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Abstract 

An analytical and numerical analysis of the spectral properties of the gradient tensor, initially performed by Rum-
mel and van Gelderen (Geophys J Int 111(1):159–169, 1992) for the gravity potential, shows that when the tensor 
elements are grouped into sets of semi-tangential and pure-tangential parts, they produce almost identical signal 
content as the normal element. Moreover, simple eigenvalue relations can be derived between these sets and the 
spherical harmonic expansion of the potential. This theoretical development generally applies to any potential field. 
First, the analysis of Rummel and van Gelderen (1992) is adapted to the magnetic field case and then the elements of 
the magnetic gradient tensor are estimated by 2 years of Swarm data and grouped into Ŵ(1) = {[∇B]rθ , [∇B]rϕ} resp. 
Ŵ
(2) = {[∇B]θθ − [∇B]ϕϕ , 2[∇B]θϕ}. It is shown that the estimated combinations Ŵ(1) and Ŵ(2) produce similar signal 

content as the theoretical radial gradient Ŵ(0) = {[∇B]rr}. These results demonstrate the ability of multi-satellite mis-
sions such as Swarm, which cannot directly measure the radial gradient, to retrieve similar signal content by means of 
the horizontal gradients. Finally, lithospheric field models are derived using the gradient combinations Ŵ(1) and Ŵ(2) 
and compared with models derived from traditional vector and gradient data. The model resulting from Ŵ(1) leads to 
a very similar, and in particular cases improved, model compared to models retrieved by using approximately three 
times more data, i.e., a full set of vector, North–South and East–West gradients. This demonstrates the high informa-
tion content of Ŵ(1).
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Introduction
The Earth possesses an intrinsic magnetic field, the major 
part of which is produced by a self-sustaining dynamo 
operating in the outer core. However, what is measured 
at or near the Earth’s surface is a superposition of the 
core field, the lithospheric field due to magnetized rocks 
in the Earth’s lithosphere, external fields caused by elec-
tric currents in the ionosphere and the magnetosphere, 
and fields due to currents induced in the Earth by the 
time-varying external fields. More than 14 years of satel-
lite measurements from Ørsted (Neubert et al. 2001) and 
CHAMP (Reigber et al. 2005) led to detailed and precise 
models of Earth’s magnetic field. The Swarm satellite mis-
sion (Friis-Christensen et al. 2006) was launched by the 
European Space Agency (ESA) on November 22, 2013, 

and is the first multi-satellite mission dedicated to the 
geomagnetic field exploration from space. Specifically, 
it consists of three identical spacecrafts two of which 
are flying side-by-side at lower altitudes (roughly at 450 
km initial altitude) separated in longitude by 1.4◦, which 
allows for an instantaneous estimation of the East–West 
gradient of the magnetic field. The third flies at higher 
altitude (530 km) and at different local time compared 
to the lower pair. Kotsiaros et  al. (2015) have recently 
showed that North–South gradients can be approxi-
mated by first differences along the orbit track and a 
model of the Earth’s magnetic field based on East–West 
and North–South gradients estimated from Swarm data 
differences has already been presented by Olsen et  al. 
(2015).

On the other hand, Swarm with its current configu-
ration is unable to directly estimate the radial gradient 
since this would require two satellites separated along 
the radial direction. However, the radial gradient seems 

Open Access

*Correspondence:  skotsiaros@space.dtu.dk 
Division of Geomagnetism, DTU Space,  Techincal University of Denmark, 
Diplomvej 371, Kgs. Lyngby, Denmark

http://orcid.org/0000-0003-2636-5545
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40623-016-0498-x&domain=pdf


Page 2 of 13Kotsiaros Earth, Planets and Space  (2016) 68:130 

to provide the highest information content (Kotsiaros 
and Olsen 2012) and could therefore be important for 
improving existing magnetic field models. In order to 
overcome this limitation of Swarm, we translate a tenso-
rial analysis originally developed for the gravity field by 
Rummel and van Gelderen (1992) to the magnetic field 
case which shows that specific combinations of East–
West and North–South gradients provide a similar sig-
nal content to the radial gradient. Thus, radial gradient 
information can indirectly be inferred using the Swarm 
constellation and therefore additional information on pri-
marily the lithospheric field could possibly be extracted.

Tensor harmonics
The scalar potential V for internal magnetic field sources 
can be written as

where R = {. . . } denotes the real part of the series, the 
scaling factor a = 6371.2 km is the Earth’s mean radius, 
γm
n = gmn − ihmn  are the complex spherical harmonic 

expansion coefficients describing the internal sources 
and Ynm = exp (imϕ)Pm

n (cos θ) the surface spherical 
harmonics, (r, θ ,ϕ) the geocentric spherical coordinates 
and Pm

n (cos θ) the associated Schmidt semi-normalized 
Legendre functions of degree n and order m. Following 
Kotsiaros and Olsen (2012), the magnetic field gradient 
tensor elements can be written as

where the first subscript, j, stands for the vector compo-
nent for which the derivative is taken, while the second 
subscript, k, indicates the direction of the spatial deriva-
tive, with j, k = r, θ ,ϕ, whereas the functions Y jk

nm are 
given by
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According to Rummel and van Gelderen (1992), the three ten-
sor observables Ŵ(0) = {[∇B]rr}, Ŵ(1) = {[∇B]rθ , [∇B]rϕ} 
and Ŵ(2) = {[∇B]θθ − [∇B]ϕϕ , 2[∇B]θϕ} are represented 
by three tensor spherical harmonics denoted Z(0)

nm, Z(1)
nm and 

Z
(2)
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particularly
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The ⋆ indicates symmetry of the component with respect 
to the main diagonal. For more details on the analytical 
expressions of the operators L(0), L(1) and L(2), the reader 
is referred to Zerilli (1970), whereas the tensor spheri-
cal harmonics Z(0)

nm, Z(1)
nm and Z(2)

nm are Zerilli’s orthogonal 
harmonics anm, bnm and fnm respectively, multiplied by a 
scale factor. A similar basis of tensor spherical harmon-
ics has been derived for the gravity gradient tensor, see, 
e.g., Meissl (1971), Rummel (1997), Rummel and van Gel-
deren (1992).

Applying the operators L(0), L(1), L(2), Eqs. (10–14), to 
the potential V, cf. Eq.  (1), gives the expansions of the 
observables Ŵ(0), Ŵ(1) and Ŵ(2). Specifically,
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The expansion coefficients ζ (0)nm, ζ (1)nm and ζ (2)nm of the three 
tensor observables Ŵ(0), Ŵ(1) and Ŵ(2) are associated with 
the coefficients γm

n  of the potential V with the following 
eigenvalue relations

Notice that the three types of observables are related to 
the magnetic potential V with a factor of n2, whereas if 
the magnetic potential is to be determined only by the 
observable Ŵ(2), singularity emerges for degree n = 1.

Spectral analysis
A similar spectrum to the Mauersberger–Lowes spec-
trum (Backus et al. 1996; Lowes 1974) can be calculated 
for the three different observables Ŵ(0), Ŵ(1) and Ŵ(2) as

(18)

Ŵ
(2) = L

(2)
Vint = R

{

a

N
∑

n=1

n
∑

m=0

γm
n L

(2)ψnm

}

= R

{

1

a

N
∑

n=1

n
∑

m=0

γm
n

(

a

r

)(n+3)

√

(n− 1)n(n+ 1)(n+ 2)Z(2)
nm

}

= R

{

1

a

N
∑

n=1

n
∑

m=0

(

a

r

)(n+3)

ζ (2)nmZ
(2)
nm

}

.

(19)ζ (0)nm = (n+ 1)(n+ 2)γm
n ,

(20)ζ (1)nm = −(n+ 2)
√

n(n+ 1)γm
n ,

(21)ζ (2)nm =
√

(n− 1)n(n+ 1)(n+ 2)γm
n .

(14)

a2L(2)ψnm =
a2
√
2







0 0 0

0 1
r2

∂2

∂θ2
− cot θ

r2
∂
∂θ

− 1
r2 sin2 θ

∂2

∂ϕ2
2

r2 sin θ

�

∂2

∂θ∂ϕ
− cot θ ∂

∂ϕ

�

0 ⋆ − 1
r2

∂2

∂θ2
+ cot θ

r2
∂
∂θ

+ 1
r2 sin2 θ

∂2

∂ϕ2






ψnm

=

�a

r

�(n+3)�

(n− 1)n(n+ 1)(n+ 2)Z(2)
nm,

(15)

with Z
(2)
nm ≡

r2

√
2n(n+ 1)(n− 1)(n+ 2)

×









0 0 0

0 1
r2

�

∂2Ynm
∂θ2

− cot θ ∂Ynm
∂θ

− 1

sin2 θ

∂2Ynm
∂ϕ2

�

2
r2 sin θ

�

∂2Ynm
∂ϕ∂θ

− cot θ ∂Ynm
∂ϕ

�

0 ⋆ − 1
r2

�

∂2Ynm
∂θ2

− cot θ ∂Ynm
∂θ

− 1

sin2 θ

∂2Ynm
∂ϕ2

�









.



Page 4 of 13Kotsiaros Earth, Planets and Space  (2016) 68:130 

where β = {0, 1, 2}, [ ]jk stands for the tensor components 
and d� = r2 sin θdθdφ. Based on Eqs. 16, 17 and 18, the 
eigenvalue relations 19, 20 and 21 as well as the orthogo-
nality of the tensor spherical harmonics, Eq. 9, we get

Figure 1 shows the spectra R(0)
n (rh), R

(1)
n (rh) and R(2)

n (rh) 
of the observables Ŵ(0), Ŵ(1) and Ŵ(2), respectively, at 
r = rh = a+ h, where h = 0 km (dashed lines) and 
h = 460 km (solid lines). The coefficients γm

n  are taken 
from the MF71 model by Maus et al. (2008). One observes 
the slightly higher power of Ŵ(0) and the slightly weaker 
power of Ŵ(2); however, it can be seen that Ŵ(0), Ŵ(1) and 
Ŵ
(2) share in general almost identical spectral levels.
A detailed spectral analysis of the full magnetic gradi-

ent tensor has been done by Kotsiaros and Olsen (2012). 
The analysis was based on obtaining the variances σ of 
the estimated model parameters for each gradient tensor 
element independently, with
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1  http://www.geomag.org/models/MF7.html.
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orthonormal system of tensor spherical harmonics, cf. 
Eqs. (16), (17) and (18).
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Fig. 1  Power spectra R(0)n (rh), R
(1)
n (rh) and R(2)n (rh) of the observables 

Ŵ
(0), Ŵ(1) and Ŵ(2) at the Earth’s surface, h = 0 km, (dashed lines) and at 

h = 460 km altitude (solid lines) based on MF7 model
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Therefore, the variances of the estimated model param-
eters are

Finally, when the observations consist of Nd measure-
ments of Ŵ(2), i.e., d = {[∇B]θθ − [∇B]ϕϕ , 2[∇B]θϕ}, the 
G
T
G is given by

Therefore, the variances of the estimated model param-
eters are

The variances σ 2
(0), σ

2
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(2) which are obtained when 
observations consist of Ŵ(0), Ŵ(1) and Ŵ(2), respectively, are 
almost identical and are proportional to a factor of  1

n3
. If 

the model parameters are estimated by the observable 
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Ŵ
(2), singularity emerges for degree n = 1, which was also 

pointed out by its eigenvalue Eq. (21). The analytically 
calculated model variances a) σ 2

(0), b) σ 2
(1) and c) σ 2

(2), cf. 
Eqs. (28), (30) and (32), are shown in Fig. 2 in dependence 
of degree n and order m. White represents high vari-
ance, i.e., low information content, whereas green repre-
sents low variance, i.e., high information content. One 
can see that the specific combinations {[∇B]rθ , [∇B]]rϕ} 
and {[∇B]θθ − [∇B]ϕϕ , 2[∇B]θϕ}, namely Ŵ(1) resp. Ŵ(2) , 
which basically are combinations of North–South and 
East–West gradients, have in theory almost identical 
information content as the radial gradient [∇B]rr, i.e., 
the observable Ŵ(0). For that reason and for simplicity, we 
refer to Ŵ(1) and Ŵ(2) as pseudo-radial gradients.

In the next section, I try to identify whether this con-
clusion could have a practical use in the Swarm case, e.g., 
can we make use of the North–South and East–West 
gradient combinations to get similar information as the 
radial gradient which is not measured by the Swarm con-
stellation? To facilitate this, the observables Ŵ(1) and Ŵ(2) 
are estimated from Swarm data and their information 
content (regarding the recovery of the model parameters) 
is tested against the content of the theoretical radial gra-
dient Ŵ(0). Subsequently, lithospheric field models are 
derived using the observables Ŵ(1) and Ŵ(2), which are 
estimated from Swarm data.

Lithospheric field modeling with Swarm 
pseudo‑radial gradients
Data form Swarm Alpha and Charlie have been selected 
during 23 months, between April 2014 and March 2016, 

Fig. 2  Variance at satellite altitude (r = a+ 460 km) of the estimated model parameters from each observable a  Ŵ(1), b  Ŵ(2) and c  Ŵ(0), based on 
their analytical expressions, Eqs. (28), (30) and (32), respectively. White represents low information content, whereas green represents high informa-
tion content
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with a sampling rate of 15 seconds. To derive a lithospheric 
field model, predictions from CHAOS-6 (Finlay et  al. 
2016) for both the core field (up to spherical harmonic 
degree N = 15) and the large-scale magnetospheric field 
are subtracted from the vector data. Known disturbed 
days, for example associated with satellite maneuvers, are 
excluded. In addition, outliers for which the vector com-
ponents exceed 300 nT the CHAOS-6 model predictions 
are removed. Due to the failure of both absolute scalar 
magnetometers on Swarm Charlie after November 2014, 
its vector magnetometer is calibrated using scalar field 
values mapped over from Swarm Alpha. Moreover, vec-
tor field data are selected from dark regions (sun at least 
10◦ below the horizon) and during relatively quiet geo-
magnetic conditions such as the change in the RC-index 
≤3 nT/h and Kp ≤ 3◦. For quasi-dipole (QD), Richmond 
(1995), latitudes polewards of ±55◦ the horizontal vector 
components are excluded. Based on these data, the indi-
vidual gradient elements [∇B]jk, with j, k = r, θ ,ϕ, which 
make up the observables Ŵ(1) = {[∇B]]rθ , [∇B]rϕ} resp. 
Ŵ
(2) = {[∇B]θθ − [∇B]ϕϕ , 2[∇B]θϕ} are estimated. Their 

expression as elements of the simplified gradient tensor 
is used, see equation  3.9 of Kotsiaros and Olsen (2012), 
which holds for small-scale field features, i.e., the lith-
ospheric field. Their calculation is done by means of first-
order Taylor expansion. Specifically,

(33)

[∇B]rθ ≈
Br(r1, θ1,ϕ1)− Br(r2, θ2,ϕ2)

SNS
,

with θ2 − θ1 ≫ ϕ2 − ϕ1,

(34)

[∇B]rϕ ≈
Br(r1, θ1,ϕ1)− Br(r2, θ2,ϕ2)

SEW
,

with ϕ2 − ϕ1 ≫ θ2 − θ1,

SNS is the North–South spherical distance, i.e., the dis-
tance between consecutive positions (along-track) of 
Swarm Alpha, whereas SEW is the East–West spherical dis-
tance, i.e., the distance between adjacent positions (cross-
track) of Swarm Alpha and Charlie. Figure  3 shows SNS 
(left panel) and SEW (right panel) calculated from the posi-
tions of Alpha and Charlie between April 2014 and March 
2016. Outliers for which the North–South and East–West 
spherical distances are out of range, namely SNS < 110 km 
or SNS > 120 km and SEW > 200 km, are removed. In the 
particular case where Alpha and Charlie are crossing one 
another and change from ascending to descending orbit 
tracks, i.e., when θ < −87.2◦ or θ > 87.2◦, only data points 
with 4 km ≤ SEW ≤ 12 km and are kept.

The model parameters m are related to the observables 
Ŵ
(1) resp. Ŵ(2) as

with the kernel matrices G(1) = {[∇G]rθ , [∇G]rϕ} and 
G
(2) = {[∇G]θθ − [∇G]ϕϕ , 2[∇G]θϕ}. [∇G]jk (where 

(35)

[∇B]θθ ≈
Bθ (r1, θ1,ϕ1)− Bθ (r2, θ2,ϕ2)

SNS
,

with θ2 − θ1 ≫ ϕ2 − ϕ1,

(36)

[∇B]ϕϕ ≈
Bϕ(r1, θ1,ϕ1)− Bϕ(r2, θ2,ϕ2)

SEW
,

with ϕ2 − ϕ1 ≫ θ2 − θ1,

(37)

[∇B]θϕ ≈
Bθ (r1, θ1,ϕ1)− Bθ (r2, θ2,ϕ2)

SEW
,

with ϕ2 − ϕ1 ≫ θ2 − θ1.

(38)Ŵ
(1) = G

(1)
m,

(39)Ŵ
(2) = G

(2)
m,

Fig. 3  Left North–South spherical distance, SNS, i.e., the distance between consecutive positions (along-track) of Swarm Alpha. Right East–West 
spherical distance, SEW, i.e., the distance between adjacent positions (cross-track) of Swarm Alpha and Charlie. SNS and SEW are calculated based on 
Swarm Alpha and Charlie positions between April 2014 and March 2016
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j, k = r, θ ,ϕ) are the individual gradient kernel matrices 
which can be approximated in a similar fashion to the 
individual gradient elements [∇B]jk as

Gr, Gθ and Gϕ are the kernel matrices relating the model 
parameters m to the field vector components Br, Bθ and 
Bϕ as

The model parameters m can be obtained by an itera-
tively reweighted least-squares approach (Constable 
1988; Huber 1964), e.g., in the ith iteration, the model 
parameters are determined as

where the data weight matrix Wi is updated by the resid-
uals e = Ŵ

(β) −G
(β)

mi−1 and β = 1, 2. The variance 
σ̃ 2
(1) resp. σ̃ 2

(2) of the estimated model parameters for the 
observable Ŵ(1) resp. Ŵ(2) is

The selected Swarm data (Alpha and Charlie positions) 
have been used to approximate the kernel matrices G(1) 
and G(2) and compute the variances σ̃ 2

(1) and σ̃ 2
(2) which 

(40)

[∇G]rθ ≈
Gr(r1, θ1,ϕ1)−Gr(r2, θ2,ϕ2)

SNS
,

with θ2 − θ1 ≫ ϕ2 − ϕ1,

(41)

[∇G]rϕ ≈
Gr(r1, θ1,ϕ1)−Gr(r2, θ2,ϕ2)

SEW
,

with ϕ2 − ϕ1 ≫ θ2 − θ1,

(42)

[∇G]θθ ≈
Gθ (r1, θ1,ϕ1)−Gθ (r2, θ2,ϕ2)

SNS
,

with θ2 − θ1 ≫ ϕ2 − ϕ1,

(43)

[∇G]ϕϕ ≈
Gϕ(r1, θ1,ϕ1)−Gϕ(r2, θ2,ϕ2)

SEW
,

with ϕ2 − ϕ1 ≫ θ2 − θ1,

(44)

[∇G]θϕ ≈
Gθ (r1, θ1,ϕ1)−Gθ (r2, θ2,ϕ2)

SEW
,

with ϕ2 − ϕ1 ≫ θ2 − θ1.

(45)Br = Grm,

(46)Bθ = Gθm,

(47)Bϕ = Gϕm.

(48)mi =

[

G
(β)T

WiG
(β)

]−1[

G
(β)T

Wi

]

Ŵ
(β),

(49)
σ̃ 2
(1) = diag

[

G
(1)T

WG
(1)
]−1

resp.

(50)
σ̃ 2
(2) = diag

[

G
(2)T

WG
(2)
]−1

are shown in Fig.  4a, b in dependence of degree n and 
order m. In addition, σ̃ 2

(0) = diag
[

G
(0)T

WG
(0)

]−1
, which 

is the model variance for the observable Ŵ(0) = {[∇B]rr} , 
is computed by evaluating the theoretical kernel matrix 
G
(0) at Alpha positions. G(0) relates the model parameters 

m to the radial gradient [∇B]rr as

and can easily be constructed by looking at Eqs. (2) and 
(3). σ̃ 2

(0) is shown in Fig.  4c. The approximated model 
variances σ̃ 2

(1) and σ̃ 2
(2) for the observables Ŵ(1) and Ŵ(2) 

bear a good resemblance and are very similar to the cal-
culated theoretical variance σ̃ 2

(0) which corresponds to 
the observable Ŵ(0). Therefore, Ŵ(1) and Ŵ(2), which are 
approximated based on Swarm Alpha and Charlie data, 
carry similar information content (regarding the esti-
mation of the model parameters) to the (ideal) radial 
gradient (Ŵ(0)), which is not possible to be measured or 
estimated directly from the Swarm configuration. σ̃ 2

(2) 
shows some instabilities in the zonal terms (m = 0) , 
which is most probably due to the Swarm orbit and in 
particular the polar gap in combination with the sensi-
tivity of Ŵ(2) to the East–West gradients [∇B]θϕ, [∇B]ϕϕ , 
which do not constrain the zonal terms sufficiently 
(Kotsiaros and Olsen 2012). A quantitative comparison 
between σ̃ 2

(0), σ̃
2
(1) and σ̃ 2

(2) with the analytically calculated 
theoretical variances σ 2

(0), σ
2
(1) and σ 2

(2) shown in Fig.  2 
cannot be made since the scales are so different. How-
ever, one recognizes similar features appearing in the 
same degree ranges for σ̃ 2

(0), σ̃
2
(1), σ̃

2
(2) and σ 2

(0), resp. σ 2
(1), 

resp. σ 2
(2). Notice, for example, the relatively lower vari-

ances at degrees n ≈ 10− 40 in both cases. This band of 
lower variances (higher information) is relative to the sat-
ellite altitude. In particular, lower altitude expands this 
band to higher degrees. In case of σ̃ 2

(0), σ̃
2
(1) and σ̃ 2

(2), there 
seems to be, in addition to degree n, a dependence on the 
order m, which is more prominent for σ̃ 2

(2). This is attrib-
uted to the non-perfect distribution of Swarm Alpha and 
Charlie data on the contrary to the theoretical case where 
perfect data distribution is assumed.

Lithospheric field models are derived from the pseudo-
radial gradients Ŵ(1) and Ŵ(2), which are estimated from 
the selected Swarm Alpha and Charlie data. The radial 
component of the lithospheric field resulting from the 
model obtained by Ŵ(1) resp. Ŵ(2) is shown in Fig. 5a resp. 
Fig. 5b. For reference, the radial lithospheric field result-
ing from MF7 and CM5 (Sabaka et al. 2015) is also shown 
in Fig.  5c resp. Fig.  5d. The fields are calculated at the 
Earth’s surface from coefficients of degrees 16 ≤ n ≤ 90. 
Green lines indicate the boundaries of the major tectonic 
plates, whereas red lines locate the dip equator (0◦ QD 
latitude) and ±55◦ iso-QD latitudes. The model obtained 

(51)[∇B]rr = G
(0)

m,
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by the pseudo-radial gradient Ŵ(2) seems to be dominated 
by a strong signal at QD latitudes polewards of ±55◦ 
which also leaks to lower latitudes. Remember that Ŵ(2) is 
built exclusively from gradients of the horizontal compo-
nents, [∇B]θθ, [∇B]ϕϕ and [∇B]θϕ (and therefore horizon-
tal components cannot be excluded from QD latitudes 
polewards of ±55◦ otherwise we would end up with no 
data in those regions), which are sensitive to disturbing 
effects due to electrical currents of ionospheric/magne-
tospheric origin, such as field aligned currents. Therefore, 
if Ŵ(2) is to be used for lithospheric field modeling, it is 
recommended that Ŵ(2) is excluded in the regions pole-
wards of ±55◦ QD latitude and data of the radial vector 
and/or gradients of the radial vector and/or scalar data 
are used instead. In the following, we will concentrate 
on the model retrieved from Ŵ(1) (Fig.  5a), which from 
now on will be called SMŴ(1) (Swarm Model). This model 
exhibits a stronger signal over the oceanic regions and 
the regions associated with the magnetic lineations that 
arise from the seafloor spreading. Moreover, it exhibits 
sharper lithospheric field features, which is a characteris-
tic property of the radial gradient, compared to MF7 and 
CM5. Note, for example, the crisp definition of the fea-
tures in the polar regions, northwest Africa and the Ban-
gui anomaly.

In a similar fashion to SMŴ(1), five additional models 
are obtained for comparison by vector data as well as by 
North–South and East–West gradient estimates. Specifi-
cally, the following models are derived

• • SMv model derived by vector data from Swarm 
Alpha.

• • SMvNS model derived by Swarm Alpha vector data 
and North–South gradients estimated from Swarm 
Alpha vector data, see Eqs. (33) and (35).

• • SMvEW model derived by Swarm Alpha vector data 
and East–West gradients estimated from Swarm 
Alpha and Charlie vector data, see Eqs. (34), (36) and 
(37).

• • SMvNSEW model derived by Swarm Alpha vector, 
North–South and East–West gradients estimated 
from Swarm Alpha and Charlie vector data. For this 
model, North–South and East–West gradients (as 
well as their associated kernel matrices) are approxi-
mated by simple first differences (no division with the 
spherical distance), in a similar fashion to how the 
gradients are commonly treated for modeling, see, 
for example, Finlay et al. (2016), Olsen et al. (2015), 
Olsen et al. (2016), Sabaka et al. (2015) .

• • SMŴ(1)δ this model is equivalent to SMŴ(1) except that 
the gradients involved in Ŵ(1) (and the associated gra-
dient kernel matrices) are approximated by simple 
data differences (no division with the spherical dis-
tance).

No special data filtering nor regularization has been 
applied in SMŴ(1) or in any of the additional models as 
opposed to CM5 where regularization is applied above 
degree n = 60 (Sabaka et al. 2015) and MF7 where data 
filtering and line leveling is applied to the data (Maus 
et al. 2008).

Figure  6a shows Mauersberger–Lowes spectra of the 
lithospheric field models SMv, SMvNS, SMvEW, SMvNSEW , 
SMŴ(1) and SMŴ(1)δ. For reference, the power spectra of 

Fig. 4  Variances σ̃ 2

(1) (a) and σ̃ 2

(2) (b) computed from the approximated kernel matrices G(1) resp. G(2). Variance σ̃ 2

(0) (c) computed from the theoreti-
cal kernel matrix G(0). The variances are calculated based on Swarm Alpha and Charlie positions between April 2014 and March 2016
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MF7 and CM5 are also presented. Up to degree n ≈ 40 , 
all derived models agree relatively well with MF7 and 
CM5, whereas above that degree, SMv, SMvNS and SMvEW 
have considerably more power. On the other hand, 
SMvNSEW, SMŴ(1) and SMŴ(1)δ follow the power of MF7 
and CM5 up to degree n = 83 where they start to devi-
ate. Looking at the spectra of model differences (dashed 
lines in Fig. 6a) and the degree correlation, ρn, cf. Langel 
and Hinze (1998), Fig. 6b, SMŴ(1)δ and SMvNSEW are very 
similar and agree better with MF7 and CM5 than SMŴ(1).

Figure 7a–f resp. 7g–l presents the relative difference (in 
%) between each coefficient of the various derived mod-
els and MF7 resp. CM5 in a degree versus order matrix. 
The model SMv, built only from vector data, shows sig-
nificant differences with respect to MF7 and CM5 after 
degree n ≈ 55. Inclusion of North–South gradients in 
the SMvNS improves the agreement in the high-degree 

near-zonal coefficients (|m| ≈ 0 ≪ n), whereas inclusion 
of East–West gradients in the SMvEW improves the agree-
ment in the near-sectoral terms (|m| ≈ n ≫ 0). The model 
SMvNSEW, built including both North–South and East–
West gradients, improves the determination of both the 
near-zonal and near-sectoral terms leading to an overall 
improved model. The model SMŴ(1), which is built exclu-
sively from pseudo-radial gradient Ŵ(1), results in bet-
ter agreement with MF7 and CM5 than SMvNSEW in the 
high-degree zonal coefficients (m = 0). However, the high-
degree near-sectoral (|m| ≈ n ≫ 0) coefficients show a 
worse agreement. This is not the case if we look at SMŴ(1)δ 
which is also derived, similarly to SMŴ(1), exclusively from 
Ŵ
(1) but gradients are estimated by simple data differences 

instead of dividing by the spherical distance. The agree-
ment of SMŴ(1)δ with MF7 resp. CM5 is generally on the 
same level as SMvNSEW and improved in the zonal terms.

Fig. 5  Maps of radial lithospheric field calculated at the Earth’s surface from coefficients of degrees 16 ≤ n ≤ 90 taken from the field model derived 
from Ŵ(1) (a) and Ŵ(2) (b). For reference, the radial lithospheric field at the Earth’s surface from coefficients of degrees 16 ≤ n ≤ 90 taken from MF7 
(c) and CM5 (d) is also shown. Green lines indicate the boundaries of the major tectonic plates, whereas red lines locate the dip equator (0◦ QD 
latitude) and ±55

◦ iso-QD latitudes
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Maps of lithospheric field differences of Br between 
MF7 and SMvNSEW (a), SMŴ(1) (b) and SMŴ(1)δ (c) as well 
as between CM5 and SMvNSEW (d), SMŴ(1) (e) and SMŴ(1)δ 
(f ) are shown in Fig.  8. The maps are produced at the 
Earth’s surface using degrees n = 16–70 of the respective 
models. Overall, the agreement of the derived models 
with MF7 is slightly better than with CM5. In particular, 

SMŴ(1) shows slightly higher differences with MF7 and 
CM5 than SMvNSEW or SMŴ(1)δ, whereas the differences 
of SMvNSEW and SMŴ(1)δ with both MF7 and CM5 are 
very similar. On the other hand, compared to SMvNSEW , 
the models SMŴ(1) and SMŴ(1)δ show a relatively good 
agreement with MF7 and CM5 at the poles despite the 
fact that the polar gap is not accounted for as opposed to 

a

b

Fig. 6  a Power spectra of the lithospheric field (n = 16–90) from all derived models at the Earth’s surface. Spectra of models are shown in solid lines, 
spectra of differences between models in dashed lines. b Degree correlations of the models with respect to MF7 and CM5
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MF7 and CM5. In MF7, the polar gap is filled with syn-
thetic model values from MF5 (Maus et al. 2007) and in 
CM5 the lithospheric field is smoothened over the polar 
gap region above degree n = 60 (Sabaka et  al. 2015). 
Despite leaving the polar gap untreated in SMŴ(1) and 
SMŴ(1)δ, no particular ringing appears which is usually 
the case if the polar gaps are not accounted for (Sabaka 
et al. 2015; Maus et al. 2008).

Conclusions
It has been shown that the gradient combinations  
Ŵ
(1)

= {[∇B]rθ , [∇B]rϕ} and Ŵ(2) = {[∇B]θθ − [∇B]ϕϕ , 2[∇B]θϕ}  
produce similar signal content as the radial gradient 
Ŵ
(0) = {[∇B]rr}. That is a general theoretical conclusion 

from special tensorial analysis of potential fields and has 
been already shown for the gravity potential by Rummel 
and van Gelderen (1992). For the geomagnetic case, this 
has important implications because the gradients of the 
field are not measured instantaneously by a single satellite 
instrument. The radial gradient is currently not possible to 
be measured, as, for example, in the gravity case and the 
GOCE mission where the complete gradient tensor can 
be determined instantaneously by a gravity gradiometer 
(Rummel et  al. 2011). Nevertheless, contrary to the radial 

gradient {[∇B]rr}, which is not possible to be measured 
with the Swarm configuration, the gradient combinations 
{[∇B]rθ , [∇B]rϕ} and {[∇B]θθ − [∇B]ϕϕ , 2[∇B]θϕ} can be 
determined by the lowest satellite pair and contain similar 
information regarding the estimation of the model param-
eters as the radial gradient. Furthermore, the gradient com-
binations can be related to the magnetic field potential and 
the traditional spherical harmonic expansion coefficients 
with the help of simple eigenvalue relations, and therefore, 
they can be used for magnetic field modeling. For the first 
time, magnetic field models are derived exclusively from 
estimated gradient observations as opposed to the stand-
ard technique of using a combination of vector and esti-
mated gradients (Finlay et al. 2016; Olsen et al. 2015, 2016; 
Sabaka et  al. 2015). Moreover, one of the main models 
(SMŴ(1)) presented here is built by gradient estimates using 
first-order Taylor approximation (dividing by the spherical 
distance), on the contrary to the standard approach of esti-
mating gradients simply with vector differences (Kotsiaros 
et al. 2015). It seems that when gradients are estimated by 
simple data differences, such as the model SMŴ(1)δ pre-
sented here, instead of dividing by the spherical distance, 
the derived models are slightly improved. The models are 
derived using 23 months of Swarm data with a sampling 

Fig. 7  Sensitivity matrices—relative difference (in %) between each coefficient of the derived models SMv, SMvNS, SMvEW, SMvNSEW, SMŴ(1), SMŴ(1)δ 
and MF7 (a–f) resp. CM5 (g–l) in a degree versus order matrix
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rate of 15 seconds. Tests have also been performed deriving 
equivalent models to the ones presented here using 5 s sam-
pling rate, but no particular improvements were detected. 
The pseudo-radial gradient Ŵ

(1) = {[∇B]rθ , [∇B]rϕ} , 
estimated with simple vector differences, leads to a very 
similar lithospheric model to the model retrieved by using 
approximately three times more data, i.e. a full set of vector, 
North–South and East–West gradients. This demonstrates 
the high information content of Ŵ(1). Moreover, despite not 
accounting for the polar gaps, models resulting from Ŵ(1) do 
not suffer from ringing and seem to agree better in the polar 
gap regions to the reference models MF7 and CM5 than the 
model built from the full set of vector, North–South and 
East–West gradients.

In this paper, the performance of lithospheric field 
models, such as the SMŴ(1) determined exclusively by 
gradient combinations has been studied in detail. How-
ever, tests have also been performed extending the SMŴ(1) 
to include the static main field (degrees n = 1–15). The 
extended SMŴ(1) is derived in a similar fashion to SMŴ(1) , 
which is presented here, except that model predictions 
of the core field are not subtracted from the Swarm data. 
The initial tests show that, similarly to the lithospheric 
field case, Ŵ(1) can lead to high-quality models also for 
the static part of the core field. Further tests regarding 
the performance of Ŵ(1) on the determination of the static 
core field as well as its time-dependent part can be an 
extension to the current work and the topic of a separate 
paper.
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