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Near-field tsunami forecast system 
based on near real-time seismic moment tensor 
estimation in the regions of Indonesia, the 
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Abstract 

We have developed a near-field tsunami forecast system based on an automatic centroid moment tensor (CMT) 
estimation using regional broadband seismic observation networks in the regions of Indonesia, the Philippines, and 
Chile. The automatic procedure of the CMT estimation has been implemented to estimate tsunamigenic earthquakes. 
A tsunami propagation simulation model is used for the forecast and hindcast. A rectangular fault model based on 
the estimated CMT is employed to represent the initial condition of tsunami height. The forecast system considers 
uncertainties due to two possible fault planes and two possible scaling laws and thus shows four possible scenarios 
with these associated uncertainties for each estimated CMT. The system requires approximately 15 min to estimate 
the CMT after the occurrence of an earthquake and approximately another 15 min to make the tsunami forecast 
results including the maximum tsunami height and its arrival time at the epicentral region and near-field coasts avail-
able. The retrospectively forecasted tsunamis were evaluated by the deep-sea pressure and tide gauge observations, 
for the past eight tsunamis (Mw 7.5–8.6) that occurred throughout the regional seismic networks. The forecasts ranged 
from half to double the amplitudes of the deep-sea pressure observations and ranged mostly within the same order 
of magnitude as the maximum heights of the tide gauge observations. It was found that the forecast uncertainties 
increased for greater earthquakes (e.g., Mw > 8) because the tsunami source was no longer approximated as a point 
source for such earthquakes. The forecast results for the coasts nearest to the epicenter should be carefully used 
because the coasts often experience the highest tsunamis with the shortest arrival time (e.g., <30 min).
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Introduction
Great earthquakes with moment magnitudes (Mw) 
greater than about 8 have often generated disastrous tsu-
namis with many casualties (ITIC 2015). In particular, the 
2004 Sumatra (Mw 9.1) and 2011 Tohoku (Mw 9.0) tsuna-
mis were extremely disastrous and caused about 200,000 
and 20,000 casualties, respectively (e.g., Satake 2014). 
Practical tsunami early warning systems are necessary for 
mitigating disasters caused by such great tsunamis.

Seismic waves, crustal deformation, and tsunamis (sea 
level) are continuously monitored, and these data are 
mostly available in real time. Seismic waves are primar-
ily observed by onshore seismometers worldwide. Crus-
tal deformations are observed by the global positioning 
system/global navigation satellite system (GPS/GNSS). 
Coastal tsunamis are observed at tide gauge stations, and 
offshore tsunamis are monitored by ocean-bottom pres-
sure gauges (e.g., Rabinovich and Eblé 2015) and GPS 
sea-surface buoys (e.g., Kawai et al. 2013).

For reliable tsunami warnings, fast-traveling seismic 
wave data are used to evaluate the sizes of earthquakes 
and tsunamis, and, if available, offshore tsunami data 
are then used to reliably evaluate the actual tsunami size 
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before tsunami arrival at the coast. Also, onshore coseis-
mic crustal deformation data (GPS/GNSS) with high 
sampling (e.g., 1  Hz) can quickly constrain near-field 
tsunamigenic earthquake sources as presented in recent 
studies (e.g., Melgar et  al. 2013; Tsushima and Ohta 
2014).

Rapid earthquake source estimation systems based on 
real-time seismic observations have been developed and 
operated (e.g., Okada et  al. 2004; Ekström et  al. 2012; 
Duputel et  al. 2012b). Earthquake source estimation is 
essential for the quickest issuing of tsunami warnings and 
forecasts. The simplest method is to search for a possible 
scenario in a pre-computed tsunami simulation database 
according to the estimated earthquake magnitude with 
its location (e.g., Tatehata 1997; Kamigaichi 2009; Lauter-
jung et  al. 2010; Igarashi et  al. 2015). There are various 
types of earthquake magnitudes, such as local magni-
tude, body-wave magnitude, surface-wave magnitude, 
and Mw (e.g., Utsu 2001; Shearer 2009). It is important to 
use the Mw for tsunami warning because the Mw reflects 
the fault displacement that is directly related to the tsu-
nami generation. Using the moment tensor with Mw can 
facilitate more reliable tsunami forecasts (e.g., Reymond 
et al. 2012; Gusman and Tanioka 2014). Tsunami forecast 
systems based on the estimated centroid moment ten-
sor (CMT) have been installed by the Pacific Tsunami 
Warning Center (PTWC) (e.g., Wang et al. 2012; PTWC/
ITIC 2014) and the French Polynesian Tsunami Warning 
Center (CPPT: Centre Polynésien de Prévention des Tsu-
namis) (e.g., Clément and Reymond 2015; Jamelot and 
Reymond 2015).

Using real-time offshore tsunami observations proba-
bly facilitates more reliable forecasts than using observa-
tions from seismic data alone. Tsunami forecast systems 
that use offshore tsunami observations have been devel-
oped by the National Oceanic and Atmospheric Admin-
istration (NOAA) (e.g., Tang et  al. 2009, 2012) and the 
Japan Meteorological Agency (JMA) (e.g., Tsushima et al. 
2009, 2011, 2012). Recently, other reliable forecast meth-
ods that use dense offshore observation networks have 
been also suggested (Baba et al. 2014; Maeda et al. 2015). 
Forecast systems using tsunami observation can be reli-
able but require substantially longer times, because it 
typically takes tens of minutes for a tsunami to reach to 
the nearest offshore stations (e.g., Tang et  al. 2012; Wei 
et al. 2013). For rapid and reliable forecasts, some studies 
have suggested that the initial tsunami height based on a 
finite-fault model inferred from seismic and/or geodetic 
observations is used as an initial guess, and successive 
offshore tsunami observations can facilitate a more reli-
able forecast (e.g., Melgar and Bock 2013; Tsushima et al. 
2014).

On the other hand, there are many coastal communities 
for which offshore tsunami observations are not available 
for use in early warning because observation points are 
sparse around the target coastal areas (e.g., Rabinovich 
and Eblé 2015). So the tsunami forecast system based on 
seismic observation alone still plays an important role for 
disaster mitigations of coastal communities.

The tsunami forecast systems of PTWC and CPPT pri-
marily use CMTs estimated by teleseismic body-wave 
inversions. The robust estimations of these CMTs require 
at least several tens of minutes after the origin time, espe-
cially for great earthquakes (Mw > 8) (e.g., Duputel et al. 
2011). These tsunami forecast systems require time to 
estimate the CMT solution and to calculate the tsunami. 
It is therefore important to reduce the time to estimate 
CMT and to calculate tsunami for a rapid warning, espe-
cially for near-field tsunamis. In order to reduce the CMT 
estimation time, we prefer to use near-field seismic data, 
which is available earlier than teleseismic data.

Regional broadband seismic observation networks 
have been deployed in Indonesia (Ohtaki et  al. 2000; 
Miyakawa et al. 2007; Nakano et al. 2010), the Philippines 
(Inoue and Solidum 2015; Bonita et  al. 2015; Punong-
bayan et  al. 2015), and Chile (Barrientos 2014) (Fig.  1). 
These observation networks are maintained by the Indo-
nesian Agency for Meteorological, Climatological and 
Geophysics (BMKG: Badan Meteorologi, Klimatologi, 
dan Geofisika), the Philippine Institute of Volcanology 
and Seismology (PHIVOLCS), the University of Chile, 
and the German Research Centre for Geosciences (GFZ: 
Deutsches GeoForschungsZentrum). Observed seis-
mic waveform data in Indonesia and the Philippines are 
obtained in real time by the National Research Institute 
for Earth Science and Disaster Resilience (NIED), Japan, 
through the framework of cooperative research projects 
with the BMKG (Miyakawa et  al. 2007) and the PHI-
VOLCS (Inoue and Solidum 2015). The other data in 
the observation networks are also received by the NIED 
through the public servers of the Incorporated Research 
Institutions for Seismology (IRIS) and the German Geo 
Research Network (GEOFON: GEOFOrschungsNetz).

Within the framework of an automatic/manual CMT 
estimation called the source-parameter determinations 
based on waveform inversion of Fourier Transformed 
seismograms (SWIFT) system (Nakano et al. 2008, 2010), 
the NIED has routinely analyzed the observed seismic 
data and maintained a database of the estimated CMTs of 
earthquakes that have occurred throughout the regional 
seismic networks. The time required for the CMT estima-
tion using the near-field regional seismic data is expected 
to be shorter than that from the teleseismic data inver-
sion. We have recently implemented an automatic CMT 
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estimation procedure for large earthquakes (Mw  >  7) 
into the previous SWIFT system (Nakano et  al. 2008) 
and have incorporated a tsunami forecast system based 
on the estimated CMT. In the present paper, we briefly 

describe the automatic CMT estimation procedure, then 
describe the tsunami forecast system, show the fore-
cast accuracy, and discuss its applicability to disaster 
mitigation.

a1

b1

a2

b2

Fig. 1 (Upper) Broadband seismic observation networks, and (lower) estimated CMTs of detected earthquakes by the SWIFT system in the regions 
of a Indonesia and the Philippines, and b Chile. Red squares indicate the broadband seismic stations currently used by SWIFT: 133 stations in a and 
48 stations in b. A total of 1488 CMTs of Mw 4.3–8.6 throughout Indonesia and the Philippines were obtained from June 25, 2007, to December 31, 
2015, and 220 CMTs of Mw 4.0–8.2 throughout Chile were obtained from April 24, 2014, to December 31, 2015. Dashed curves indicate plate bounda-
ries derived from Bird (2003)
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SWIFT CMT solution
To estimate the earthquake source, the NIED collects 
real-time continuous seismic waveform data from 181 
broadband seismic stations in Indonesia, the Philippines, 
Chile, and adjacent regions (Fig. 1) using the SeisComP3 
system (e.g., Olivieri and Clinton 2012). The SeisComP3 
system estimates in real time, the origin time, hypo-
center, and magnitude of detected earthquakes. The 
estimation triggers the SWIFT system to automatically 
calculate CMT and source time function of the detected 
earthquake (Bonita et al. 2015; Punongbayan et al. 2015). 
The automatically estimated CMT solutions are checked, 
manually revised, and listed in a searchable database 
(www.isn.bosai.go.jp). The total number of estimated 
CMTs is 1488 in the range of Mw 4.3–8.6 around Indo-
nesia and the Philippines from June 25, 2007, to Decem-
ber 31, 2015, and 220 in the range of Mw 4.0–8.2 around 
Chile from April 24, 2014, to December 31, 2015 (Fig. 1).

In particular for large earthquakes (Mw  >  7), we have 
implemented the following automatic procedure in the 
SWIFT system to obtain a robust CMT solution as rap-
idly as possible. Once an earthquake is detected, the 
SWIFT system obtains available seismic waveform data 
from the SeisComP3 ring buffer and performs a quality 
check in terms of signal-to-noise ratio, gaps, clipping, 
and strong acceleration pulses in the waveform data. A 
list of datasets (east–west, north–south, and up-down 
components of the waveform data observed at available 
seismic stations) that has successfully passed the check 
is compiled as the accepted data. The SeisComP3 esti-
mation of the origin time, hypocenter, and magnitude is 
used as an initial guess for the CMT search. For Mw < 7 
earthquakes, the CMT search is performed using all of 
the accepted data. The waveform data used are filtered 
for a passband of 50–100 s. For 7 < Mw < 8 earthquakes, 
the CMT search is performed using accepted data hav-
ing epicentral distances of 500–1500 km, with a passband 
of 50–100  s. For Mw  >  8 earthquakes, the CMT search 
is performed using accepted data having epicentral dis-
tances of 1000–1500  km, with a passband of 50–200  s. 
The selection criteria of the waveform data with the epi-
central distances longer than 1000 km and the passband 
of 50–200 s for Mw > 8 earthquakes are applied to guar-
antee the point-source assumption for the CMT estima-
tion (Fukuyama and Dreger 2000) and to prevent the use 
of pulse data that are clipped or too strong, which may 
worsen the CMT estimate.

Several tsunamigenic earthquakes (Mw 7.5–8.6) 
have been observed by the SWIFT seismic networks 
(Fig. 2 and Table 1). With the automatic data procedure 
described above, we have confirmed that the CMTs of 
these tsunamigenic earthquakes could have been success-
fully estimated ~15 min after the earthquake occurrence. 

The retrospectively estimated CMTs of the tsunami-
genic earthquakes are compared to the CMTs derived 
from teleseismic data in the catalogs of the Global CMT 
(GCMT) Project (Ekström et  al. 2012) and the USGS 
W-phase inversion (Duputel et  al. 2012b) (Fig.  3). Our 
SWIFT CMT solutions are in good agreement with the 
GCMT and USGS solutions except for the Mentawai tsu-
nami earthquake that occurred on October 25, 2010 (e.g., 
Satake et al. 2013; Yue et al. 2014).

Tsunami forecast using SWIFT CMT
We have developed a successive automatic tsunami cal-
culation system starting from the automatically estimated 
CMT using the procedure mentioned in the previous 
section. The tsunami calculation system is used for both 
forecast and hindcast. The tsunami calculation system 
(hereafter the SWIFT TSUNAMI system) is described in 
this section.

When the estimated SWIFT CMT satisfies the condi-
tions Mw > 5.5 and a focal depth shallower than 100 km, 
the SWIFT TSUNAMI system decides that the detected 
earthquake is possibly tsunamigenic and performs the 
following analysis. The tsunami forecast results can be 
available approximately 30 min after the occurrence of a 
significant earthquake (i.e., ~15 min to obtain the CMT 
and ~15 min for the tsunami calculation).

The initial condition of the tsunami simulation is 
based on a rectangular fault model with a uniform slip. 
The estimated CMT gives the strike, dip, and rake of the 
earthquake source with its centroid location (longitude, 
latitude, and focal depth). In addition, when the length, 
width, and slip amount of the finite rectangular fault are 
given, the seafloor deformation is calculated using the 
Okada’s formula (Okada 1985) with assuming a homo-
geneous half-space. The center of the rectangular fault 
is placed at the centroid location. (i) The vertical compo-
nent of the seafloor deformation due to the faulting pri-
marily determines the seafloor vertical displacement. (ii) 
A product of the horizontal component and the seafloor 
gradient at the source region yields an additional seafloor 
vertical displacement (e.g., Tanioka and Satake 1996). 
(iii) The tsunami height at the sea surface arises from the 
seafloor vertical displacement without short-wavelength 
components. The short-wavelength seafloor vertical dis-
placement is damped by considering a low-pass filtering 
effect from a local (here 0.5 deg by 0.5 deg) ocean depth 
(e.g., Saito and Furumura 2009). We use the tsunami 
height considering (i), (ii), and (iii) as the initial condi-
tion of the tsunami simulation. The seawater velocity is 
assumed to be zero for the initial condition (Saito 2013). 
The rise time of the faulting is assumed to be zero.

A single CMT solution involves ambiguity and uncer-
tainty of the parameters used in the rectangular fault, 

http://www.isn.bosai.go.jp
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because of the fault plane selection (i.e., double couple) 
and the finite-fault geometry. Two fault planes are pos-
sible because of the double couple. The length, width, 
and slip amount of the finite fault can be obtained using 
a certain empirical scaling law. There are various types of 
proposed scaling laws. The choice of scaling law involves 

uncertainty for representing the finite faulting. Here, we 
use two scaling laws. The scaling law proposed by Utsu 
(2001) gives a relatively small rupture area for a certain 
Mw, which is represented as follows:

(1)D/L = 5× 10−5,

a1

b1

b2a2

Fig. 2 Eight tsunamigenic events (Mw 7.5–8.6) with the respective CMTs. Black triangles and blue inverted triangles indicate DART and tide gauge 
stations, respectively (see Table 1)
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In contrast, the scaling law proposed by Murotani et al. 
(2013) gives a relatively large rupture area:

Equation  (2) is also applied for the scaling law pro-
posed by Murotani et  al. (2013). Here, L, W, and D are 
the length, width, and slip amount of the finite fault-
ing, respectively. M0 is the seismic moment in Newton 
meters:

Here, μ (= 45 GPa) is the rigidity coefficient. M0 is related 
to Mw through a fundamental relationship (Hanks and 
Kanamori 1979):

M0 is given according to the CMT solution. For the Utsu’s 
scaling law, D is estimated using Eqs.  (1), (2), and (5). L 
and W are then estimated using Eqs. (1) and (2). For the 
scaling law of Murotani et al. (2013), D is estimated using 
Eq.  (4). L and W are then estimated using Eqs.  (3) and 
(2). For the respective scaling laws, the maximum W is 
limited to 200 km, considering the depth range of typical 
megathrust zones (e.g., Oleskevich et al. 1999). When L 
becomes >400 km, W is fixed at 200 km. In this case, it is 
allowed for L/W > 2 while maintaining LW (rupture area) 
constant. The focal depth can be modified to be deeper 
than the centroid location so that the shallowest tip of the 
faulting is limited to 0.5 km.

Four scenarios constructed from the two fault planes 
and the above two scaling laws are considered to be the 
initial tsunami heights in the present study. Figure  4 
shows an example of the great Mw 8.6 off Sumatra strike-
slip earthquake that occurred on April 11, 2012 (Fig.  2) 
(e.g., Duputel et al. 2012a). The separate contributions of 
(i), (ii), and (iii) to the initial condition (Fig. 4a) are also 
shown in Fig. 5.

The tsunami simulation is carried out using the initial 
condition. Here, the simulation is based on a linear long-
wave model (Inazu and Saito 2013, 2016). The horizon-
tal resolution is 5 arcmin. The ETOPO1 dataset (Amante 
and Eakins 2009) is used to configure the bathymetry.

During the simulation, snapshots of the tsunami height 
field and time series at selected stations, and sequential 
animations of these snapshots are made (Fig.  6). The 
maximum tsunami height distribution together with 
its arrival time is figured for each scenario (Fig.  7). The 

(2)L/W = 2.

(3)LW = 1.34 × 10−10
M

2/3
0

(

km2
)

,

(4)D = 1.66× 10−7
M

1/3
0 (m).

(5)M0 = µLWD.

(6)Mw = (logM0 − 9.1)/1.5.

maximum height with its arrival time along the coast 
is quite important for warning and damage evaluation 
in coastal communities. The alongshore result is also 
shown (Fig.  8). The results shown in Figs.  4 through 8 
are obtained for each detected tsunamigenic earthquake 
(Mw > 5.5). For comparison, Fig. 9 shows the results for a 
small tsunami due to the Mw 7.5 Philippine Trench earth-
quake that occurred on August 31, 2012 (Fig. 2) (e.g., Ye 
et al. 2012; Heidarzadeh and Satake 2014).

As mentioned above, substantial time is required after 
the occurrence of a significant earthquake to estimate 
the robust CMT (~15 min) and the tsunami height with 
the arrival time (another ~15 min). The results along the 
coast (Figs. 7, 8, 9) for which the maximum height arrival 
time is less than 30 min cannot be used for the purpose 
of forecasting, but are useful for hindcasting and post-
disaster evaluations.

Forecast accuracy and uncertainty
Tsunami forecast systems similar to the SWIFT TSU-
NAMI system have been also developed by PTWC and 
CPPT. The PTWC system has shown forecast results 
with successively updated CMT solutions (Wang et  al. 
2012). The CPPT study has shown forecast uncertain-
ties with respect to CMTs derived from different research 
institutions (Jamelot and Reymond 2015). We show the 
forecast uncertainties due to the fault plane selection, the 
scaling laws used, and other possible factors, especially 
for greater earthquakes and tsunamis.

We evaluate the forecast accuracy of the SWIFT TSU-
NAMI system. Eight large earthquakes (Mw 7.5–8.6) 
from 2007 to 2015 were tsunamigenic as detected by the 
ocean-bottom pressure observations of the Deep-ocean 
Assessment and Reporting of Tsunamis (DART) system 
(e.g., Mungov et al. 2013) (Fig. 2). The retrospective fore-
casts of the eight events based on the SWIFT CMTs are 
first compared to the DART observations and are then 
compared to the coastal tide gauge observations.

Here, we define the total amplitude as the local maxi-
mum minus the local minimum during the leading 
wave. The total amplitude of the leading wave of the 
DART observations is used as a measure of the forecast 
accuracy (Fig.  10). The forecasts for the four scenarios 
roughly range from half to double the observational 
amplitudes (Fig. 11). We also evaluate the forecast accu-
racy in terms of the tide gauge observations. The maxi-
mum height during each tsunami event is used for the 
comparison (Figs. 7, 8, 9). The maximum tsunami height 
at the tide gauge station is compared to that calculated at 
the coastal grid of the tide gauge location. The forecasts 
of the four scenarios for the maximum tsunami height at 
the coast at most range from 1/5 to 5 times the observa-
tions (Fig. 12).
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The tsunami size of the 2010 Mentawai tsunami earth-
quake was notably underestimated by the SWIFT TSU-
NAMI system (Figs.  11, 12). The Mentawai tsunami 
earthquake was estimated as Mw 7.5 by the SWIFT esti-
mation, which is significantly smaller than Mw  ~  7.8 as 
derived from the GCMT and USGS solutions (Fig.  3e). 
If we changed the Mw to 7.8 in the SWIFT solution, we 
confirmed that the underestimation was suitably com-
pensated. Although the automatic SWIFT CMT estima-
tion procedure proposed in the present study is intended 
for large earthquakes (Mw  >  7), the procedure may still 
have difficulty in reasonably evaluating the size of tsu-
nami earthquakes. Improvements especially for reliable 

Mw estimation will be necessary for the proposed proce-
dure to work for tsunami earthquakes. With the excep-
tion of the Mentawai tsunami earthquake, the forecasts 
range mostly within the same order of magnitude as the 
maximum heights of the tide gauge observations.

We also find that the forecast differences (stand-
ard deviation) between the four scenarios increase for 
the larger events and decrease for the smaller events 
(Figs.  11b, 12b). The dependence of the forecast dif-
ferences on Mw is recognized in Figs. 7 through 10. For 
small Mw events (e.g., Mw 7.5), the differences in the 
fault plane selection and in the scaling laws used result 
in relatively small differences in the initial tsunami height 

a b

c d

fe

g h

Fig. 3 CMTs estimated by the automatic SWIFT system, and those from the Global CMT and the USGS W-Phase catalogs
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condition, indicating that the tsunami source is approxi-
mated as a point source and result in small differences in 
the forecasts (Figs. 9 and 10b). For the larger Mw events 
(e.g., Mw  >  8.0), however, the tsunami sources signifi-
cantly deviate from the point source, and the differences 
in the finite-fault size cause relatively large variations in 
the forecasts (Figs. 7, 8, 10a). It is worth noting that the 
dependence of the forecast uncertainty on Mw indicates 
that accurate and robust tsunami forecasting becomes 
more difficult for larger earthquakes.

Discussion for future perspectives
In this section, we discuss the future perspectives of the 
SWIFT TSUNAMI system with respect to (1) accuracy, 
(2) uncertainty, and (3) practical applicability.

(1) Compiling accurate and reliable bathymetry data 
with a higher spatial-grid resolution for the simu-
lation is essential to accurate tsunami forecast-
ing at the target regions. Local but high-accuracy 
multibeam survey data are preferably incorporated 

a b

c d

Fig. 4 Four possible scenarios (src01, src02, src03, and src04) of the initial tsunami height distributions with fault geometries (gray rectangles) for the 
2012 Mw 8.6 off Sumatra earthquake (Fig. 2; Table 1). Red and blue indicate elevation and subsidence, respectively. The parameters used to configure 
the seafloor deformation are shown above each panel
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into the fundamental ETOPO or GEBCO datasets 
(e.g., Satake et  al. 2013; Eakins and Grothe 2014; 
Weatherall et  al. 2015; Calisto et  al. 2015). In the 
present study, we used the framework of a global 
tsunami simulation (Inazu and Saito 2013, 2016), 
but the simulations will be suitably carried out in 
the regional domain in the vicinity of the SWIFT 
seismic networks in Indonesia/the Philippines, and 
Chile, in order to efficiently reduce the computa-
tion time with the high grid resolution. Tsunami 
simulation modeling that includes nonlinear advec-
tion with inundation, seafloor friction, and wave 
dispersion may be also necessary for accurate fore-
cast although the comprehensive modeling requires 
additional computational time (e.g., Saito et  al. 
2014; Miyoshi et  al. 2015; Baba et  al. 2015). A cal-
culated map of the inundation area with height will 

be required for the forecast products as well. This 
will be possible using latest supercomputing systems 
that have shown abilities to facilitate real-time tsu-
nami forecasts with suitable inundation by high-res-
olution (< 10 m) simulation (Oishi et al. 2015; Musa 
et al. 2015; Baba et al. 2016).

(2) We discuss in detail the uncertainties of the tsunami 
forecasting based on seismic data alone, especially 
for great earthquakes. The real-time inferred Mw 
ordinarily involves an uncertainty of  ±  0.2 (e.g., 
Nakano et  al. 2010; Jamelot and Reymond 2015; 
Bonita et  al. 2015) and may be significantly under-
estimated. One striking example was that the JMA 
issued the earthquake magnitude of 7.9 for the 
2011 Mw 9.0 Tohoku earthquake (e.g., Ozaki 2011, 
2012). The reliable Mw estimate is essential. When 
the estimated Mw is reliable, the scaling law used is 
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secondarily important. The 2004 Sumatra and 2010 
Tohoku earthquakes involved comparable Mw of 9.1 
and 9.0, respectively. The tsunami source extended 
900 km long for the 2004 Sumatra event (e.g., Fujii 
and Satake 2007), which can be suitably represented 
by a large-rupture-area scaling law (e.g., Murotani 
et al. 2013). The tsunami source for the 2011 Tohoku 
event, however, extended 300 km long at most (e.g., 
Gusman and Tanioka 2014), which should be rep-
resented by a small-rupture-area scaling law (e.g., 
Utsu 2001). The difference in the scaling law used 
for tsunami calculation becomes more notable for 
greater earthquakes. In addition, as expected for 

tsunami earthquakes and great-earthquake-induced 
seafloor failures, the observed tsunami size may be 
notably larger than that estimated based on the seis-
mic data alone, especially for greater earthquakes 
(e.g., Tanioka and Seno 2001; Watts et  al. 2005; 
Kawamura et  al. 2014). When offshore tsunami 
observation data (e.g., DART and GPS buoy) are 
available in near real time, we may be able to reduce 
the uncertainty and select probable scenarios (e.g., 
Melgar and Bock 2013; Tsushima et al. 2014).

(3) The SWIFT TSUNAMI system has been developed 
for tsunami disaster mitigation, especially for great 
tsunamis. We discuss the forecast results from the 
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viewpoint of users. Users should consider the worst-
case scenario from the forecasts for early warning 
and remember that the forecast may underestimate 
the tsunami size in cases of tsunami earthquakes 
and great-earthquake-induced seafloor failures. 
Because we need 30 min from the occurrence of the 
earthquake to obtain the SWIFT tsunami forecast, 
we cannot use the estimated results for the forecast 
at coasts in the vicinity of the epicenter within a 
30-min arrival time (Figs. 8, 9). Unfortunately, how-
ever, near-field coasts with a short arrival time expe-
rience the highest wave in many tsunami events. In 
addition, seismic waveform analysis and obtaining 
a reliable CMT solution require substantial time 
of 10–20  min even though the tsunami calcula-
tion time may be reduced. Users should recognize 
whether their target regions can receive a reliable 
forecast before or just after a significant earth-
quake occurrence. The forecast results at the nearest 
coasts may not be used before the disaster, but will 
be useful for post-disaster damage evaluations and 
remediation activities.

Summary
We have described the automatic procedure of the CMT 
estimation of the SWIFT system for great earthquakes 
(Mw  >  7), and the associated tsunami forecast/hind-
cast system, in the regions of Indonesia, the Philippines, 
and Chile. The current system requires ~15 min to esti-
mate the CMT of the detected earthquake and another 
~15 min for the tsunami calculation; forecast results are 
available at www.isn.bosai.go.jp.

The retrospectively estimated SWIFT CMT solutions 
have shown good agreement with the GCMT and USGS 
solutions for the past seven tsunamigenic earthquakes 
(Mw 7.5–8.6) that occurred throughout the SWIFT seis-
mic networks, excluding the 2010 Mentawai tsunami 
earthquake. The estimated Mw of the SWIFT CMT for 
this tsunami earthquake was notably underestimated 
compared to the GCMT and USGS solutions. The calcu-
lated tsunami height derived from the SWIFT CMT was 
also underestimated compared to the offshore and coastal 
tsunami observations. The current automatic SWIFT 
CMT estimation procedure may still have difficulty in 
estimating the size of tsunami earthquakes accurately.
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Fig. 8 Coastal distributions of the maximum tsunami height for the four scenarios (Fig. 4). The coastal distributions of the maximum height and its 
arrival time are shown on the right portion of each panel. The time exceeding half the maximum height is shown by red curves
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We evaluated the forecast accuracy of the SWIFT 
TSUNAMI system for the eight tsunamis (Mw 7.5–8.6). 
The system considers forecast uncertainties due to the 
fault plane selection and the scaling law used and shows 

four possible scenarios for each tsunamigenic event. The 
forecast results based on the four scenarios were evalu-
ated by the DART and tide gauge observations. We have 
shown that the forecasts with associated uncertainties 
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Fig. 9 Distributions of maximum tsunami height and its arrival time for the four scenarios for the 2012 Mw 7.5 Philippine Trench earthquake (Fig. 2; 
Table 1). The coastal distributions of the maximum height and its arrival time are shown on the right portion of each panel. The time exceeding half 
the maximum height is shown by red curves
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range from half to double the total amplitude of the lead-
ing wave of the DART observations and range mostly 
within the same order of magnitude as the maximum 
heights of the tide gauge observations. It is also found 
that the forecast uncertainties become larger for greater 
earthquakes because the tsunami source is no longer 
approximated as a point source for greater earthquakes 
(e.g., Mw > 8).

We have discussed the practical applicability of the 
forecast results as well as the forecast accuracy and 
uncertainties. Users should judge whether the estimated 
results can be used for forecasting at the target regions 
and remember the additional forecast uncertainties 
for greater earthquakes with associated landslides and 
tsunami earthquakes. Even if the forecast results can-
not be used for forecasting, the results will be useful for 

a b

Fig. 11 Summary of forecast accuracy for the eight tsunami events, in terms of the total amplitude of the leading wave of the DART observations. 
a Shows the observations and forecasts of the four scenarios. b Shows the relationship between Mw and normalized average/standard deviation 
(circle/bar) of the forecasts for each event. The total amplitude is defined as the local maximum minus the local minimum of the leading wave 
(Fig. 10). The data used in the figure are listed in Table 1

a b

Fig. 12 Same as Fig. 11 but in terms of the maximum height of the coastal tide gauge observations (Figs. 8, 9). Note that we obtained no tide 
gauge data for the 2007-09-12 Mw 7.7 tsunami (Table 1)
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post-disaster activities and for enabling researchers to 
quickly clarify behaviors of the tsunami.
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