. 2c, the value of n2X has a zero before the reflec-

tion point of the O-mode waves (z = 184.3 km, the black
circle shown in the figure), indicating that the X-mode
waves do not usually reach the reflection level of the O-

mode waves. The E
→

components of the X-mode waves
exhibit significantly different behavior, in that E∥ (the
blue solid curve in Fig. 2d) is significantly smaller than
the other two components, E⊥ and Ex (indicated by the
black and green solid curves in Fig. 2d, respectively),

which are perpendicular to the geomagnetic field. All E
→

components of the X-mode waves are not enhanced
significantly in the vicinity of its reflection point, which
results in a reduced field swelling effect. The swelling
factor for the X-mode waves in Alaska is approximately
4.05.
From Eq. (9), we can see that the value of ρO is ap-

proximately equal to i for variable z is not too close to
the z0 and Y≪ 1. Hence, the transverse part of the
upgoing O-mode waves is, to a good approximation, cir-
cularly polarized in the right-hand sense. On the other
hand, for z value that is very close to the z0, X ≈ 1, n2O≈0,
and Z≪ Y, and we can obtain the following approxima-
tion from Eqs. (9) and (14)



(a)

(c)

(b)

(d)

Fig. 2 Real parts of effective refractive index functions and full three-component E
→
near characteristic-wave reflection point in Alaska, daytime

(LT = 1400). a, b O-mode waves; c, d X-mode waves

Wang et al. Earth, Planets and Space  (2015) 67:132 Page 7 of 11
ρX≈
Z cosθ

Y sin2θ
; ρL;O≈−

Y sinθ
Z

: ð31Þ

According to Eqs. (15), (29), and (30), this means that
at exactly z0 and in its immediate vicinity

E∥ ¼ − sinθEy þ cosθEz

¼ − sinθEy þ cosθ•ρXρLOEy

≈ − sinθ−
cos2θ
sinθ

� 	
Ey ¼ −

1
sinθ

Ey;
ð32Þ

Analogously,

E⊥ ¼ cosθEy þ sinθEz

¼ cosθ þ sinθ•ρXρLO
� �

Ey

≈
�
cosθ− sinθ

cosθ
sinθ

�
Ey ¼ 0:

ð33Þ

The above discussion gives a distinct explanation of
why the E⊥ component goes to zero at z0, and shows

that E
→

becomes almost aligned with the geomagnetic
field very near z0. In addition, its propagation vector
becomes perpendicular to the geomagnetic field B0,
also because of this field orientation near z0. Thus,
the electromagnetic wave can easily couple to electro-
static mode waves such as Langmuir or ion-acoustic
waves, resulting in various instabilities (Ginzburg, 1970;
Rietveld et al. 1993).
For X-mode waves, also from Eq. (28), we can see that

for z values very close to the X-mode wave reflection
point z0 − hY, then X→ 1 − Y, and |1 − X| ≃ Y. Therefore,
we can obtain the approximation from Eqs. (9) and (14),
such that:

ρX≈−i cosθ; ρL;X≈−
iY sinθ
Y þ iZ

: ð34Þ

The equations above clearly indicate that |ρX| < 1 and
|ρL,X| < 1. Therefore, combining these expressions with

Eq. (15) may give a distinct explanation of why the E
→

component perpendicular to the magnetic meridian
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Fig. 3 Real parts of effective refractive index functions and full three-component E
→
near characteristic-wave reflection points in Wuhan, daytime

(LT = 1400). a, b O-mode waves; c, d X-mode waves
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plane Ex (the green solid curve in Fig. 2d) is greater
than the other two field components in the magnetic
meridian plane (the black and blue solid curves in
Fig. 2d). In addition, the coefficients obtained in Eq.
(34) can be compared to the corresponding coeffi-
cients of the O-mode waves in Eq. (31); this may ex-
plain why only a reduced field swelling effect is
observed for the X-mode waves. As the value of θ in-
creases as the Y component decreases with decreasing

latitude, the swelling effect of the E
→

components of
the X-mode waves decreases with decreasing latitude.
The red dashed vertical line in Fig. 3a represents the

location of the upper-hybrid resonance altitude.
The red dashed vertical line in Fig. 4a represents the

location of the upper-hybrid resonance altitude.
The standing wave patterns of the characteristic

waves formed near their reflection points in the Wuhan
and Haikou areas in daytime (LT = 1400) are illustrated
in Figs. 3 and 4, for the parameters given in columns 2
and 4 of Table 1, respectively. Comprehensive analysis
considering Figs. 2, 3, and 4 shows that the reflection
heights of both characteristic waves increase and the
distance between them decreases with decreasing lati-
tude (the black circles in Figs. 3a, c and 4a, c above). In
addition, the values of the real parts of n2O and n2X
continue to monotonically decrease with height before
each reflection point. Furthermore, the distance between
the O-mode reflection point z0 and the upper-hybrid
resonance altitude also decreases with decreasing lati-
tude, as can be concluded from the parameters listed in
the last line of Table 1. The parallel component E∥ of
the O-mode waves continues to play a dominant role in
each of the field components and the swelling effect of

E
→

decreases with decreasing latitude. The amplitude of
the E∥ component in Fig. 4a for the Haikou area is sig-
nificantly less than that for Alaska, which is shown in
Fig. 2a. The swelling factor of the O-mode waves also
decreases with decreasing latitude, and the O-mode
wave swelling factor in Haikou is only 4.5. Because of
the close distance between the upper-hybrid resonance
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Fig. 4 Real parts of effective refractive index functions and full three-component E
→
near characteristic-wave reflection point in Haikou, daytime

(LT = 1400). a, b O-mode waves; c, d X-mode waves
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altitude and z0 in the lower latitude area, the amplitude
of |E| at the upper-hybrid resonance altitude is even

higher than its value at z0. This is because E
→

begins to
decay before the reflection point is reached.
The electron density and temperature in the back-

ground ionosphere, along with the electron collision fre-
quency, may increase with decreasing latitude; this
implies that the HF pump-wave emission frequency ex-
hibits a relative growth, while the value of the geomag-
netic field may decrease with decreasing latitude. This
causes the value of the Y component and the distance
between the X- and O-mode reflection points to grad-
ually decrease with decreasing latitude. The value of θ
may also increase with decreasing latitude. All of the
reasons given above may explain why the amplitude of
the E∥ component of the O-mode waves and the swell-
ing effect of |E| gradually decrease with decreasing lati-
tude. Further, the above discussion may also explain why
the distance between z0 and the upper-hybrid resonance
altitude also decreases with decreasing latitude.
For X-mode waves, the amplitude of Ex is greater than
the other two components in the magnetic meridian
plane. In addition, the swelling effect of all components
is significantly weaker than in the O-mode wave case.
Thus, only a reduced field swelling effect is formed in
the vicinity of its reflection point, and the swelling factor
for the X-mode waves is less than half that of the O-
mode waves.
We have shown the standing wave pattern results for

a partially or totally reflected HF wave impinging verti-
cally upon the ionosphere, which were calculated using
the “uniform approximation” method within the linear
electron density profile at different latitude areas in
daytime. However, in addition to the impact of the lati-
tude, the effect of the day–night differences on the
ionospheric background parameters is also very obvi-
ous. In order to study the impact of these differences
on the distribution of the HF pump waves, we present
the simulation result for the Wuhan area at night in
Fig. 5. The parameters used here are given in column 3
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Fig. 5 Real parts of effective refractive index functions and full three-component E
→
near characteristic-wave reflection point in Wuhan at night

(LT = 0200). a, b O-mode waves; c, d X-mode waves
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of Table 1. The emission frequency of the pump wave
was again set to 0.9 times the local f0F2, and the ERP of
the pump waves was 10 MW.
The red dashed vertical line in Fig. 5a represents the

location of the upper-hybrid resonance altitude.
An analysis comparing the results shown in Figs. 3

and 5 shows that the characteristic-wave reflection
height at night is significantly greater than the daytime
value. In addition, more intensive variations occur in
the real part values of n2O and n2X at night. The swelling

of the E
→

components for the O- and X-mode waves in
the vicinity of each reflection points are significantly

larger than those during the daytime, and the total E
→

intensity can reach significantly higher values at night.
As regards the background electron density and elec-
tron temperature of the ionosphere, the electron colli-
sion frequencies at nighttime are significantly lower
than those in daytime; this implies that the HR pump-
wave emission frequency has a relatively lower value.
Although the circadian variations of B0 are not obvi-
ous, the above behaviors cause a sharp increase in the
value of the Y component, the distance between the O-
and X-mode reflection points, and in the upper-hybrid
resonance altitude. In addition, the decrease in the
value of the background electron density and the elec-
tron temperature of the ionosphere cause a reduction
in the background absorption and the energy loss of
the HF pump waves. That is, the energy in the vicinity
of the reflection points and the field intensity of the
standing wave pattern of the characteristic waves are
much larger.

Conclusions
In this paper, we have demonstrated the application of
the “uniform approximation” method and the Forsterling
equation for investigation of the standing wave pattern
of a partially or totally reflected HF wave impinging ver-
tically upon the ionosphere, at different latitudes and
also at different local times in a single location. The
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numerical results show that the value of the real part of
n2O monotonically decreases with height, while the value
of the real part of n2X also monotonically decreases be-
fore its reflection point. Further, the distance between
the X- and O-mode wave reflection points decreases
with decreasing latitude. It is also found that the swell-

ing of the E
→

components of the characteristic waves is
much larger and the distance between these maxima is
much shorter than in the isotropic case, where the geo-
magnetic field is neglected. The swelling factors of the
pump waves are larger at higher latitudes than at lower
ones. Our results suggest that the ionospheric back-
ground parameters and the inclination and intensity of
the geomagnetic field may have an important effect on

the amplitude and spatial distributions of the E
→

of HF
pump waves.
The ERP value of the HF pump waves is set to

10 MW in our calculation. The E
→

at the standing wave
maxima near z0 reaches a magnitude of hundreds of mV
per meter, exceeding by far the threshold values for cer-
tain instabilities (e.g., thermal self-focusing, resonant,
and parametric instability) (Kuo, 2015). The intense
wave field modifies the plasma density at these maxima.
The approximation calculation results in this paper can
be used to derive the precise ERP values of HF pump
waves used to excite all kinds of instabilities, and also
function as a theoretical reference for ionospheric
modulation experiments in future.
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