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Abstract

In this study, a new multicomponent model (MCM) to determine the time variation of ionospheric parameters is
suggested. The model was based on the combination of wavelets with autoregressive-integrated moving average
model classes and allowed the study of the seasonal and diurnal variations of ionospheric parameters and the
determination of anomalies occurring during ionospheric disturbances. To investigate in detail anomalous changes in
the ionosphere, new computational solutions to detect anomalies of different scales and estimate their parameters
(e.g., time of occurrence, duration, scale, and intensity) were developed based on a continuous wavelet transform. The
MCM construction for different seasons and periods of solar activity was described using ionosphere critical frequency
foF2 data from Kamchatka (Paratunka Station, 52° 58′ N, 158° 15′ E, Institute of Cosmophysical Research and Radio Wave
Propagation FEB RAS). A comparison of the MCM with the empiric International Reference Ionosphere (IRI) model and
the moving median method for the analyzed region showed that the suggested method was promising for future
research, since it had the advantage of providing quantitative estimates for the occurrence time, duration, and intensity
of the anomalies, characterizing the ionospheric state and disturbance degree with a higher accuracy. Geomagnetic
storms from 17 March and 2 October 2013 were analyzed using the suggested method, and it was shown that the
ionospheric disturbances were at maximum during the strongest geomagnetic disturbances. An increase in the
electron concentration in comparison with the background level, under calm or weakly disturbed geomagnetic field
conditions, was identified before the analyzed magnetic storms.
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Background
The present study aimed to develop tools for iono-
spheric parameter analysis and anomaly detection dur-
ing ionospheric disturbances. The Earth’s ionosphere is
part of the atmosphere, stretching from 80 to 1000 km
and affecting radio wave propagation (Kato et al. 2009;
Nakamura et al. 2009; Watthanasangmechai et al. 2012).
Its structure is changeable and heterogeneous, and its in-
vestigation is based on the variation analysis of environ-
mental registered parameters. The ionospheric parameters
clearly change with the height, depend on the solar
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activity cycle, geomagnetic conditions, and geographic
coordinates, and have characteristic diurnal and seasonal
variations (Afraimovich et al. 2000, 2001; Nakamura et al.
2009; Watthanasangmechai et al. 2012; Danilov 2013).
Ionospheric anomalies appear as significant deviations
(increase or decrease) of the electron concentration in
relation to the background level. During anomalies, local
features of different shapes and durations are observed in
the registered ionospheric parameters (Mandrikova et al.
2014a). In most cases, the ionospheric disturbances result
from an increased solar and geomagnetic activity and, in
seismically active regions, they can be observed during
increased seismic activity (Afraimovich et al. 2000, 2001;
Nakamura et al. 2009; Maruyama et al. 2011; Klimenko
et al. 2012a, 2012b; Watthanasangmechai et al. 2012).
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The most important tasks in ionospheric parameter pro-
cessing and analysis are the monitoring of the ionospheric
conditions and the detection of anomalies (Afraimovich
et al. 2000, 2001; Liu et al. 2008a, 2008b; Nakamura et al.
2009; Watthanasangmechai et al. 2012; Danilov 2013;
Ezquer et al. 2014; Zhao et al. 2014), which affect many
aspects of our life and have a negative impact on satellite
system operation and radio communication propagation.
The problems associated with the analysis of ionospheric
conditions and detection of anomalies have been ad-
dressed by many authors (Bilitza and Reinisch 2007; Liu
et al. 2008a, 2008b; Nakamura et al. 2009; Maruyama
et al. 2011; Klimenko et al. 2012a, 2012b; Oyekola and
Fagundes 2012; Watthanasangmechai et al. 2012; Ezquer
et al. 2014; Zhao et al. 2014). The main approaches in-
clude the traditional moving median method (Mikhailov
et al. 1999; Afraimovich et al. 2000, 2001; Kakinami et al.
2010), ionosphere empirical models (Bilitza and Reinisch
2007; Nakamura et al. 2009; Klimenko et al. 2012b;
Oyekola and Fagundes 2012; Watthanasangmechai et al.
2012), the application of adaptive algorithms based on
neural networks (Martin et al. 2005; Nakamura et al. 2007,
2009; Mandrikova et al. 2012a, 2012b; Wang et al. 2013;
Zhao et al. 2014), and the wavelet transform (Hamoudi
et al. 2009; Kato et al. 2009; Mandrikova et al. 2012a,
2012b, 2013a, 2014a). At present, the International Refer-
ence Ionosphere (IRI) model (Jee et al. 2005; Bilitza and
Reinisch 2007; Klimenko et al. 2012b; Oyekola and
Fagundes 2012) is the best ionospheric empirical model. It
is based on a wide range of ground and space data and,
since its parameter estimation accuracy for a particular
region depends significantly on the availability of local
registered data, its results can largely deviate from the
experimental data (Bilitza and Reinisch 2007; Ezquer et al.
2014). Therefore, the IRI-based forecasts are more accur-
ate for mid-latitudes than for equatorial and auroral lati-
tudes. Previous studies also showed that the accuracy of
the IRI model depends on the level of solar activity, de-
creasing with a solar activity increase (Jee et al. 2005;
Nakamura et al. 2009; Oyekola and Fagundes 2012). The
recent development of empirical models using pattern rec-
ognition techniques and neural networks (Nakamura et al.
2007, 2009; Wang et al. 2013; Zhao et al. 2014) allowed for
a significant improvement of the forecast quality in com-
parison with the IRI model, as they are easy to implement
automatically and flexible enough. However, these models
belong to the “black box” model class. Therefore, for fea-
ture spatial description, long training samples are required,
which are prone to overfitting and can lead to unexpected
results with very noisy data. The proposed multicompo-
nent model (MCM) is based on autoregressive-integrated
moving average models (ARIMA) (Box and Jenkins 1970),
which allow obtaining quite accurate estimates with lim-
ited samples and, after the model identification phase, can
be easily implemented automatically. Their main advan-
tage is their mathematical basis and consequent ability to
obtain results with a given confidence probability.
Previous investigation of the ionospheric parameters

variation in the Kamchatka region showed a complex
non-stationary structure, which significantly impedes the
application of traditional classical methods for modeling
and analysis of data. As the latest research (Huang et al.
1998; Odintsov et al. 2000; Rilling 2003; Huang and
Wu 2008; Klionsky et al. 2008, 2009; Hamoudi et al.
2009; Kato et al. 2009; Yu et al. 2010; Akyilmaz et al.
2011; He et al. 2011; Mandrikova et al. 2012a, 2012b,
2014a; Ghamry et al. 2013; Zaourar et al. 2013) shows,
the most natural and effective way of representing such
data is the construction of non-linear adaptive approxi-
mating schemes. As a result, methods of empirical
mode decomposition (Huang et al. 1998; Rilling 2003;
Klionsky et al. 2008, 2009; Huang and Wu 2008; Yu et al.
2010) and adaptive wavelet decomposition (Hamoudi
et al. 2009; Kato et al. 2009; Akyilmaz et al. 2011; He et al.
2011; Mandrikova et al. 2012a, 2012b, 2013a, 2014a;
Ghamry et al. 2013; Zaourar et al. 2013) are being inten-
sively developed at present. Given the large variety of
orthogonal basis wavelets with compact support and the
presence of numerically stable fast algorithms for data
transformation, wavelet decomposition provides many
possibilities for the analysis of data with a complex struc-
ture (Chui 1992; Daubechies 1992; Mallat 1999), including
geophysical data (Hamoudi et al. 2009; Kato et al. 2009;
Akyilmaz et al. 2011; He et al. 2011; Mandrikova et al.
2012a, 2012b, 2013a, 2014a; Ghamry et al. 2013; Zaourar
et al. 2013). In this paper, a multiscale wavelet decompos-
ition (MSA) of an ionospheric parameter time series was
used. Based on the MSA, the time series was presented as
different scale components with a simpler structure than
the original series. This representation allowed the distinc-
tion of stationary components and the application of
classical methods of time series modeling and analysis
for their identification. As mentioned above, an ARIMA
model class (Box and Jenkins 1970; Kay and Marple
1981; Basseville and Nikiforov 1993; Huang et al. 2013)
was used in this study. Practical research has confirmed
the power and flexibility of the ARIMA method in solving
many applied problems (Box and Jenkins 1970; Basseville
and Nikiforov 1993; Huang et al. 2013). At present, these
methods are being developed in geophysical studies
(Mabrouk et al. 2008; Huang et al. 2013; Mandrikova
et al. 2013a, 2014a). However, there are some restric-
tions regarding their application to separate time series
and determined regularities (Kay and Marple 1981;
Huang et al. 2013; Mandrikova et al. 2013a, 2014a). The es-
timation, diagnostics, and optimization of ARIMA model
parameters are based on the assumption that the data
have a standard distribution, which is not always correct.
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Extending the application of these methods, we suggested
a new MCM, based on the combination of wavelets with
ARIMA models. This approach was proposed for the first
time to reveal anomalies in subsoil radon data and
proved to be efficient (Geppener and Mandrikova 2003).
The present paper describes a method to construct
and estimate an MCM. The efficiency of the sug-
gested model was assessed using ionospheric data.
The model allowed the elimination of noise, the sim-
plification of the data structure, and the detection of
stationary components liable for identification. We
compared the obtained MCM with the IRI model and
the moving median method, widely applied in the model-
ing and analysis of ionospheric parameters. The compari-
son showed promising results for the newly proposed
method. To study ionospheric parameters in detail, we
used the suggested modeling method combined with a
continuous wavelet transform. The computational solu-
tions allowed the detection of different scale anomalies in
the ionosphere and the estimation of their occurrence
time, duration, and intensity was based on the continuous
wavelet transform.

Methods
MCM identification
Considering a random time series f0 containing stationary
components and noise, based on the multiscale wavelet
decomposition up to the mth level, the f0 time series was
presented as a linear combination of multiscale compo-
nents (Chui 1992; Daubechies 1992):

f 0 tð Þ ¼
X−m
j¼−1

g 2jt
� �þ f 2−mt½ � ð1Þ

where f 2−mt½ � ¼
X
k

c−m;kφ−m;k tð Þ is a smoothed compo-

nent of a time series; coefficients c−m,k = 〈 f, φ−m,k 〉 and
φ−m,k(t) = 2−m/2φ(2−mt − k) are a scaling function; g 2jt

� � ¼X
k

dj;kΨ j;k tð Þ is the detailing components of a time series;

and coefficients dj,k = 〈 f,Ψj,k 〉 and Ψj,k(t) = 2j/2Ψ(2jt − k) are
the wavelet basis.
By changing the decomposition level m, we could obtain

various representations of a time series. Our task was to
determine the best representation that allowed the extrac-
tion of the stationary components from the noise and the
acquisition of an adequate ARIMA model. The smoothed
components of the wavelet decompositions f[2−mt] were
less affected by the random factor than the detailing com-
ponents g[2jt]. Therefore, the solution was based on the
analysis of the smoothed components as follows:
Step 1. We performed multiscale wavelet decompo-

sitions of the time series to levels m ¼�1;M (the max-
imum acceptable decomposition level M was determined
by the length N of the time series: M ≤ log2N) and
obtained a set of smoothed components: f 2−mt½ � ¼X
k

c−m;kφ−m;k tð Þ, m ¼ 1;M
―――

.

Step 2. We determined the stationary components from
a set of f[2−mt] components, m ¼ 1;M

―――
. Applying the trad-

itional approaches (Box and Jenkins 1970; Marple 1987),
we determined the models from the ARIMA model class
from the approximation of the f[2−mt] stationary compo-
nents. Each component was represented as:

f −m tð Þ ¼
X
k

s−m;kφ−m;k tð Þ;

where s−m;k ¼
Xp
l¼1

γ−m;lω−m;k−l−
Xh
n¼1

θ−m;na−m;k−n is an

estimated smoothed component, ω−m,k = ∇νc−m,k, ∇ν

is a difference operator of ν order, p and γ−m,l are
the order and parameters of a smoothed component
autoregression, h and θ−m,n are the order and pa-
rameters of a moving average of a smoothed com-
ponent, and a−m,k are the residual errors of the
model.
Step 3. We estimated the component model errors as:

Em ¼
XK
k¼1

XQ
q¼1

emkþq

where emkþq ¼ sactual−m;kþq−s
predict
−m;kþq

� �2
is the component model

error at point k with time step q, sactual−m;kþq are the actual

values of a time series component, spredict−m;kþq are the model

values of a time series component, Q is the length of the
data time step, and K is the length of a time series
component.
Step 4. We considered that the best representation

of a time series was the one corresponding to a
multiscale wavelet decomposition to level m*, where
m� : Em� ¼ minm Em.
Step 5. We determined the stationary components from

a set of detailing components g[2jt] and j ¼�−1;−m� . Ap-
plying the traditional approaches (Box and Jenkins 1970;
Marple 1987), we determined the models from the ARIMA
model class for the approximation of the stationary com-
ponents g[2jt].

Step 6. Components g[2jt], which were not stationary,
contained local features and noise and were investigated
by another method.
Step 7. Using Eq. 1, we combined the obtained compo-

nent models in a joint multi-component construction:



Mandrikova et al. Earth, Planets and Space  (2015) 67:131 Page 4 of 16
f 0 tð Þ ¼
X
μ¼1;Τ
�

X
k¼1;Nμ

j

—

sμj;kb
μ
j;k tð Þ ð2Þ

where sμj;k ¼
Xpμj
l¼1

γμj;lω
μ
j;k−l−

Xhμj
n¼1

θμj;na
μ
j;k−n is an estimated μth

component, pμj and γμj;l are the order and parameters of

the μth component autoregression, hμj and θμj;k are the

order and parameters of a moving average of the μth
component, ωμ

j;k ¼ ∇νμβμj;k , ν
μ is the difference order of

the μth component, β1j;k ¼ сj;k , β
μ
j;k ¼ dj;k ; μ ¼�2;Τ , Τ is

the number of modeled components, aμj;k are the residual

errors of the μth component model, Nμ
j is the length of

the μth component, b1j;k ¼ φj;k is a scaling function, and

bμj;k ¼ Ψ j;k ; μ ¼�2;Τ is a wavelet basis of the μth

component.
For the prediction of sμj;kþq , q ≥ 1 determines the pre-

diction of sμj;k for point k and time step q. The sμj;kþq was

determined based on the μth component model as
follows:

sμj;kþq ¼
Xpμj
l¼1

γμj;lω
μ
j;kþq−l−

Xhμj
n¼1

θμj;na
μ
j;kþq−n:

The residual errors of the μth component model were
determined as the difference between the actual and pre-

dicted values for point k + q: aμj;kþq ¼ sμ;actualj;kþq −sμ;predictj;kþq .

Equation 2 represents the typical data changes. During
abnormal data changes, the absolute residual errors of
the component models rise. For this reason, the anomaly
detection was based on the following conditional test:

εμ ¼
XQμ

q¼1

aμj;kþq

��� ��� > Tμ ð3Þ

where Qμ is the length of the data time step based on
the μth component model and Tμ is the threshold value
of the μth component defining the presence of an
anomaly.
The Tμ threshold in Eq. 3 was determined by the vari-

ance estimation of the data prediction errors (Box and
Jenkins 1970):

Tμ Qμ

� �
¼ 1þ

XQμ−1

q¼1

ψμ
j;q

� �2( )1=2

σaμj;kþq
; ð4Þ

where ψμ
j;q are the weighting coefficients of the μth

component model, which can be determined by

1−γμj;1B−γ
μ
j;2B

2−…−γμ
j;pμj þνμ

Bpμj þνμ
� �

1þ ψμ
j;1Bþ ψμ

j;2B
2 þ…

� �
¼

1−θμj;1B−θ
μ
j;2B

2−…−θμ
j;hμj

Bhμj

� �
; where B is a backward

shift operator: Blωμ
j;k tð Þ ¼ ωμ

j;k−l tð Þ; ψμ
j;0 ¼ 0:

It is also possible to use the following probability
limits:

Tμ Qμ

� �
¼ uε=2 1þ

XQμ−1

q¼1

ψμ
j;q

� �2( )1=2

σaμj;kþq
; ð5Þ

where uε/2 is the quantile of the 1 − ε/2 level of the
standard normal distribution.

Results and discussion
Construction of the MCM for the Kamchatka region
Model identification
For the model construction, we used hourly data of the
ionospheric critical frequency f0F2 (Paratunka station, 52°
58′ N, 158° 15′ E, Kamchatka, Russia, Institute of Cosmo-
physical Research and Radio Wave Propagation FEB RAS
(IKIR FEB RAS)) from 1968 to 2013. To determine the de-
gree of geomagnetic disturbance, we used the K-index
based on the Paratunka station geomagnetic data. To
model the ionospheric parameters for a quiet period, the
time intervals for a relatively calm geomagnetic field (sum
of the daily K-indices ΣK < 24), without strong seismic
events (without earthquakes of Ks ≥ 12, within a 300 km
radius from the station), were used as estimates.
Considering the seasonality of ionospheric processes,

the different seasons were modeled separately. The level
of solar activity was also considered. A detailed descrip-
tion of the model identification and diagnosis for winter
and summer is given below. The time intervals used for
identification are shown in Table 1. The solar activity was
estimated according to the average monthly radio radi-
ation at a wavelength of f10.7. For f10.7 < 100, the activity
was considered low, while for f10.7 > 100, it was consid-
ered high.
The model identification was performed using the

method described in “Model identification” section.
The multiresolution wavelet decomposition of the foF2

data (Eq. 1) was performed using Daubechies wavelets of
third order. The wavelet basis was chosen among other or-
thogonal functions and allowed us to perform a numeric-
ally stable multiscale wavelet decomposition of the data
(Daubechies 1992). To determine the type of orthogonal
wavelet, we applied the criterion suggested by Mallat
(1999), which allowed the minimization of the number
of approximated summands and approximation error. In
the dictionary D ¼ ∪

λ∈Λ
W λ of orthonormal bases, the basis

W α ¼ qαz
	 


1≤z≤N was better than the W γ ¼ qγzf g1≤z≤N to
approximate function f, if it gave the smallest error for the



Table 1 Time intervals of the f0F2 data used for the construction
of the multicomponent model (MCM)

Winter Summer

High solar activity

20.12.1968–09.01.1969 31.07.1969–20.08.1969

03.01.1970–22.01.1970 30.07.1970–16.08.1970

11.02.1970–02.03.1970 07.06.1979–24.06.1979

03.01.1982–20.01.1982 20.07.1989–10.08.1989

01.01.1991–23.01.1991 10.07.1990–28.07.1990

30.11.2000–19.12.2000 27.06.1998–15.07.1998

19.12.2011–08.01.2012 20.06.2001–07.07.2001

29.12.2012–24.01.2013 18.06.2002–06.07.2002

28.05.2002–18.06.2002

Low solar activity

09.01.1984–29.01.1984 24.06.1983–14.07.1983

11.02.1985–27.02.1985 26.05.1983–12.06.1983

22.01.1987–10.02.1987 20.06.1984–10.07.1984

29.12.2005–14.01.2006 28.06.2004–17.07.2004

15.01.2006–04.02.2006 13.08.2007–01.09.2007

09.02.2008–27.02.2008
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same number of approximating summands, i.e., for all
Z ≥ 1,

εα Z½ �≤εγ Z½ �

where ε[Z] is the approximation error determined as

ελ Z½ � ¼
X
z∉IλZ

〈 f ; qλz〉
�� ��2 ¼ fk k2−

X
z∈IλZ

〈 f ; qλz〉
�� ��2 , where IZ is

the set of indices of power Z.
Using steps 1–4 from the “Model identification” section,

we determined that the best representation of a time series
corresponding to the multiscale wavelet decomposition to
an m* = 3 level was:

f 0 tð Þ ¼ f 2−3t
� �þ g 2−3t

� �þX−2
j¼−1

g 2jt
� � ð6Þ

where f 2−3t½ � ¼
X
k

c−3;kφ−3;k tð Þ is the smoothed station-

ary component containing periods of more than 8 h,

g 2−3t½ � ¼
X
k

d−3;kΨ−3;k tð Þ is the detailing stationary

component containing periods of 8–16 h, and g 2jt
� �

¼
X
k

dj;kΨ j;k tð Þ and j ¼�−1;−2 are the detailing com-

ponents containing the local features and noise.
The obtained approximation (Eq. 6) agrees with Shi

et al. (2015), who showed that the largest variance of the
ionospheric periodic oscillations ranged 2–4 days and
decreased with the period increase.
Equation 6 allowed us to conclude that the initial foF2

series, and smoothed components f[2−mt],m = 1, 2 had a
complex structure that could not be approximated by an
ARIMA model. Figure 1 shows the autocorrelation func-
tion (ACF) of the original series and its first difference
stationary and extracted components, confirming that
the direct application of ARIMA methods will not ad-
equately model the time series. The extracted compo-
nents of a time series f[2− 3t] and g[2− 3t] had damped
and partial autocorrelation functions of third order
(Fig. 1), allowing the identification of an autoregressive
model of third order (Box and Jenkins 1970) and the
confirmation of the efficiency of the suggested method.
The estimation of the model parameters for the ex-

tracted stationary components f[2− 3t] and g[2− 3t] was
performed using the traditional method (Box and Jenkins
1970; Marple 1987), showing a dependence with the
season and level of solar activity (Tables 2, 3, 4, and 5).
According to Tables 2 and 4, we obtained the follow-

ing models for winter according to Eq. 2. Regarding the
models obtained without considering the first differences
and depending on the solar activity, we obtained the fol-
lowing equations.
For a high solar activity:
s13;k ¼ 16−0:22⋅с3;k−1−0:22⋅с3;k−2 þ 0:77⋅с3;k−3 þ a13;k tð Þ

for the estimated component f[2− 3t] and s23;k ¼ −0:14⋅
d3;k−1−0:14⋅d3;k−2 þ 0:83⋅d3;k−3 þ a23;k tð Þ for the esti-

mated component g[2− 3t].
For a low solar activity:
s13;k ¼ 11−0:19⋅с3;k−1−0:21⋅с3;k−2 þ 0:75⋅с3;k−3 þ a13;k tð Þ

for the estimated component f[2− 3t] and s23;k ¼ −0:29⋅
d3;k−1−0:26⋅d3;k−2 þ 0:69⋅d3;k−3 þ a23;k tð Þ for the esti-
mated component g[2− 3t].
For a general model for high and low solar activities,

obtained by considering the first difference, we obtained:
s13;k ¼ −0:62⋅ω1

3;k−1−0:63⋅ω
1
3;k−2 þ 0:36⋅ω1

3;k−3 þ a13;k tð Þ
and ω1

3;k ¼ ∇с3;k for the estimated component f[2− 3t] and

s23;k ¼ −0:97⋅ω2
3;k−1−0:93⋅ω

2
3;k−2 þ a23;k tð Þ and ω2

3;k ¼ ∇d3;k

for the estimated component g[2− 3t].
Our results were based on the general model for high

and low solar activities. According to this model, to obtain
a winter forecast, four preceding forecasts were required,
taking into account the difference of order ν = 1. For the
initial hourly data and a decomposition level of m = 3, this
corresponded to 32 h.
According to Tables 3 and 5, we obtained the follow-

ing models for summer according to Eq. 2. For a high
solar activity, we obtained:
s13;k ¼ −0:50⋅ω1

3;k−1−0:58⋅ω
1
3;k−2 þ a13;k tð Þ and ω1

3;k ¼ ∇с3;k
for the estimated component f[2− 3t] and s23;k ¼ −0:88⋅



Fig. 1 a Autocorrelation function (ACF) of the foF2 time series, b ACF of the first difference of the foF2 time series, c ACF of the f[2− 3t]
component, d partial ACF of the f[2− 3t] component, e ACF of the g[2− 3t] component, and f partial ACF of the g[2− 3t] component for 19
December 2011–08 January 2012. The x-axis is marked by the delays used to calculate the autocorrelation coefficients
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ω2
3;k−1−0:80⋅ω

2
3;k−2 þ a23;k tð Þ and ω2

3;k ¼ ∇d3;k for the esti-

mated component g[2− 3t].
For a low solar activity, we obtained:
s13;k ¼ −0:83⋅ω1

3;k−1−0:73⋅ω
1
3;k−2 þ a13;k tð Þ and ω1

3;k ¼ ∇с3;k

for the estimated component f[2− 3t] and s23;k ¼ −0:95⋅
ω2
3;k−1−0:86⋅ω

2
3;k−2 þ a23;k tð Þ and ω2

3;k ¼ ∇d3;k for the

estimated component g[2− 3t].
According to these models, to obtain a summer fore-

cast, three preceding forecasts were required, taking into
account the difference of order ν = 1. For the initial
hourly data and a decomposition level of m = 3, this cor-
responded to 24 h.
Model diagnostics
The diagnostics of the MCM was based on the adequacy
of the constituent component models, using two residual
Table 2 Estimated parameters for the smoothed f[2− 3t] component

Time period Constant Parameters of the model for the smoo
component

First parameter Second parameter

03.01.1982–20.01.1982 16.832 −0.195 −0.1745

19.12.2011–08.01.2012 13.746 −0.1677 −0.1809

29.12.2012–24.01.2013 13.089 −0.3028 −0.3231

General model parameters
(solar maximum)

16.00 −0.22 −0.22

22.01.1987–10.02.1987 10.688 −0.0931 −0.1326

15.01.2006–04.02.2006 11.042 −0.1716 −0.2479

09.02.2008–27.02.2008 10.576 −0.3156 −0.2979

General model parameters
(solar minimum)

11.00 −0.19 −0.21
error analysis methods. Based on the goodness-of-fit
(Box and Jenkins 1970), a fitting model was adequate if

Qμ ¼ n
XZ
z¼1

r2z aμ
� � ð7Þ

had a distribution of approximately χ2 Z−hμj −p
μ
j

� �
,

where Z is the first autocorrelation of the μth component
model residual errors, rz(aμ) is the autocorrelation of the
residual error of the μth component model, and n =N −
ϑ, where N is the time series length of the μth component
and ϑ is the difference order of the μth component
model.
Based on the normalized cumulative periodogram, we

also used:
model (winter)

thed Parameters of the model for the first difference of the
smoothed component

Third parameter First parameter Second parameter Third parameter

0.8029 −0.5443 −0.5505 0.4451

0.80866 −0.5567 −0.5744 0.42407

0.65231 −0.5858 −0.5936 0.39376

0.77 −0.62 −0.63 0.36

0.84567 −0.4579 −0.4669 0.53618

0.7101 −0.7254 −0.7371 0.22256

0.62768 −0.7993 −0.7656 0.20138

0.75 −0.62 −0.63 0.36



Table 3 Estimated parameters for the smoothed f[2− 3t]
component model (summer)

Time period Parameters of the model for the 1st
difference of the smoothed component

First parameter Second parameter

07.06.1979–24.06.1979 −0.4032 −0.4099

20.06.2001–07.07.2001 −0.5268 −0.5916

18.06.2002–06.07.2002 −0.6156 −0.6099

General model parameters
(solar maximum)

−0.50 −0.58

20.06.1984–10.07.1984 −0.8254 −0.6382

28.06.2004–17.07.2004 −0.8485 −0.7834

13.08.2007–01.09.2007 −0.9465 −0.9156

General model parameters
(solar minimum)

−0.83 −0.73
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Cμ f β
� �

¼

Xβ
i¼1

I f ið Þ

ns2
;

where I(fi) is the periodogram of a residual error
of the μth component model aμk ; k ¼�1; n , n is the

time series length aμk : I f ið Þ ¼ 2
n

Xn
k¼1

aμk cos2πf ik

 !2

þ
"

Xn
k¼1

aμk sin2πf ik

 !2#
; f i ¼ i=n is the frequency, and s2

is the estimation σ2
aμ of the residual error time series

of the μth component model.
The diagnostics was performed using the data that was

not used for the model identification. The selected inter-
vals for diagnostics are shown in Table 6 and were char-
acterized by a relatively quiet geomagnetic field without
strong seismic events.
Table 4 Estimated parameters for the detailed g[2− 3t] component m

Time period Parameters of the model for the

First parameter Second parame

03.01.1982–20.01.1982 −0.111 −0.1471

19.12.2011–08.01.2012 −0.2325 −0.2379

29.12.2012–24.01.2013 −0.1424 −0.1256

General model parameters (solar maximum) −0.14 −0.14

22.01.1987–10.02.1987 −0.3439 −0.3168

15.01.2006–04.02.2006 −0.1987 −0.1977

09.02.2008–27.02.2008 −0.2114 −0.1146

General model parameters (solar minimum) −0.29 −0.26
The tests based on the total goodness of fit (Eq. 7)
showed that the resulting MCM adequately character-
ized the time evolution of the foF2 data. For example, for

9–22 August 2010, the Q1 ¼ n
X20
k¼1

r2k a1ð Þ ¼ 16; 15 (for

f[2− 3t]) and the Q2 ¼ n
X20
k¼1

r2k a2ð Þ ¼ 8; 47 (for g[2− 3t])

were consistent with χ0,05
2 (20 − 2) = 28, 9 and in ac-

cordance with the total goodness-of-fit test, confirm-
ing the adequacy of the constructed models.
The diagnostics based on the normalized cumulative

periodogram for 19 December 2011–8 January 2012
(Fig. 2) also confirmed its adequacy.
Figure 3 shows an example of foF2 data modeling for a

relatively calm geomagnetic field, confirming the good ap-
proximation properties of the model and its convergence.
The comparison of the MCM with the moving median

and empirical IRI model, for different seasons and levels
of solar activity (Figs. 4 and 5, Table 7), showed that the
MCM allowed a more accurate estimate, especially during
the solar maximum. In summer, during the solar max-
imum, the IRI overestimated the foF2 (Fig. 5a) while, dur-
ing the solar minimum, it underestimated it (Fig. 5d).
During the solar maximum, a significant increase in the
IRI model errors was observed from 09:00 to 00:00 LT
(Fig. 4c) while, during the solar minimum, the errors
increased between 21:00 and 03:00 LT (Fig. 5f), in agree-
ment with Nakamura et al. (2009). The observed correl-
ation of the IRI model errors casts doubt on their
adequacy. Oppositely, the MCM errors corresponded to
white noise, as confirmed by the diagnostics.
With the MCM, we can obtain predicted data and esti-

mate the confidence intervals during the prediction ac-
cording to Eq. 5. When the component model errors are
beyond the confidence interval, we can identify an anom-
aly in the ionosphere, which is difficult for the IRI model
and the moving median method. The modeling results for
odel (winter)

detailed component Parameters of the model for the first difference of
the detailed component

ter Third parameter First parameter Second parameter

0.85026 −0.9304 −0.9568

0.73806 −0.997 −0.9805

0.8261 −0.998 −0.9693

0.83 −0.97 −0.93

0.62425 −0.9783 −0.9476

0.79975 −1.001 −0.997

0.78411 −1.007 −0.9522

0.69 −0.97 −0.93



Table 5 Estimated parameters for the detailed g[2− 3t]
component model (summer)

Time period Parameters of the model for the first
difference of the detailed component

First parameter Second parameter

07.06.1979–24.06.1979 −0.8262 −0.7529

20.06.2001–07.07.2001 −0.9347 −0.7743

18.06.2002–06.07.2002 −0.841 −0.8331

General model parameters
(solar maximum)

−0.88 −0.80

20.06.1984–10.07.1984 −0.9272 −0.9093

28.06.2004–17.07.2004 −0.9577 −0.9312

13.08.2007–01.09.2007 −0.9342 −0.9027

General model parameters
(solar minimum)

−0.95 −0.86
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a perturbed geomagnetic field are shown in Figs. 6 and
7. At increased geomagnetic activity, the errors of the
component models increased beyond the standard devi-
ation, with a confidence level >70 %, indicating anomal-
ous changes in the foF2 time series. The estimated
median foF2 time series (Fig. 6a, gray line) showed the
greatest deviation during high geomagnetic activity (5
February and 15 February 2011) and for a calm geo-
magnetic field (12 February 2011). The IRI model did
not allow the distinction of anomalous periods in the
ionosphere and showed a slight error increase in the
first analyzed period (Fig. 6f ) on 5 February 2011, for a
slightly perturbed geomagnetic field, and in the second
analyzed period (Fig. 7d) on 19 January 2013, for a
slightly perturbed geomagnetic field, and on 25 January
2013, for a calm geomagnetic field.
Table 6 Intervals of the f0F2 data used in the model diagnostics

Winter Summer

High solar activity

15.12.1970–29.12.1970 23.06.1969–05.07.1969

07.02.1981–21.02.1981 04.06.1971–21.06.1971

07.02.2002–25.02.2002 12.06.1989–29.06.1989

05.12.2011–18.12.2011 13.08.2000–26.08.2000

30.01.2012–11.02.2012 03.08.2002–17.08.2002

04.02.2013–18.02.2013 06.07.2002–18.07.2002

Low solar activity

13.12.1983–29.12.1983 25.06.1987–06.07.1987

06.01.1993–25.01.1993 09.08.2010–22.08.2010

05.01.2007–18.01.2007
Ionospheric anomaly detection and estimation of their
parameters based on the continuous wavelet transform
and threshold functions
Regarding each basic wavelet Ψ, the continuous wavelet
transform was given by the following formula (Chui
1992; Daubechies 1992):

WΨ f b;a : ¼ aj j−1=2
Z∞
−∞

f tð ÞΨ t−b
a

� �
dt; f ∈L2 Rð Þ; a; b∈R; a≠0:

A decrease in the |WΨfb,a| coefficient amplitudes de-
pending on scale a is associated with the Lipschitz’s uni-
form and dot smoothness of the Lipschitz function f
(Daubechies 1992; Mallat 1999). According to the
Zhaffar’s theorem (Jaffard 1991; Mallat 1999), when a
decreases, the amplitudes of the |WΨfb,a| coefficients
rapidly decrease to zero where the function f is smooth
and has no local features. Based on this property of the
wavelet transform, we used the following threshold func-
tion to detect local features in the time series of the foF2
critical frequency and identify ionospheric anomalies:

PTa WΨ f b;a
� �

¼
WΨ f b;a; if WΨ f b;a−WΨ f

med
b;a

��� ���≥Ta

0; if WΨ f b;a−WΨ f
med
b;a

��� ��� < Ta

none:

8<
:

ð8Þ

where the threshold Ta =U * Sta detects the presence of
an anomaly for an a scale near point ξ included in the
carrier Ψb,a (see below), U is a threshold coefficient, and

Sta ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Φ−1

XΦ
k¼1

WΨ f b;a−
�
WΨ f b;a

� �2vuut ,
�
WΨ f b;a и WΨ f

med
b;a

are the average and median for a moving time window
of length Φ. Taking into account the diurnal variation of
the ionospheric data, the average

�
WΨ f b;a and median

WΨ f
med
b;a were calculated separately for each hour.

Given the randomness of the data, the use of any
threshold Ta defining the presence or absence of an anom-
aly is inevitably associated with the possibility of a wrong
identification. To assess the quality of the decision, we
used the lowest error rate, which represents the most
complete data representation, i.e., the posterior risk (Levin
1963) was estimated and minimized. During the estima-
tion of the a posteriori risk in determining the ionospheric
conditions, we used ionogram data (Paratunka station,
Kamchatka), which were compared with geomagnetic
(K-index) and Kamchatka earthquake catalog data. A
dependence of the Ta threshold on the solar activity
was found, with Ta increasing for periods of high solar
activity. Therefore, separate thresholds for years of high
and low solar activity were estimated.



Fig. 2 Diagnostics of the component models: a autocorrelation function (ACF) of the residual errors of the f[2− 3t] component model, b cumulative
periodogram of the residual errors of the f[2− 3t] component model, c ACF of the residual errors of the g[2− 3t] component model, and d cumulative
periodogram of the residual errors of the g[2− 3t] component model

Fig. 3 Modeling results of the foF2 data (Paratunka station, Kamchatka) for 21–25 February 1999 (LT): a observed (black line) and modeled foF2
data by the f[2− 3t] component model (blue line), b observed (black line) and modeled foF2 data by the multicomponent model (MCM, blue line),
c MCM errors, and d K-index for the Paratunka station. Graph c shows the standard deviations of the MCM errors (dashed lines)
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Fig. 4 Modeling results of the foF2 data for winter (LT): a and d observed (black line) and predicted foF2 by the multicomponent model (MCM,
blue line) and the empiric International Reference Ionosphere (IRI) model (green dashed line), b and e MCM errors, and c and f IRI model errors,
a–c solar maximum (1991), d–f solar minimum (2006)
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For a wavelet Ψ with a compact carrier equal to
[−Ω,Ω], the variety of point pairs (b, a) with ξ included
in carrier Ψb,a determines the influence cone of ξ
(Mallat 1999). Since the Ψb,a carrier for an a scale is
[b −Ωa, b +Ωa], the cone of influence of ξ on a was
defined by the following inequality:

b−ξj j≤Ωa

The anomaly duration for a was then defined by the
influence cone of ξ and equal to:
Fig. 5 Modeling results of the foF2 data for summer (LT): a and d observed
blue line) and the empiric International Reference Ionosphere (IRI) model (g
a–c solar maximum (2002), d–f solar minimum (2004)
Ηa ¼ 2Ωa ð9Þ
The anomaly intensity for t = b was defined as:

Yb ¼
X
a

PTa WΨ f b;a
� ���� ���
WΨ f b;a

��� ���
2

ð10Þ

where the norm WΨ f b;a

��� ���
2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
Na

PTa WΨ f b;a
� �� �2s

,

Na is the series length for scale a.
(black line) and predicted foF2 by the multicomponent model (MCM,
reen dashed line), b and e MCM errors, and c and f IRI model errors,



Table 7 Error estimation for the multicomponent model (MCM)
and International Reference Ionosphere (IRI) model

Analyzed period Error sum of the squares/correlation coefficient

MCM IRI model

06.01–16.06.1991 132.39/1.00 719.7/0.89

03.01–13.01.2006 131.4/0.87 236.7/0.48

22.06–03.07.2002 91.4/0.69 183.8/0.49

29.06–14.07.2004 104.72/0.76 156.31/0.62
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Figure 8 shows the results of the ionospheric anomaly de-
tection based on Eq. 8 and intensity estimation based on
Eq. 10, during the magnetic storm of 25–26 August 1987.
If the wavelet coefficients WΨfb,a exceeded the correspond-

ing median WΨ f
med
b;a by Ta, we considered a positive anom-

aly, characterized by an increase in the ionospheric electron
density compared to the background (Fig. 8, in red). If the

median WΨ f
med
b;a exceeded the corresponding wavelet coef-

ficientsWΨfb,a by Ta, we assumed a negative anomaly, char-
acterized by a decrease in the electron density compared to
Fig. 6 Modeling results of the foF2 time series components (Paratunka stat
and median of the foF2 time series (gray line), b actual (black line) and mod
modeled g[2− 3t] component values (blue line), d errors of the f[2− 3t] comp
Reference Ionosphere (IRI) model errors, and g K-index for the Paratunka st
model errors (dashed lines)
the background (Fig. 8, in blue). A negative anomaly, lasting
for more than 1 day, occurred in the ionosphere during a
magnetic storm (Fig. 8). Its intensity increased from the be-
ginning of the storm and was maximum during the main
phase of the storm. After the magnetic storm, the electron
density increased, as indicated by the positive anomalies
from 28 August 1987. During the storm, small-scale anom-
alies, associated with local variations of the ionospheric
electron density also occurred. In comparison with the pro-
posed solutions, the calculation of the medians of the foF2
series (Fig. 8a, gray line) did not allow a detailed analysis of
the ionosphere during the storm, the acquisition of quanti-
tative estimates of the disturbances, and the identification
of the anomalous period. The largest median deviations in
the foF2 series were observed both during a magnetic storm
and for quiet geomagnetic fields, mainly at night.
Data analysis during magnetic storms
Figures 9 and 10 show the joint analysis of ionospheric
and geomagnetic data during the magnetic storms from
ion, Kamchatka) for 4–17 February 2011 (UT): a observed (black line)
eled f[2− 3t] component values (blue line), c actual (black line) and
onent model, e errors of the g[2− 3t] component model, f International
ation. Graphs d and e show the standard deviations of the component



Fig. 7 Modeling results of the foF2 time series components (Paratunka station, Kamchatka) for 16–28 January 2013 (LT): a observed (black line)
and median of the foF2 time series (gray line), b errors of the f[2− 3t] component model, c errors of the g[2− 3t] component model, d International
Reference Ionosphere (IRI) model errors, and e K-index for the Paratunka station. Graphs b and c show the standard deviations of the component
model errors (dashed lines), the arrow indicates the beginning of the earthquake that occurred in Kamchatka on 26 January 2013, and Ks is the
energy class of the earthquake

Fig. 8 Results of the ionospheric data processing (Paratunka station, Kamchatka) for 22–31 August 1987: a observed (black line) and median of the foF2
time series (gray line), b detected anomalies for a threshold coefficient U of 2.3 and a moving time window length Φ of 336 h, c estimation of the
anomaly intensity, and d K-indices above three (Paratunka station)
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Fig. 9 Processing results of the geomagnetic and ionospheric data for 14–22 March 2013: a H-component of the Earth’s magnetic field,
b assessment of the geomagnetic disturbance intensities, c identification of the periods of weak and strong geomagnetic disturbances,
d identification of the periods of strong geomagnetic disturbances, e solar wind speed, f observed foF2, g absolute smoothed component
model errors, h absolute detailing component model errors, i estimation of the anomaly intensity, and j detected anomalies for a threshold
coefficient U of 2.5 and a moving time window length Φ of 336 h. Graphs g and h show the standard deviations of the component model
errors (dashed lines)
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17 March and 2 November 2013. The magnetic storm
from 17 March had a sudden start. The comparison be-
tween the solar wind parameters and the geomagnetic
and ionospheric data processing indicated a common
nature. The perturbations, reaching a maximum between
06:15 and 19:50 UT, formed in the geomagnetic field
during the significant increase in the solar wind speed,
from 410 to 705 km/s between 05:25 and 05:55 UT,

based on the Eb ¼
X
a

WΨ f b;a

��� ��� (Figs. 9b and 10b,

Mandrikova et al. 2013b, 2014b). A large-scale negative
anomaly that lasted for about a day and reached its max-
imum mainly in daytime between 6:00 and 18:00 LT on
March 18 was found at the same time in the ionosphere.
Before the magnetic storm (15–16 March 2013), local
increases in the solar wind speed were observed, accom-
panied by weak disturbances in the geomagnetic field. A
large-scale positive ionospheric anomaly lasting for more
than a day and small-scale anomalies associated with
local fluctuations in the ionospheric electron density
were also observed.
The analysis of the magnetic storm from 2 November

2013 showed a similar nature of the processes occurring
in the magnetosphere and ionosphere. The perturbations
in the geomagnetic field formed during the increase in
solar wind speed and were largest between 03:30 and
06:25 UT. A positive anomaly, indicated by an increase in
the electron density, was observed in the ionosphere be-
fore the magnetic storm (1 November 2013) and, at the
beginning of the storm, it was replaced by a medium-scale



Fig. 10 Processing results of the geomagnetic and ionospheric data for 29 September–5 October 2013: a H-component of the Earth’s magnetic field,
b assessment of the geomagnetic disturbance intensities, c identification of the periods of weak and strong geomagnetic disturbances, d identification
of the periods of strong geomagnetic disturbances, e solar wind speed, f observed foF2, g absolute smoothed component model errors, h absolute
detailing component model errors, i estimation of the anomaly intensity, and j detected anomalies for a threshold coefficient U of 2.5 and a moving
time window length Φ of 336 h. Graphs g and h show the standard deviations of the component model errors (dashed lines)
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negative anomaly, which reached its maximum at night
between 01:00 and 06:00 LT on 3 November. Small-scale
anomalies were also observed. After the end of the mag-
netic storm at night on 4 November, the electron density
in the ionosphere decreased significantly, as indicated by a
negative anomaly.
A clear increase in the foF2 (pre-storm enhancement)

from ground measurements and total electron content
(TEC) data has been observed by many authors (Danilov
and Belik 1991; Danilov and Belik 1992; Danilov 2001;
Burešová and Laštovička 2007; Mansilla 2007; Liu et al.
2008a, 2008b; Nogueira et al. 2011; Saranya et al. 2011;
Adekoya and Chukwuma 2012). For the magnetic
storms from 17 March and 2 October 2013, these effects
were observed for a calm and weakly disturbed geomag-
netic field, lasting from several hours to a day and a half
(Figs. 9 and 10).
Conclusions
Using a newly suggested modeling method, we extracted
the components that characterize the seasonal and diurnal
fluctuations of the ionospheric parameter characteristics for
calm conditions in the Kamchatka region. The correspond-
ing models were also constructed. A comparison between
the new model and the empirical IRI model and moving
median method showed promising results from the sug-
gested method for the studied region, which provided more
reliable information about the ionospheric conditions. The
computational solutions developed, based on the continu-
ous wavelet transform, allowed the identification of differ-
ent scale anomalies during ionospheric disturbances and
the estimation of their duration and intensity. The iono-
spheric 1969–2013 data processing showed a dependence
of the ionospheric anomaly intensity on the level of solar
and geomagnetic activity. The largest and most intense
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ionospheric anomalies were observed during strong mag-
netic storms and were mostly characterized by a decrease
in the electron density compared with the typical level.
A joint analysis of ionospheric and geomagnetic data

from two strong magnetic storms that occurred on 17
March and 2 November 2013 helped to understand the
processes involved and the characteristics before and dur-
ing the events. A comparison between the solar wind pa-
rameters and the geomagnetic and ionospheric data
processing showed a common nature for the analyzed pro-
cesses. A significant increase in the solar wind speed before
the main phase of magnetic storms was accompanied by
disturbances in the geomagnetic field and the emergence
of large-scale negative ionospheric anomalies of high inten-
sity. During local small increases in the solar wind speed,
weak perturbations were found in the geomagnetic field,
accompanied by multiscale abnormal changes in the iono-
spheric parameters. Before magnetic storms, large-scale
positive anomalies, as indicated by the increased electron
density, were observed in the ionosphere, together with
small-scale anomalies associated with local variations in
the ionospheric electron density.
Future research includes the testing and application

of the developed MCM as well as obtaining computing
solutions for different data registration stations, for a
more detailed analysis of the ionospheric processes dur-
ing disturbances and the study of their spatial and tem-
poral distribution.
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