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Abstract 

Space-geodetic techniques at radio wavelength, such as global navigation satellite systems and very long baseline 
interferometry (VLBI), suffer from refractivity of the Earth’s atmosphere. These highly dynamic processes, particularly 
refractivity variations in the neutral atmosphere, contribute considerably to the error budget of these space-geodetic 
techniques. Here, microscale fluctuations in refractivity lead to elevation-dependent uncertainties and induce physi-
cal correlations between the observations. However, up to now such correlations are not considered routinely in the 
stochastic model of space-geodetic observations, which leads to very optimistic standard deviations of the derived 
target parameters, such as Earth orientation parameters and station positions. In this study, the standard stochas-
tic model of VLBI observations, which only includes, almost exclusively, the uncertainties from the VLBI correlation 
process, is now augmented by a variance–covariance matrix derived from an atmospheric turbulence model. Thus, 
atmospheric refractivity fluctuations in space and time can be quantified. One of the main objectives is to realize 
a suitable stochastic model of VLBI observations in an operational way. In order to validate the new approach, the 
turbulence model is applied to several VLBI observation campaigns consisting of different network geometries lead-
ing the path for the next-generation VLBI campaigns. It is shown that the stochastic model of VLBI observations can 
be improved by using high-frequency atmospheric variations and, thus, refining the stochastic model leads to far 
more realistic standard deviations of the target parameters. The baseline length repeatabilities as a general measure 
of accuracy of baseline length determinations improve for the turbulence-based solution. Further, this method is well 
suited for routine VLBI data analysis with limited computational costs.
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Introduction
The importance of space-geodetic techniques, such as 
global navigation satellite systems (GNSS) or very long 
baseline interferometry (VLBI), for the understanding of 
the Earth’s atmosphere is steadily increasing. In particu-
lar, near real-time global positioning system (GPS) data 
can be used for numerical weather prediction applica-
tions (e.g., Crewell et  al. 2008; Deng et  al. 2011; Dousa 
and Bennitt 2013). However, at the same time dynamic 
processes in the neutral atmosphere critically affect the 
error budget of these space-geodetic techniques. For this 

reason, it is urgently necessary to use an adequate model 
for atmospheric conditions, in both the deterministic and 
stochastic components of the data analysis. Further, it is 
of great importance to provide an approach for opera-
tional and not just for experimental purposes.

The VLBI observable, the so-called delay, is given as 
the difference in arrival time of the observed signal from 
an extragalactic radio source at two different radio tel-
escopes. The radio signal passes through the different 
atmospheric layers and, therefore, is affected by mete-
orological conditions. First, the ionosphere (between 80 
and 1000 km above the Earth’s atmosphere) is a disper-
sive medium, i.e., the phase velocity of a signal depends 
on its frequency. Thus, the delay due to the ionosphere 
can be corrected for using two frequencies in X-band 
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( fX = 8.4 GHz) and S-band ( fS = 2.3GHz), respectively. 
In contrast to the ionosphere, the situation looks differ-
ent in the neutral part of the atmosphere, particularly in 
the so-called troposphere, which is referred to the lower 
10–15 km of the Earth’s atmosphere. On the way through 
the troposphere, the radio signal is affected by the inte-
gral over all refractive indices along the signal path. Since 
the index of refraction is not equal to the refraction index 
in vacuum, the signal is subject to an additional delay as 
well as to bending and attenuation effects relative to a 
theoretical path in vacuum.

In the routine VLBI data analysis of the International 
VLBI Service for Geodesy and Astrometry (IVS, Schuh 
and Behrend 2012), the total tropospheric excess path 
length �Lt(ǫ) for an observation of an arbitrary elevation 
ǫ is divided into a hydrostatic (index h) and a wet (index 
w) part, expressed as

Both components consist of a zenith delay correction 
(�Lzh and �Lzw, respectively) and a corresponding map-
ping function (mfh(ǫ) and mfw(ǫ), respectively), relating 
the zenith delay to an arbitrary elevation angle ǫ (Davis 
et  al. 1985). On the one hand, the hydrostatic tropo-
spheric delay in zenith direction (ZHD) mainly depends 
on the air pressure. The behavior of such meteorological 
data can be well identified using in  situ measurements 
at the telescope site, and thus, the ZHD can be consid-
ered using an adequate model (e.g., the modified Saasta-
moinen model, see Davis et al. 1985). The wet part of the 
troposphere mainly depends on the water vapor content, 
which is unpredictable and highly variable in space and 
time (Elgered 1982). Thus, the zenith wet delay (ZWD) 
is routinely estimated as an additional parameter within 
a least-squares model or as a stochastic process in a filter 
estimation (e.g., Kalman filter, least-squares collocation, 
square-root information filter). In addition, troposphere 
gradients in north–south and east–west direction (Gns 
and Gew, respectively) can be estimated in the VLBI 
adjustment process to overcome azimuthal asymmetries 
[in Eq. (2), α denotes the azimuth] in the refractive index 
(MacMillan and Ma 1997). Thus, Eq.  (1) is extended by 
an additional term yielding

The order of magnitude of the hydrostatic component 
in zenith direction is about 2.3 m extra path length, and 
the additional zenith wet delay ranges from 0 cm in dry 
regions to 50 cm in the wet tropics. Thus, it is indispen-
sable to account for this tropospheric delay in the VLBI 
data analysis. Actually, to go even further, atmospheric 

(1)�Lt(ǫ) = mfh(ǫ)�Lzh +mfw(ǫ)�Lzw .

(2)
�Lt(α, ǫ) = mfh(ǫ)�Lzh +mfw(ǫ)�Lzw

+mfg (ǫ)[Gns cos (α)+ Gew sin (α)].

refraction is the limiting factor of any further improve-
ments of the accuracy of telescope positions or Earth 
orientation parameters. However, today only long-peri-
odic effects in the range of years to hours are considered 
routinely by the IVS. In contrast, small-scale refractivity 
fluctuations of minutes to sub-seconds due to turbulent 
swirls (or eddies) in the troposphere, in particular in the 
atmospheric boundary layer and in the free atmosphere, 
are largely ignored.

Further, dynamic processes in the neutral atmosphere 
induce spatial and temporal correlations between the 
observations. Concerning the stochastic model in the 
routine VLBI data analysis of the IVS, those correla-
tions are also not taken into account. As a consequence, 
the standard deviations of the derived target param-
eters, such as telescope coordinates or Earth orientation 
parameters, are too optimistic.

To overcome this deficiency, in traditional VLBI data 
analysis the standard deviations derived from the VLBI 
cross-correlation process are inflated. This is achieved 
by adding either a constant term to the variances of the 
observations or doing a baseline-dependent re-weighting 
until the χ2 value, defined as the quotient of the a poste-
riori and a priori variance factor, is approximately one.

On the theoretical side, more sophisticated strategies 
have been developed to improve the stochastic model 
of space-geodetic observations. For instance, Schön and 
Kutterer (2005) focus on the modeling of uncertainties 
due to remaining systematic errors of GPS data process-
ing. In the case of VLBI, Tesmer (2004) and Tesmer and 
Kutterer (2004) propose a refinement of the routine sto-
chastic model of VLBI observations by means of estimat-
ing variance and covariance components. Gipson et  al. 
included station-dependent delay noise to the data analy-
sis leading to more realistic standard deviations. For this 
purpose, they have distinguished two different types of 
delay noise: a constant additional component to deal with 
the clock behavior and an elevation-dependent noise 
term to consider atmospheric characteristics (Gipson 
2006, 2007; Gipson et al. 2008).

To allow for a physically more reliable modeling of 
the stochastic properties in the VLBI data analysis, we 
now directly consider small-scale dynamic processes in 
the atmosphere. For this purpose, the stochastic model 
of VLBI observations is augmented by additional cor-
relations due to high-frequency refractivity fluctua-
tions which can be best described stochastically using 
the widely known Kolmogorov turbulence theory. 
Based on this turbulence theory, a few turbulence mod-
els have been developed over the last decades, which 
make either use of the so-called structure function or a 
power spectrum representation (cf. “Turbulence descrip-
tion” section). Treuhaft and Lanyi (1987) have pioneered 
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turbulence modeling for space-geodetic techniques lead-
ing to a turbulence-based variance–covariance matrix for 
tropospheric delays in VLBI. The model follows the Kol-
mogorov turbulence theory and describes the stochas-
tic variations of the refractivity around its mean value. 
Romero-Wolf et al. (2012) presented a simplified modifi-
cation of this model applied to observations of the VLBA 
(very-long baseline array) network. The Treuhaft and 
Lanyi (1987) model was also used by Pany et  al. (2011) 
and Nilsson and Haas (2010) for extended simulation 
studies. In the latter one, particular consideration was 
also given to parametrization of specific station-depend-
ent turbulence parameters, e.g., the structure constant 
C2
n .
In addition, turbulence investigations have been car-

ried out for GNSS observations. For instance, Schön and 
Brunner (2008) developed the so-called SIGMA-C model 
for GPS carrier phases, a variance–covariance model 
which also follows the turbulence theory of Kolmogorov 
and is based on the time-dependent integrated separa-
tion distance. In contrast to other applications, where the 
turbulent medium is generally assumed to be homogene-
ous and isotropic, inhomogeneity and anisotropy can be 
taken into account in this model. Halsig et al. (2014) used 
a SIGMA-C adapted model to investigate the stochastic 
model of VLBI observations. The main problem of tur-
bulence modeling for most of these applications is obvi-
ous: Due to the necessary volume of integrations, which 
can only be solved numerically, they are mathematically 
difficult to handle and lead to large computational costs. 
By proposing an extension of the SIGMA-C model and 
using the so-called Matérn covariance family, Kermarrec 
and Schön (2014) developed a model which overcomes 
this issue.

In our endeavor to develop an operationally efficient 
method for turbulence modeling in routine mass analy-
sis of VLBI observing sessions, we devise a VLBI-specific 
version of the Kermarrec and Schön (2014) model. With 
this, we generate a suitable variance–covariance matrix 
in the stochastic model of VLBI data analysis and, there-
fore, far more realistic standard deviations of the derived 
target parameters within the parameter estimation pro-
cess. So, one of the key objectives of this paper is to 
develop a suitable strategy to consider atmosphere-based 
correlations between VLBI observations in an opera-
tional way, i.e., it must be guaranteed that the model is 
mathematically easy to handle and the use of a fully pop-
ulated variance–covariance matrix is feasible without to 
much computational effort.

This contribution is organized as follows. In “Turbu-
lence description” section, an introduction to the Kol-
mogorov turbulence theory and strategies for modeling 
atmospheric turbulence are presented. It is followed by 

“Data analysis setup” section on the description of the 
data analysis setup. In “Results” section, the results of 
the VLBI data analysis using a modified stochastic model 
with external physical correlations are illustrated for sev-
eral VLBI observation campaigns consisting of different 
network geometries and for different solution setups. 
Finally, a conclusion and ideas for future work are given 
in “Conclusions” section.

Turbulence description
Electromagnetic waves originating from natural or arti-
ficial sources, such as extragalactic radio sources or sat-
ellites, pass through the atmosphere to an antenna on 
the Earth’s surface. These waves are affected by atmos-
pheric conditions leading to attenuation, scintillation 
and delay of the signal. In this context, the atmosphere is 
subdivided into its main components, the neutral atmos-
phere and the ionosphere. The effects of the ionosphere 
caused by the ionization by solar radiation are frequency 
dependent and can therefore be considered using two 
different frequencies. In contrast, the neutral atmos-
phere is a non-dispersive medium and the long-periodic 
variations as well as small-scale fluctuations caused by 
atmospheric turbulence cannot be calibrated by in  situ 
measurements. For this reason, the long-periodic effects 
are considered in the routine VLBI and GNSS data analy-
sis in a deterministic sense within the parameter estima-
tion procedure. The short-periodic fluctuations on the 
other hand mainly depend on variations of the refractive 
index induced by turbulent motions. These are generally 
regarded as randomly varying in space and time and thus 
have to be described stochastically (Ishimaru 1991).

In order to receive a mathematical description of a 
random medium such as the refractivity index n, it is 
separated into two components n = n̄+�n (as first pro-
posed by Reynolds in 1895, cf. Tatarskii 1971). While n̄ 
describes the mean value in steady state and defines a 
deterministic part, �n is characterized by rapid fluctua-
tions and defines a stochastic component. The phenom-
ena described by �n are referred to turbulence and can 
be represented as the interaction or superposition of tur-
bulent swirls of different length scales, so-called eddies, 
i.e., an arbitrary flow pattern characterized by its size 
(Batchelor 1950). According to Wheelon (2004,  p.  83), 
the shape and size of the eddies depend on the altitude. 
In the atmospheric boundary layer (0–2 km of altitude), 
the eddies are assumed to be small and not far from sym-
metrical, while the irregularities in the free atmosphere 
are highly anisotropic, i.e., the eddies become more flat-
tened in horizontal direction (see Fig. 1).

For the sake of a better visualization of the eddy varia-
tions in the atmospheric boundary layer, turbulent pro-
cesses are often referred to the energy cascade theory 
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(Kolmogorov 1941), as depicted in Fig.  2. The model 
associates the amount of turbulent energy with different 
eddy scales. Starting at the outer scale wavenumber, or 
formulated differently, at the point, at which the eddy size 
is equal to the outer scale length L0, a small fraction of 
the kinetic energy in the ambient wind field is converted 
into turbulent energy producing initial inhomogenei-
ties (energy injection). Since these eddies are not stable, 
they immediately begin to break up and subsequently 
transfer their energy to turbulent elements of smaller and 
smaller scale (inertial subrange). The shape of the eddies 
becomes more and more symmetrical. The redistribution 

during the decay cascade continues until the eddy size is 
approximately equal to the inner length scale l0, at which 
their remaining energy is dissipated into heat (energy 
dissipation).

According to Wheelon (2004, p. 205f ), the free atmos-
phere plays the dominant role for interferometry based 
on microwave signals, since it contains most of the ray 
path. The turbulent eddies are highly anisotropic, i.e., 
highly flattened in the horizontal plane, and exhibit sig-
nificant correlations over hundreds of kilometers.

Modeling atmospheric turbulence
In the following, our attention is devoted to the spatial 
dependence of the observations derived by two antennas 
operating at two positions r1 and r2 and separated by d in 
a random medium, which similarly can be described by 
the spatial covariance function

where 〈. . .〉 denote the ensemble average (ensemble is 
defined as all possible configurations of the random 
medium). In general, the atmosphere is assumed to be 
homogeneous and isotropic. Homogeneity can be inter-
preted as the spatial analogy of the stationarity, i.e., the 
covariance function does not depend on the positions r1 
and r2 but solely on the baseline separating these posi-
tions. Further, a medium is also defined as isotropic, if 
the vertical scale is the same as both horizontal scales, 
i.e., the covariance function only depends on the mag-
nitude of the baseline, not on its orientation Wheelon 
(2004, p. 15ff). Then, including both assumptions, Eq. (3) 
becomes

According to Tatarskii (1971), the atmosphere can be 
considered as a “locally homogeneous random medium 
with smoothly varying characteristics” leading to a sepa-
ration of the random medium into a varying mean and a 
rapidly changing fluctuating component. Thus, the slowly 
varying term is canceled out by taking the difference and 
assuming a sufficient similarity for both positions r1 and 
r2. This leads to the structure function description:

Further, the spatial covariance function in Eq.  (3) can 
be expressed as a power spectral density by using a three-
dimensional Fourier transform (see Wheelon 2004,  p. 
21), yielding

(3)Cn(r1, r2) = ��n(r1, t)�n(r2, t)�,

(4)Cn(d) = ��n(r, t)�n(r + d, t)�.

(5)Dn(r1, r2) = �[�n(r1, t)−�n(r2, t)]
2�.

(6)

��n(r1, t)�n(r2, t)� =

∞
∫

0

∞
∫

0

∞
∫

0

κ�n(κ)e
iκ(r1−r2)d3κ .

Fig. 1  Concept of eddies. Eddy size and flattening with height, 
according to Wheelon (2004, p. 83)

Fig. 2  Cascade model. The energy cascade model of Kolmogorov 
describes the process of turbulent decay. As soon as the turbulent 
eddies are created, they break up into smaller and more symmetric 
eddies until their energy is dissipated as heat (according to Wheelon 
2004, p.29)
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Using the wavenumber spectrum representation, the 
random medium is completely described by the turbu-
lence spectrum �n(κ), where κ =

[

κx, κy, κz
]

 denotes the 
wavenumber vector. As shown by dimensional analysis 
in Kolmogorov (1941), the energy spectrum should fol-
low a power law process. Thus, the von Karman spec-
trum is used as a power spectral density description (see 
Wheelon 2004, p. 41),

which is valid for the inertial subrange and the energy 
input region, 0 < κ < κs (where κ0 and κs denote the cor-
responding wavenumber to the outer and inner scale 
length L0 and l0, respectively).

In Eq. (7) again homogeneity and isotropy are assumed. 
Since Tatarskii (1971) defined the atmosphere as a “locally 
homogeneous random medium with smoothly varying 
characteristics,” we can again subdivide �n(κ ,

r1+r2
2

) into 
a slowly varying component �n(κ) and a rapidly fluctuat-
ing term C2

n(
r1+r2

2
) (Kermarrec and Schön 2014),

To deal with anisotropy, the so-called stretched 
wavenumber coordinates are introduced according to 
Wheelon (2004, p. 42ff). The stretching factors a, b and c 
describe the flattening of the eddies in both the horizon-
tal and the vertical directions, leading to

Up to now, we have considered refractive index fluctua-
tions, particularly large horizontal flattened eddies in the 
free atmosphere, which distort the arriving plane wave 
front of VLBI observations. Integrating these refractivity 
fluctuations along the line of sight yields the signal phase 
variations. According to Wheelon (2004,  p.  206), the 
phase covariance function can be expressed as

Since the refractive index along the path is fluctuating, 
the signal phase is also affected by temporal variations. 
To describe the temporal variability, we use the time-
shifted phase covariance expression

(7)
�n(κ) =

0.033C2
n

(

κ2x + κ2y + κ2z + κ20

)
11
6

,

(8)�n

(

κ ,
r1 + r2

2

)

= C2
n

(

r1 + r2

2

)

�n(κ).

(9)
�n(κ) =

0.033C2
nabc

(

a2κ2x + b2κ2y + c2κ2z + κ20

)
11
6

.

(10)

Cϕ = k
2

∞
∫

0

ds1

∞
∫

0

ds2

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

× κ�n

(

κ ,
r1 + r2

2

)

e
iκ(r1+r2−d)d3κ .

which primarily depends on the wind fields in the atmos-
phere. Thus, the widely known frozen flow hypothesis of 
Taylor (1938) is used to describe temporal variations in 
a random medium. It postulates that the entirety of tur-
bulent air mass is frozen during the observing period 
and transported horizontally at a constant wind veloc-
ity without any deformation. Consequently, the motion 
of the entire turbulence mass is equivalent to a parallel 
shifting of the ray path, i.e., the phase covariance at time 
t and t + τ, respectively, has to be identical to the spatial 
correlation between these rays with separation distance 
d = vτ (see Fig. 3). Thus, the spatial covariance function 
can be extended by this additional displacement, yielding

An alternative description for the covariance function 
of the phase difference is derived by using the power 
spectrum Wϕ(ω), which is intimately connected by the 
Wiener–Khintchine theorem (Wheelon 2004, p. 257):

According to Wheelon (2004, Sec. 6.5) and Kermarrec 
and Schön (2014), the spectrum of phase measurements 
can be expressed as

(11)Cϕ(τ ) = �ϕ(t)ϕ(t + τ )�,

(12)

��n(r, t)�n(r + R, t + τ )�

=

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

κ�n(κ , r)e
iκ(R+τv)d3κ .

(13)Wϕ(ω) =

∞
∫

−∞

dτeiωτ �ϕ(t)ϕ(t + τ )� dτ .

(14)Wϕ(ω) =
2.192Hk2C2

nca
− 5

3 v
5
3

sin2 (ǫ)

[

ω2 +
(

κ0v
a

)2
]
4
3

,

Fig. 3  Taylor’s frozen flow model. Taylor’s frozen flow hypothesis 
assumes the entirety of turbulent medium to be frozen and traveling 
in the direction, in which the wind blows with a constant velocity 
(according to Wheelon 2004, p. 244)
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which is valid for a slab model, i.e., assuming the von Kar-
man spectrum, the wind velocity v to be non-varying and 
C2
n to be constant up to the tropospheric height H and 

vanishing above. Anisotropy and homogeneity are taken 
into account. Kermarrec and Schön (2014) found that the 
corresponding covariance,

is a so-called Matérn covariance function (Matérn 1960) 
with a smoothness parameter ν = 5

6
 and a Matérn corre-

lation time T = 1
α
, where α =

κ0v
a  and κ0 = 2π

L0
. Here, K 5

6
 

represents the modified Bessel function of second kind 
(Abramowitz and Segun 1964). The corresponding vari-
ance expression reads

Equations (16) and (15) are used to generate a variance–
covariance matrix based on high-frequency refractivity 
fluctuations in the neutral atmosphere, which is then, in 
a next step, incorporated in the VLBI estimation proce-
dure. The turbulence-based variance–covariance matrix 
is therefore added to the routine variance–covariance 
matrix of the Gauß Markov model, which is currently a 
pure diagonal matrix and includes, almost exclusively, the 
uncertainties from the VLBI correlation process.

Turbulence parametrization
The most crucial point in the turbulence-based model 
is the determination of the turbulence parameters, par-
ticularly the “scaling parameters” C2

n, H and a, b, c as well 
as the wind parametrization. Although the structure 
constant decreases with height from C2

n = 10−18 m− 2
3 at 

10 km height to C2
n = 10−14 m− 2

3 at 1 km height, C2
n can 

be assumed to be constant up to the tropospheric height 
H ≈ 1000–2000 m and zero above (e.g., Schön and Brun-
ner 2008). In principle, there are different methods to 
estimate the structure constant at the specific VLBI site, 
e.g., from water vapor radiometer, radiosonde or GPS 
data (Nilsson and Haas 2010). However, for a suitable 
description of the turbulent behavior over a VLBI station, 
such sensors have to be available near to these radio tel-
escopes, which is usually only the case for GPS sensors, 
if at all. However, particularly with regard to the VLBI 
Global Observing System (VGOS, e.g., Niell et al. 2013), 
the next-generation VLBI system, which leads to a signif-
icant increase of observations and a better coverage, the 

(15)

C(t, t + τ ) = 0.7772
k2HC2

nc

sin (ǫi(t)) sin
(

ǫj(t + τ )
)

× κ
− 5

3

0

(κ0vτ

a

)
5
6
K 5

6

(κ0vτ

a

)

,

(16)C(t, t) = 0.782
k2HC2

ncκ
− 3

5

0

sin2 (ǫi(t))
.

estimation of C2
n parameters may be possible using VLBI 

observations. Here, especially short baselines of so-called 
twin telescopes in local networks should be used to deter-
mine turbulence effects assuming that other atmospheric 
effects could be neglected in such local applications. The 
parameters a, b and c describing the flattening of the tur-
bulent media are chosen to a = b > c due to the increas-
ing horizontal flattening with height up to a = b = 100 c 
(Wheelon 2004).

The wind is parametrized as a constant horizontal 
wind velocity and a wind direction, which is defined by 
the separation distance dH (t) between the two radio sig-
nals at height H. Assuming the so-called free atmosphere 
from 1000 to 3000  m to be crucial inducing physical 
correlations between the observations and determining 
v ≈ 8 m

s , which corresponds approximately to the geo-
physical wind at that height, these parametrization may 
be sufficient.

However, when additionally considering the atmos-
pheric boundary layer below 1000 m, which is easy pos-
sible with this model, or when considering more global 
network geometries, which is the standard case in VLBI, 
the parametrization described above should be specified, 
because the meteorological conditions may not be the 
same at two VLBI stations of a baseline. This issue will be 
investigated further in the near future, but is not part of 
this study.

Data analysis setup
In the following, our VLBI data analysis setup will be 
briefly described. Here, the VLBI target parameters such 
as telescope positions or Earth orientation parameters 
(EOP) are estimated in a least-squares method using a 
Gauss Markov model (Koch 2013). In addition to the tar-
get parameters, necessary clock and atmospheric model 
parameter corrections are estimated as well. In the case, 
which is currently standard, the weight matrix of the 
Gauss Markov model is a pure diagonal matrix.

The analysis of the observed group delays is performed 
following the conventions of the International Earth 
Rotation and Reference Systems Service (IERS, Petit and 
Luzum 2010). The parametrization setup for single-ses-
sion VLBI data analysis has been chosen with respect to 
the routine data analysis strategies of the IVS. First, the 
coordinates of the radio telescopes and EOPs are esti-
mated with respect to the current version of the Inter-
national Terrestrial Reference Frame (ITRF, Altamimi 
et al. 2011). In order to eliminate the datum defect, i.e., to 
remove the natural VLBI rank deficiency, additional no-
net-rotation (NNR) and no-net-translation (NNT) condi-
tions (Angermann et  al. 2004) have been applied. Polar 
motion and UT1-TAI are parametrized with offsets and 
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rates, while radio source coordinates are not estimated, 
but fixed to the International Celestial Reference Frame 
(ICRF2, Fey et al. 2015).

In addition to the target parameters, we need to 
estimate further auxiliary quantities such as clock 
and atmospheric model correction parameters. The 
clock parameters are modeled by a second-order 
polynomial and additional continuous piecewise lin-
ear functions (CPWLF), i.e., linear splines (De  Boor 
1978), with a temporal resolution of 60 min. Finally, 
the wet component of the atmospheric delay is esti-
mated in zenith direction and parametrized as an off-
set as well as CPWLFs with a resolution of 60 min. 
For the mapping of the tropospheric wet delay from 
zenith to the slant direction (i.e., the line of sight), 
the Vienna Mapping Function 1 (VMF1, Böhm et  al. 
2004) is used, which is derived from a numerical 
weather model of the European Centre for Medium-
Range Weather Forecast (ECMWF). Further, azi-
muthal gradients are estimated as daily CPWLFs. 
In order to stabilize the equation system, the clock, 
ZWD and gradient parameters are supplemented by 
additional constraints which affect the equation sys-
tem as weighted pseudo-observations.

The model parameters describing the state of the tur-
bulent atmosphere have been kept very simple and have 
been chosen to be the same for all stations. A constant 
structure constant C2

n ≈ 1e−14 m− 2
3 is used, the effec-

tive tropospheric height is set to H = 2000m , and a 
constant wind velocity v = 8 m

s  in horizontal direction is 
assumed. The stretching factors describing the flatten-
ing of the turbulent eddies have been chosen to a, b = 1 
and c = 0.01 to consider for anisotropy in the free atmos-
phere. Of course, these values are based on a model para-
metrization, which is only an approximation to the truth. 
However, they are suited to demonstrate the general 
functionality of the turbulence-based approach based 
on experience-related values. Again, the influence of the 
parametrization will be investigated further in the future, 
but is not part of this study.

Results
The standard VLBI stochastic model includes, almost 
exclusively, the uncertainties from the VLBI correlation 
process. In our case, this model is augmented by a vari-
ance–covariance matrix derived from the model accord-
ing to Eqs.  (15) and (16) to manage high-frequency 
refractivity fluctuations in the atmosphere. Through 
this approach, the standard deviations of the estimated 
parameters become more realistic, as depicted exempla-
rily in Fig.  4 for the 15-day continuous VLBI campaign 
in October 2002 (CONT02). Here, the standard devia-
tions of the vertical component of the station coordinates 
are illustrated as differences between several solutions 
refining the stochastic model and the solution based on 
the routine data analysis of the IVS (see Table  1 or the 
description further down in the text). According to Böck-
mann et  al. (2010), the average noise level of about 115 
IVS sessions in terms of WRMS of single-session posi-
tion estimates, computed after removing offset, rate and 
annual signal is about 4.5  mm for the horizontal and 

Table 1  Different solution setups including the reference solution and different strategies to refine the stochastic model 
of VLBI observations

The mean χ2 and WRMS values over about 2700 VLBI sessions between 1993 and 2014 are illustrated for all solution setups

Solution type χ
2 (–) WRMS (ps)

A Reference solution 2.32 34.53

B Constant additional noise: 1 cm 0.86 42.46

C Gipson et al. (2006–2008) constant and elevation-dependent noise 1.13 36.24

D Turbulence-based correlations 1.18 34.93
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Fig. 4  Level of uncertainty for telescope coordinates. Differences in 
standard deviations of the vertical component of the station coor-
dinates between a simple solution with a constant additional noise 
term (purple triangles), the Gipson et al. (2008) approach (green circles) 
and the turbulence-based solution (brown stars) with respect to the 
reference solution (black crosses)
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about 6.5 mm for the vertical component. Using a modi-
fied stochastic model, i.e., either the turbulence-based 
model or the Gipson et  al. (2008) model, the level of 
uncertainty is getting closer to these values with very few 
exceptions, assuming that the noise level becomes more 
realistic.

To validate the turbulence model, we made use of 
about 2700 VLBI sessions between 1993 and 2014, pro-
vided by the IVS  (Nothnagel et  al. 2015). These include 
several observation campaigns consisting of different 
network geometries. In addition to the routine 24 h IVS 
VLBI sessions, specially designed observation campaigns 
are set up at the Geodetic Observatory Wettzell (Bavar-
ian Forest, Germany). These so-called WHISP sessions 
(Wettzell high-speed VLBI session) consist of only one 
short 123-m-long baseline between the 20-m radio tel-
escope Wettzell (RTW) and the north antenna of the 
twin telescope Wettzell (TTW-1, Schüler et al. 2015). The 
advantage of these WHISP sessions is the large number 
of observations per telescope compared with other VLBI 
sessions. Further, these sessions allow for a validation of 
the turbulence model in a local application.

For all VLBI data, we computed several solutions with 
different setups (see Table  1). Since the traditional sto-
chastic model of VLBI observations only consists of 
uncertainties due to the VLBI correlation process and 
an additional noise term (see “Introduction” section), we 
made use of different noise term strategies to validate 
our turbulence-based approach. First, we generate a sim-
ple approach without using any kind of additional noise 
term, referred to as reference solution (A) in the follow-
ing. The most simple approach (B) of re-weighting the 
observations is to add the same constant noise term for 
all observations and sessions, which is chosen to ≈1 cm. 
However, this strategy is applied here not only for vali-
dation purposes; it is common practice in some widely 
spread VLBI software packages.

A further solution has been processed following the 
model of Gipson et al. (2008), who added station-depend-
ent noise, which then leads to an increase in the standard 
deviations. Here, a constant and an elevation-dependent 
noise terms are added to the standard deviations, which 
correspond to the clock and troposphere model param-
eter, respectively. The order of magnitude of both noise 
terms is related to the analyses in Gipson (2006), Gip-
son (2007) and Gipson et  al. (2008). Finally, we formed 
a solution incorporating our fully populated turbulence-
induced variance–covariance matrix (D) in the stochas-
tic model of VLBI observations. In contrast to the other 
solution setups, here the observations are not weighted 
by any additional noise terms. Concerning the turbulence 
description, we used the same model parametrization for 
all stations (see “Turbulence parametrization” section)

In order to assess the quality of the different strate-
gies for refining the stochastic model, three statistical 
criteria are used: (a) the χ2 value, (b) the weighted root 
mean squared (WRMS) of the post-fit residuals and (c) 
the baseline length repeatabilities. First, the χ2 value 
is defined as the quotient of the a posteriori σ̃ 2 and the 
a priori variance factor σ 2

0 ,

and gives an information whether the global test for an 
adjustment is fulfilled or not. Assuming χ2 ≈ 1 (referred 
to as target value and represented as a gray dashed line 
in Figs. 5a, 7a, respectively) indicates that the global test 
is fulfilled, i.e., the deterministic and stochastic model 
assumptions are valid. The a posteriori variance factor in 
Eq. (17) can be written as

where A describes the Jacobian matrix, b is the observed-
minus-computed vector with the corresponding vari-
ance–covariance matrix of observations �ll, the vector 
of parameters is denoted as x and f gives the degrees of 
freedom.

Second, the WRMS scatter per solution based on the 
post-fit residuals ri can be written as

where the vector of residuals is defined by

The χ2 values and WRMS post-fit residuals are shown 
in Fig. 5a, b, respectively. The reference solution is illus-
trated as black crosses, purple triangles denote the setup 
adding 1-cm constant noise terms for all observations. 
The approach following Gipson et  al. (2008) is marked 
as green circles. Finally, the turbulence-based solution is 
represented by brown stars. In addition, Table  1 shows 
the WRMS post-fit residuals of the delay observables as 
well as the χ2 values as mean values per solution setup 
over the 2700 VLBI sessions.

Compared with the reference solution (black, χ2 ≈ 
2–5), the χ2 values are generally reduced as soon as an 
arbitrary refinement strategy is used. However, consider-
ing the mean values in Table 1, it becomes obvious that 
in case of the easiest approach (purple) χ2 < 1 indicat-
ing an overestimation in the data analysis. In this context, 
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,
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overestimation means that the a priori model is too ide-
alistic in the sense of too enthusiastic initial weights, 
which is compensated for in the estimation procedure. 
Conversely, underestimation would imply a too pessimis-
tic a priori modeling and too unpromising initial weights. 
Although only a very simple model is used in this case, 
the χ2 values are quite close to one. Similarly positive 
results can be obtained by the turbulence-based solution 
(brown) and the Gipson et  al. (2008) approach (green), 
where the χ2 values are approximately one indicating 
a realistic adjustment, but they are still slightly to high. 
However, in case of the turbulence model, this is not 
surprising when recalling the fact that only atmospheric 
effects are considered in the stochastic model, which 
are the dominant but not sole error source in VLBI data 
analysis. For instance, the uncertainties of clock behavior 
are neglected in the stochastic model. Additionally, the 
parameters describing the atmospheric turbulence, C2

n, H, 
a, b, c and v are quite simple up to now.

Considering the WRMS post-fit residuals, it is obvi-
ous that, compared with the other refinement strategies, 
the use of a turbulent variance–covariance matrix pro-
duces the lowest WRMS post-fit residuals. Expressed in 
numbers and, for instance, compared with the Gipson 
et  al. (2008) approach, the turbulence-based solution 

improves by 9.5 ps in quadrature. Nevertheless, both 
solutions are significantly better than the solution add-
ing constant noise terms only, where the mean WRMS 
value is degraded by about 24 and 22  ps in quadrature 
with respect to the turbulent-based and Gipson et  al. 
(2008) approach, respectively. Surprisingly perhaps, the 
WRMS post-fit residuals for the reference solution are on 
the same level as for the turbulence-based solution. How-
ever, keeping in mind that the χ2 values are too high by 
the factor of two or even more, it should be discouraged 
to use the different validation criteria separately.

It is common practice in the VLBI community to 
measure the accuracy of baseline length determinations 
in terms of their repeatabilities. Thus, we finally use the 
baseline length repeatabilities, which can be regarded 
as the standard deviation for an individual baseline after 
removing a linear trend from a time series of baseline 
lengths. Figure 6a shows the baseline length repeatabili-
ties for all baselines, which occur in at least 30 sessions, 
for the same 2700 VLBI sessions and solution setups as 
used before. An exponential trend is fitted to the data, 
which is included as solid lines in Fig.  6a. Again, the 
turbulence-based solution and the Gipson et  al. (2008) 
approach lead to the best results. For a better visualiza-
tion, the baseline length repeatabilities shown in Fig. 6a 
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Fig. 5  χ2 values and WRMS post-fit residuals. a χ2 values and b WRMS post-fit residuals for about 2700 VLBI sessions between 1993 and 2014 and 
different solution setups including a reference solution (black crosses), a simple solution with a constant additional noise term (purple triangles), the 
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are calculated as differences with respect to the refer-
ence solution. The result is illustrated in Fig.  6b, where 
negative WRMS differences indicate and improvement, 
whereas positive values show a degradation in baseline 
length repeatabilities. It becomes obvious that including 
only a constant noise term to the variances of the obser-
vations, the results are getting better or worse to the 
same extent. Contrary, using the turbulence-based model 
as well as the Gipson et al. (2008) model leads to a clear 
improvement in (almost) all cases. Expressed in numbers, 
and compared with the reference solution, the baseline 
length repeatabilities improve for 50.3 % of all baselines 
by at least 1 mm when using a turbulence-based stochas-
tic model, whereas no baselines lead to a degradation by 
at least 1 mm. 49.7 % of the baseline remain unchanged. 
This result is quite similar if we compare the turbulence-
based solution to the solution at constant noise level 
(improvement of 35.6 % of the baselines versus degrada-
tion of 3.4 % of the baselines by at least 1 mm; 61 % of the 
baselines remain unchanged), which, as already stated, is 
not unusual in practice.

In addition to the traditional VLBI networks, we ana-
lyzed two short baselines in Hobart, Tasmania, and Wett-
zell, Germany. Since the turbulence model of Kermarrec 

and Schön (2014) was originally developed for small-
scale networks, these sessions are an opportunity to vali-
date the VLBI-adapted turbulence model for local VLBI 
networks as well.

First, we made use of two specially designed so-called 
WHISP sessions observed on August 27, 2014, and Octo-
ber 23, 2014, respectively, which only consists of one short 
baseline between the 20-m radio telescope and the north 
antenna of the twin telescope at the Geodetic Observatory 
in Wettzell. Table 2 lists the χ2 values and WRMS post-fit 
residuals for these sessions. The results look different to 
the global analysis. The χ2 values derived from the refer-
ence solution are approximately 1.3 and 1.8. Introducing a 
constant term to the variances of the observations or fol-
lowing the Gipson et al. (2008) model, the χ2 values are 
clearly too small, particularly in case of the WHISP001 
session (χ2 < 0.5), leading to an overestimation in these 
solutions. Using the turbulence model, the χ2 values are 
again approximately one. Regarding the WRMS post-fit 
residuals, the situation appears similar to the global case, 
at least for WHISP002. In contrast, the WRMS post-fit 
residuals for WHISP001 are sharply improved using the 
turbulence-based solution in comparison with all other 
approaches including the reference solution.
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Fig. 6  Baseline length repeatabilities. a Baseline length repeatabilities for about 2700 VLBI sessions between 1993 and 2014 and different solution 
setups including a reference solution (black crosses), a simple solution with a constant additional noise term (purple triangles), the Gipson et al. (2008) 
approach (green circles) and the turbulence-based solution (brown stars). For each solution, an exponential trend is fitted to the data (solid lines). 
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We could confirm these results by using a second short 
baseline between the two VLBI stations HOBART26 and 
HOBART12 observed during the continuous VLBI cam-
paign in May 2014 (CONT14). The χ2 values for the same 
set of solutions are shown in Fig. 7a. Please note that in 
this case the Gipson et al. (2008) approach acts different 
since the solution leads, in contrast to the WHISP base-
line, to an underestimation. The WRMS post-fit residuals 
in Fig. 7b confirm the previous findings.

It is worth mentioning that, of course, we could vary 
the amount of re-weighting the variances of observa-
tions in the other models until the χ2 ≈ 1. However, it 
should in fact be pointed out that there is no valid general 
approach and solely the turbulence-based solution is able 
to handle this situation in global and local networks.

Usually, the use of a fully populated variance–covari-
ance matrix in the stochastic model represents the 
restrictive factor keeping the computational costs to 
a limited extent. In this regard, we made use of several 
VLBI sessions with different quantities of data to validate 
our approach. In a small network consisting of three sta-
tions and about 400 observations, there is almost no loss 

in time. Regarding for instance the WHISP sessions with 
over 1000  observations on one baseline, there is hardly 
no difference between the solutions with and without 
turbulent correlations. Increasing the number of obser-
vation (i.e., 5000 and more), the loss of time is increas-
ing up to the factor 5. In this case, the turbulence-based 
solution also requires a little more time than the other 
strategies taken for validation purposes (i.e., the Gipson 
et al. (2008) model and the approach with constant addi-
tional noise), which is of course due to the correlations 
only taken into account by the turbulence-based model. 
However, the maximum computational effort is still not 
higher than 60  s in these cases. Thus, the turbulence 
model is feasible for common VLBI sessions without too 
much computational effort. However, in case of the new 
VGOS networks and the significantly increasing number 
of observations, further optimization strategies have to 
be found to adapt the model to the new challenges. For 
instance, block diagonal variance–covariance matrices 
could be obtained, when assuming that the spatial and 
temporal correlations are restricted to certain distances 
and time periods, respectively.

Table 2  Different solution setups including the reference solution and different strategies to refine the stochastic model 
of VLBI observations

The χ2 and WRMS value for two specially designed WHISP sessions on August 27 and October 23, 2015, are illustrated for all solution setups

Solution type χ
2 (–) WRMS (ps)

WHISP001 WHISP002 WHISP001 WHISP002

A Reference solution 1.27 1.76 14.23 22.26

B Constant additional noise: 1 cm 0.32 0.48 15.01 23.29

C Gipson et al. (2006–2008) constant  
and elevation-dependent noise

0.47 0.79 13.61 23.51

D Turbulence-based correlations 0.96 1.02 11.55 22.53
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Fig. 7  χ2 and WRMS values for a local network. a χ2 values and b WRMS post-fit residuals for the short baseline in Hobart, Tasmania, observed dur-
ing the CONT14 campaign in May 2014 and different solution setups including a reference solution (black crosses), a simple solution with a constant 
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The turbulence-based model is generally suitable for 
different network geometries and can be used for tradi-
tional long baselines as well as for local approaches as 
the baseline lengths repeatabilities could be improved 
and the mean χ2 values are approximately between 1 and 
1.2 in all cases. However, we could see that the results in 
the local case are even better than those of global appli-
cations. Keeping in mind that only the turbulence model 
considers correlations between the co-located stations 
in a proper way, it becomes obvious that the differences 
between the results of the solution setups are larger in 
local VLBI applications where high spatial and tem-
poral correlations are found. In the case of traditional 
VLBI sessions, the distances between the stations are 
significantly larger and the spatial correlations disap-
pear almost completely and only temporal correlations 
between successive observations are present. Due to the 
fact that we used the same turbulence parametrization at 
both stations of a baseline, it could be expected that this 
assumption is valid in local but not in global applications 
with baseline lengths ranging up to several hundreds of 
kilometers. Furthermore, please note that the additional 
variance–covariance matrix of high-frequency atmos-
pheric variations in the stochastic model of VLBI obser-
vations only consists for atmospheric effects but not for 
other uncertainty sources such as, for instance, the clock 
behavior. Since the VLBI observations are always dif-
ferential, this effect has, of course, also more impact on 
long distances than on short baselines. We can conclude 
that using an atmospheric turbulence model in the sto-
chastic model of geodetic VLBI data analysis leads to an 
improvement of the solution with regard to the baseline 
length repeatabilities, the χ2 values, the WRMS post-fit 
residuals as well as more realistic standard deviations of 
the target parameters. Further investigations are, how-
ever, necessary concerning the turbulence parameters of 
the different stations of a baseline to guarantee the best 
possible characterization of the turbulence behavior over 
a VLBI site. Moreover, the computational costs are kept 
to a limited extent for common VLBI sessions, which is a 
not inconsiderable factor in the data analysis.

Conclusions
One main goal of this paper is to ensure an operationally 
sufficient method to deal with correlations between the 
observations due to high-frequency refractivity variations 
in the neutral atmosphere as the dominant error source 
in the VLBI data analysis. In particular, this includes that 
the incorporation of a fully populated variance–covari-
ance matrix in the stochastic model of VLBI observations 
is feasible without too much computational effort. This 
was accomplished using the Kermarrec and Schön (2014) 
turbulence model based on the Matérn covariance family 

and the widely spread Kolmogorov turbulence theory. 
This model, originally developed for GPS carrier phases, 
was adapted and modified for observations of very long 
baseline interferometry.

The turbulence-based solution was validated against 
different solution strategies, including a reference solution 
in which no additional noise was added to the variances 
of the observations, an empirical model of Gipson et  al. 
(2008) as well as an approach in which a constant addi-
tional noise term was included. In contrast to the other 
refining strategies, the turbulence-based model is able to 
describe the meteorological and climatological conditions 
in a more plausible way without adding arbitrary noise 
terms to the variances of the observations in any form.

Investigating about 2700 VLBI sessions between 1993 
and 2014, we showed that the χ2 values as an indicator 
whether the global test of the least-squares adjustment 
is fulfilled or not reduces sharply when using additional 
stochastic information in any form. Considering global 
and local applications, the best results could be obtained 
by the turbulence-based solution. For local application, 
χ2 ≈ 1 is valid for all sessions, while for global networks, 
however, the χ2 is only slightly too high. This can be 
explained by the fact that, first, only uncertainties due 
to refractivity fluctuations in the atmosphere are taken 
into account, which are the dominant but not solely 
error source in the VLBI data analysis, and, second, the 
parametrization of the turbulence-describing parameter 
is quite simple. For instance, we used the same turbu-
lence parameters for both stations of a baseline, which, 
of course, is only valid for small network geometries. This 
issue has to be further investigated in the near future, but 
was not part of this paper.

Moreover, we showed that the baseline length repeat-
abilities as a general measure of accuracy of baseline 
length determinations improve for the turbulence-based 
solution. In comparison with the reference solution and 
other refinement strategies, up to 50  % of the baselines 
are improved by at least 1 mm, whereas only a few base-
lines are degraded. With this approach, also far more 
realistic standard deviations of the derived target param-
eters, such as station coordinates or Earth orientation 
parameters, were achieved.

 Due to the limited computational costs for common 
VLBI sessions, the method is generally suited for routine 
data analysis and mass processing, which was one of the 
key objectives of this development.
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