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Abstract 

We adopt Poisson wavelets for regional gravity field recovery using data acquired from various observational tech-
niques; the method combines data of different spatial resolutions and coverage, and various spectral contents and 
noise levels. For managing the ill-conditioned system, the performances of the zero- and first-order Tikhonov regu-
larization approaches are investigated. Moreover, a direct approach is proposed to properly combine Global Position-
ing System (GPS)/leveling data with the gravimetric quasi-geoid/geoid, where GPS/leveling data are treated as an 
additional observation group to form a new functional model. In this manner, the quasi-geoid/geoid that fits the local 
leveling system can be computed in one step, and no post-processing (e.g., corrector surface or least squares colloca-
tion) procedures are needed. As a case study, we model a new reference surface over Hong Kong. The results show 
solutions with first-order regularization are better than those obtained from zero-order regularization, which indicates 
the former may be more preferable for regional gravity field modeling. The numerical results also demonstrate the 
gravimetric quasi-geoid/geoid and GPS/leveling data can be combined properly using this direct approach, where no 
systematic errors exist between these two data sets. A comparison with 61 independent GPS/leveling points shows 
the accuracy of the new geoid, HKGEOID-2016, is around 1.1 cm. Further evaluation demonstrates the new geoid has 
improved significantly compared to the original model, HKGEOID-2000, and the standard deviation for the differences 
between the observed and computed geoidal heights at all GPS/leveling points is reduced from 2.4 to 0.6 cm. Finally, 
we conclude HKGEOID-2016 can be substituted for HKGEOID-2000 for engineering purposes and geophysical investi-
gations in Hong Kong.
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Background
High-resolution regional gravity field recovery is of con-
siderable importance not only for surveying and map-
ping, but also for research fields, such as oceanography 
(understanding ocean circulation and currents), geophys-
ics (investigating the structure of seismic activities and 
the lithosphere), and geodynamics (Kuroishi 2009; Panet 
et al. 2011; Shih et al. 2015).

Typically, middle- and short-wavelength gravity field 
signals down to a few kilometers are extracted from 
high-resolution ground-based measurements, e.g., ter-
restrial and shipborne gravity data, which are only avail-
able in geographically limited regions (Wang et al. 2012; 
Odera and Fukuda 2014; Lieb et  al. 2016). In contrast, 
long-wavelength signals from tens of kilometers or larger 
are often recovered using global geopotential models 
(GGMs) derived from satellite observations. Over the 
last 10  years, launches of the Gravity Field and Climate 
Experiment (GRACE) (Tapley et  al. 2004) and Grav-
ity Field and Steady-State Ocean Circulation Explorer 
(GOCE) (Rummel et al. 2002) missions have greatly con-
tributed to improving the spatial resolution and accuracy 
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of GGMs. Moreover, developing various observational 
techniques, e.g., GPS, airborne gravimetric measure-
ments, and satellite altimetry missions, can further 
improve regional gravity fields (Hwang et al. 2006; Jiang 
and Wang 2016; Wu and Luo 2016). Combined, these 
data sets form a solid basis for modeling high-resolution 
and high-quality regional gravity fields. However, these 
data have heterogeneous spatial coverage and resolu-
tions, various error characteristics, and different spectral 
contents, which make their use an open issue. Thus, the 
aim of this study is to adopt an approach that combines 
heterogeneous data and extracts different spectral con-
tents from various observational techniques for regional 
gravity field recovery.

The Stokes/Molodensky integral makes it difficult to 
combine heterogeneous data, while the least squares 
collocation (LSC) is numerically inefficient in manag-
ing cases that involve a large number of point-wise data 
(Wittwer 2009). The new gravity field described in this 
study is parameterized using Poisson wavelets. Pois-
son wavelets are radially symmetric basis functions that 
have localizing properties in both the spatial and fre-
quency domains, which have been used extensively in 
regional gravity field modeling and potential field anal-
ysis (Tenzer and Klees 2008; Hayn et  al. 2012; Bentel 
et al. 2013).

We also investigate several aspects that affect the solu-
tion quality derived from Poisson wavelets. To begin 
with, as heterogeneous data have different spatial cov-
erage and resolutions, the derived least squares system 
from Poisson wavelets is typically ill-conditioned, where 
regularization is mandatory for deriving reliable results 
(Wittwer 2009). One of the key points that affect the 
quality of regularization is the choice of regularization 
matrices (Chambodut et al. 2005). Unlike using diagonal 
regularization matrices in global gravity field modeling 
from spherical harmonics (Kusche and Klees 2002), the 
regularization matrices derived from various constraints 
in regional scale are no longer entirely diagonal. The 
choice of regularization matrices may affect the solution 
quality, which is investigated in this study.

Moreover, mainly due to commission errors in the 
GGMs and uncorrected systematic errors in the data, the 
computed gravimetric quasi-geoid/geoid usually devi-
ates from local values observed from GPS/leveling data 
by a centimeter level or larger (Wu et  al. 2016). Gener-
ally speaking, corrector surface (Featherstone 2000; 
Fotopoulos 2005; Nahavandchi and Soltanpour 2006) or 
more complicated algorithms, e.g., least squares colloca-
tion (Tscherning 1978) and boundary-value methodology 
(Klees and Prutkin 2008; Prutkin and Klees 2008), can be 
applied to reduce systematic errors and properly combine 
GPS/leveling data and gravimetric solutions. However, 

given the difficulty in choosing a proper corrector sur-
face, as well as the associated algorithmic complexity 
for the least-squares collocation and boundary-value 
approach, we propose a direct methodology for removing 
the inconsistency between these two data sets. The GPS/
leveling data are treated as an independent observation 
group and added to the functional model for the gravity 
field computation. Using this method, the quasi-geoid/
geoid that fits the local leveling system is computed in 
one step, no systematic errors exist between the data, 
and post-processing procedures, e.g., corrector surface or 
LSC approaches, for calibrating systematic errors are not 
required.

The rest of the paper is organized as follows: the main 
principle of regional gravity modeling from Poisson wavelets 
is first introduced, and heterogeneous gravity-related obser-
vations are linked to the functional model parameterized 
by Poisson wavelets. The weights for different observation 
groups are determined through the variance component 
estimation (VCE) approach, and unknown coefficients are 
estimated through the least squares adjustment. Further, 
the Tikhonov regularization method is introduced to deal 
with the ill-conditioned system, where a rapid synthesis 
method for computing zero- and first-order regularization 
matrices is provided. In the following section, Hong Kong is 
selected as the study area and heterogeneous data are intro-
duced. The numerical results are also shown in this part, 
where the new height reference surface, HKGEOID-2016, is 
determined. In addition, HKGEOID-2016 is compared with 
existing models, e.g., HKGEOID-2000 (Luo et al. 2005) and 
recently published GGMs, such as EIGEN-6C4 (European 
Improved Gravity Model of the Earth by New Techniques 
6C4) and EIGEN-6C3STAT (Förste et  al. 2012, 2014), for 
cross-validation. The last section contains the main sum-
mary and conclusions.

Methods
Functional model and parameters estimation
Following Holschneider and Iglewska-Nowak (2004), we 
denote ΩR as the sphere of radius R, ΩR =  {(u1, u2, u3): 
u1

2 + u2
2 + u3

2 = R2}, and we also denote IntΩR as the inte-
rior and ExtΩR as the exterior:

Consider two points y, z, 
∣

∣y
∣

∣ < R < |z|, and then the 
exterior Poisson wavelet of degree d in position y eval-
uated at z is defined by (Holschneider and Iglewska-
Nowak 2004)
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where z =(z1, z2, z3)
T, y =

(

y1, y2, y3
)T, and ẑ =

z
|z|

 and 
ŷ =

y

|y|
 are the unit vectors of z and y, respectively. 

Pl

(

ẑ
T
ŷ
)

 is the Legendre function.

In the framework of remove-compute-restore (RCR) 
methodology, only the residual disturbing potential is 
parameterized by Poisson wavelets, while the long- and 
short-wavelength parts of the gravity field are recovered 
using the global geopotential model (GGM) and residual 
terrain model (RTM), respectively (Omang and Forsberg 
2000). Based on the Runge–Krarup theory, the residual dis-
turbing potential, Tres, is estimated using a linear combina-
tion of Poisson wavelets (Klees et al. 2008):

where z and y are interpreted as the 3-D coordinates of the 
observations and position of a Poisson wavelet, respectively. 
K is the number of Poisson wavelets, βi is an unknown coef-
ficient, which should be estimated from the data. Moreover, 
ΩR is chosen as a sphere that is entirely located within the 
Earth, e.g., a Bjerhammar sphere. We note that the depth 
of the Poisson wavelet under the Bjerhammar sphere, com-
puted as d = R−

∣

∣y
∣

∣, is the key point to determining its 
property in the frequency domain (Wittwer 2009).

After the linearization and spherical approximation, 
the residual gravity anomalies, Δgres, can be linked to 
Poisson wavelets through (Klees et al. 2008)

The computed model, together with the RTM reduction, 
derives the quasi-geoid instead of geoid, and the residual 
height anomaly, ςres, is derived from Poisson wavelets 
using the Bruns formula (Heiskanen and Moritz 1967):

where γ is the normal gravity value.
In order to properly combine the gravimetric quasi-

geoid/geoid and GPS/leveling data, parts of the GPS/
leveling data, ςp

res, are treated as observations, which are 
added in the functional model for the regional gravity 
field computation:

where η is the 7-parameter model, which is used to 
absorb systematic errors between these two data sets, 

(3)Tres(z) =

K
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βiW
ext,d
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W ext,d
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and χ is a vector of unknown parameters. More specifi-
cally, η and χ are expressed as (Eshagh and Zoghi 2016)

where φ and λ are the latitude and longitude of the GPS/
leveling data, e is the second eccentricity of the reference 
ellipsoid.

Typically, observations lp in group p are linked to the 
residual disturbing potential Tres(z) through

where ∆p are observation errors, bp is an unknown bias 
parameter, Lp is the specific function linking observa-
tions to the residual disturbing potential, J is the number 
of observation groups.

Assuming that the observation noise is white Gaussian 
with zero mean, Eq. (8) is rewritten as

where x is the K′  ×  1 vector of unknown coeffi-
cients, which consists of unknown parameters of 
Poisson wavelets and bias parameters. For example, 
x =

[

β1,β2, . . . ,βK , b1, b2, . . . , bJ
]′ and K′ = K + J, Ap is 

the mp × K′ design matrix of group p, lp is the mp ×  1 
corresponding observation vector, ep is the mp × 1 vector 
of corresponding stochastic errors, and mp is the number 
of observations in group p. E{·} and D{·} are the expec-
tation and dispersion operators, respectively. Cp is the  
error variance–covariance matrix of group p, and σp

2 
and Qp are the variance factor and cofactor matrix, 
respectively.

The observations in different groups are assumed to be 
uncorrelated, and the error variance–covariance matrix 
of all observation groups is expressed as
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Point-wise data can be directly linked to Poisson wave-
lets through the functional model described above. How-
ever, as these data are not homogeneously distributed 
and data gaps may exist in locally, the associated least 
squares system is typically ill-conditioned, and regulari-
zation is mandatory (Wittwer 2009). Usually, the Tik-
honov regularization method is applied for tackling 
the ill-conditioned issues, because it does not need a 
priori information (Xu 1992). For a given α (regulariza-
tion parameter) and κ (regularization matrix), the least-
squares solution of Eq. (9) is (Klees et al. 2008)

The widely used L-curve approach, which is the log–
log scale plot of the residual norm versus solution norm, 
is used to estimate the regularization parameter in this 
study. For discrete ill-conditioned problems, this plot 
displays an ‘L-shape’ with a corner point, where a cer-
tain balance between the regularized solution and fit to 
the data is achieved (Hansen et al. 2007). Moreover, the 
variance component estimation (VCE) approach can 
be applied to determine the optimal variance factors of 
different observation groups (Koch and Kusche 2002; 
Kusche 2003):

where vp = Apx̂ − lp is the vector of residuals for group 
p and rp is the corresponding redundancy number. The 
estimation of the variance factor is iteratively computed 
until convergence is achieved.

The final quasi-geoid, ς, is computed by combining the 
residual part with the long- and short-wavelength com-
ponents derived from the GGM (ςGGM) and RTM (ςRTM), 
respectively (Omang and Forsberg 2000):

However, the geoid (N) instead of a quasi-geoid 
is needed in some cases, where their relationship is 
described by

where ḡ and γ̄ are the mean value of gravity and normal 
gravity, respectively, ΔgB is the Bouguer anomaly, and h is 
topographical height.

Choice of regularization matrix
The regularization matrix is the key element controlling 
the quality of the regularized solutions, which describes 
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the signal energy decreasing from large to small scale 
(Chambodut et al. 2005). For selecting the optimal regu-
larization matrix, the zero- and first-order regularization 
matrices are investigated.

Zero‑order Tikhonov regularization
With the addition theorem of spherical harmonics, the 
Poisson wavelets are rewritten as (Wittwer 2009)

where Ȳlm are the fully normalized spherical harmonics, l 
and m are their degree and order, respectively.

If we assume Poisson wavelets are the target functions 
on the sphere, i.e., s = W ext,d

y (z), then the entries of the 
zero-order regularization matrix κP,Q

0 are expressed as the 
inner product of different Poisson wavelets (Heiskanen 
and Moritz 1967):

Equation (16) is also rapidly synthesized by Holschneider 
and Iglewska-Nowak (2004)
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First‑order Tikhonov regularization
The zero-order Tikhonov regularization derived above is 
suitable for functions restricted to a sphere σU belonging 
to L2(σU). However, this function space is quite large and 
includes many unsmooth functions. To introduce a scalar 
product suitable for smoother functions, a target func-
tion is selected as the first-order derivative of the Poisson 
wavelets, and the inner products of the target functions 
are used to derive the entries of the first-order regulariza-
tion matrix.

Assuming the target function is a first-order radial 
derivative of the Poisson wavelets, the entries of the radi-
ally constrained regularization matrix κr

P,Q are (Heis-
kanen and Moritz 1967)
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According to Holschneider and Iglewska-Nowak (2004), 
κr

P, Q is rapidly computed as

Similarly, the entries of the horizontal constrained regu-
larization matrix Rh

P,Q read

Results and discussion
Study area and data
The study area is bounded by 113.83° to 114.5° in longi-
tude and from 22.15° to 22.58° in latitude, as shown in 
the region enclosed in a black rectangle in Fig. 1, which 
covers the entire Hong Kong mainland, parts of Shenz-
hen, as well as the South China Sea. Figure 1 also shows 
the distribution of heterogeneous gravity data; the red 
dots represent terrestrial data, including measurements 
both in Hong Kong and parts of Shenzhen. The green 
dots indicate locations of shipborne data coverage, which 
are sparsely distributed. As a result, we also incorpo-
rate satellite altimetry-derived gravity data to fill these 
data gaps, indicated with yellow dots, obtained from 
DTU13 (DTU = Technical University of Denmark) that 
uses multi-satellite altimetry data (e.g., TOPEX/Posei-
don, Jason-1, Jason-2, ERS-2) over 20 years. DTU13 has 
a spatial resolution of 1′ ×  1′, and the altimetry gravity 
data precision is approximately several mGal globally 
(Andersen et al. 2013). We note that even the terrestrial 
data are not homogeneously distributed and data gaps 
exist, especially for mainland Hong Kong. This makes 
the study area a good location to test the feasibility of 
our adopted approach for managing data gaps. Because 
the currently used leveling system, Hong Kong Princi-
pal Datum (HKPD) over Hong Kong, is an orthometric 
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height system (Chen and Luo 2004), the modeled quasi-
geoid from Eq.  (13) is converted to a geoid for further 
validation and comparison.

Global geopotential model and digital terrain model
Earth Gravity Model 2008 (EGM2008) with a full degree 
and order (d/o) of 2190 (Pavlis et al. 2008, 2012) is cho-
sen to recover long-wavelength signals of the regional 
gravity field. EGM2008 was developed by combin-
ing satellite gravity observations, ground-based gravity 
measurements and radar altimetry data; the accuracy of 
EGM2008 is 0.239 m when compared to globally distrib-
uted GPS/leveling data, which is one of the most accu-
rate GGMs published in the recent years http://icgem.
gfz-potsdam.de/ICGEM/evaluation/evaluation.html. 
A high-resolution and high-quality DTM (digital ter-
rain model) is needed for applying RTM corrections to 
smooth the regional gravity field at short scales (Forsberg 
and Tscherning 1981). Two data sources, SRTM (Shuttle 
Radar Topography Mission) and GEBCO (General Bathy-
metric Chart of the Oceans), are combined to generate a 
DTM with a spatial resolution of three arc-seconds over 
land and sea. In order to reduce edge effects, a larger 
RTM computational area than study region is need; the 
derived DTM is shown in Fig.  2a. The mean elevation 
surface (MES) used in the RTM is computed from a high-
order spherical harmonic expansion of Earth’s topog-
raphy, the DTM2006.0 topography model (Pavlis et  al. 
2007, 2008). The truncated degree of DTM2006.0 is con-
sistent with the GGM used in this study, EGM2008 with 
a full d/o of 2190. The derived mean elevation surface 
is shown as Fig. 2b. Considering the curvature of Earth, 
tesseroids instead of prisms are chosen as the integral 
elements (Heck and Seitz 2007). The density parameter is 
selected as ρland = 2.67 g/cm3 and ρsea = 1.64 g/cm3 given 
the difference between the mean crustal density and sea-
water (Forsberg 1984). We also show detailed topograph-
ical information over Hong Kong (Fig. 3).

GPS/leveling data
There are 168 high-quality GPS stations in Hong Kong, 
the ellipsoidal heights are referenced to the WGS84 ellip-
soid (ITRF 96 @ 1998:121), and their heights were deter-
mined with precise geometric leveling and trigonometric 
leveling. The entire GPS/leveling dataset is divided into 
three groups (Fig.  4). The leveling heights of GPS/lev-
eling data in the first group were derived from precise 
leveling measurement, while the heights of the next two 
groups were surveyed from precise leveling and trigono-
metric height measurements. Based on recent leveling 
network adjustments, the accuracy of the overall GPS/
leveling data is approximately 1 cm. The first two groups, 
i.e., group I (58 points) and II (49 points), are used as 

22˚12'22˚12'

22˚24'22˚24'

22˚36'22˚36'

113˚48'

113˚48'

114˚00'

114˚00'

114˚12'

114˚12'

114˚24'

114˚24'

114˚36'

114˚36'

Fig. 1  Study area and distribution of gravity data
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observations, aimed at reducing inconsistency between 
the gravimetric solution and GPS/leveling data. The third 
group (61 points), group III, is applied to evaluating the 
quality of the computed model.

Gravity data
The original gravity database in Hong Kong has 507 ter-
restrial and 133 shipborne point-wise gravity observa-
tions, the spacing on land is 2 and 2–4 km at sea. They 
were collected using a Lacoste and Romberg model ‘G’ 
land gravity meter and model ‘H/U’ seabed gravity meter 

from Electronic and Geophysical Services Ltd (Luo et al. 
2005). The local gravity base is connected to Interna-
tional Gravity Standardization Net 1971 (IGSN 71) with 
an accuracy of 0.03 mGal (Evans 1990). Moreover, recent 
gravity measurements also provide 623 discrete terres-
trial gravity observations. The heights of gravity data in 
Hong Kong are referenced to the Hong Kong Principal 
Datum. In addition, gravity measurements in the neigh-
boring Shenzhen region are also available, 1312 points on 
land and 876 points at sea, with 1 km spatial resolution. 
They were measured with a Lacoste & Romberg model 
‘G’ and ‘D’ land gravimeter and model ‘S’ sea gravim-
eter in 2001, and the accuracy of observed data is bet-
ter than 0.1 mGal. The heights of gravity measurements 
over Shenzhen are referenced to the National Vertical 
Datum 1956 (Chen and Luo 2004). Further, due to poor 
coverage of the marine gravity observations, DTU13-
derived altimetry gravity anomalies are also introduced. 
The DTU13 model uses the EGM2008-derived geoid 
as the vertical datum (Andersen et  al. 2013). To unify 
these heterogeneous gravity data from various sources, 
transforming parameters are used for height datum uni-
fication, and the heights of gravity data from Shenzhen 
and the DTU13 model are unified to the local heights 
based on the Hong Kong Principal Datum. To quantify 
the DTU13 model quality in the target region, DTU13-
derived gravity anomalies are compared with marine 
gravity data (Fig. 5). The comparison indicates large dif-
ferences in the coastal areas, where the quality of the 
altimetry data is suspect (Hwang et al. 2006). The statis-
tics in Table 1 show the accuracy of the DTU13 model for 
the seas around Hong Kong is approximately 4.3  mGal. 

Fig. 2  Digital terrain model (DTM) and mean elevation surface (MES). a DTM, b MES
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Fig. 3  Digital terrain model over Hong Kong
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The bias of the DTU13 model versus marine gravity data 
is at the level of 4.8 mGal, which needs to be estimated 
as unknown bias parameters in the functional model, as 
shown in Eq.  (8). The imperfection in height transform-
ing parameters and uncorrected systematic errors in 
the data may result in unreduced biases in the data after 
height unification. Thus, except for the terrestrial gravity 
data over Hong Kong, terrestrial data in Shenzhen and 
all shipborne and altimetry data are supposed to have 
biases. For data derived from specific source, we assume 
a constant bias parameter in the functional model, and 

three bias parameters in total are estimated using the 
least square adjustment.

Based on RCR methodology, residual gravity data are 
computed by subtracting the long- and short-wavelength 
parts from the original observations. Figure 6 shows the 
residual gravity data, where (a) and (d) represent the 
residual terrestrial data, (b) and (e) display the residual 
marine data, and (c) and (f ) show the residual altimetry 
data. The top panels, (a), (b) and (c), show the residual 
observations obtained by only subtracting EGM2008-
derived quantities from the original data. The bottom 
panels, (d), (e) and (f ), demonstrate the residual data 
derived by subtracting EGM2008-derived quantities 
and RTM corrections. After incorporating RTM correc-
tions, the residual gravity field is much smoother, and 
the most significant improvements are found south-east 
of Shenzhen, in New Territory, Lan Tau and Hong Kong 
land, regions with a tendency toward topographical vari-
ation (Fig.  3). As shown in Table  2, the standard devia-
tion (SD) of the residual terrestrial data is reduced from 
11.9 to 4.4 mGal, with approximately 63% improvement 
after incorporating the RTM reductions. For marine 
data, the improvement is not as much as the terrestrial 
data, the SD of shipborne data is only reduced from 
7.2 to 6.0  mGal, mainly due to the low resolution of 
the bathymetry model, the GECBO model has a spatial 
resolution of 30″ × 30″, and the small variation in local 
bathymetry (Fig. 3). Similarly, the SD of altimetry data is 
only reduced from 2.3 to 1.4 mGal with RTM reductions.

Numerical results
Determination the regularization matrix and regularization 
parameter
We put the Poisson wavelets on a Fibonacci grid beneath 
the topography, keeping it parallel with the topography 
(Tenzer et al. 2012). However, as mentioned above, data 
gaps in the observations usually lead to an ill-conditioned 
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Fig. 4  Three groups of GPS/leveling data. a Group I; b Group II; c Group III
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Fig. 5  Difference between DTU13-derived gravity anomalies and 
marine gravity data

Table 1  Statistics of  the difference between  altimetry 
and marine gravity data (Units: mGal)

Max Min Mean SD

12.6 −30.0 −4.8 4.3
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least squares system. Thus, before computing a high-
quality model, the reliability of the L-curve approach and 
performances of various regularization matrices need to 
be evaluated. The numerical experiment is designed as 
follows, the grid depth is selected as 40 km, and the num-
ber of Poisson wavelets is approximately chosen as 1600. 
Terrestrial, shipboard and altimetry gravity data, as well 
as the two groups of GPS/leveling data (i.e., group I and 
II), are combined for modeling. The normal matrix with 
this parameterization is highly ill-conditioned, which is 
the proper case study for investigating the performances 
of the Tikhonov regularization technique. Figure 7 shows 
L-curve plots for various regularization matrices, where 

the optimal regularization parameter is between 10−11 
and 10−10 when zero-order regularization is applied. 
For the first-order regularization, both for the radial and 
horizontal constrained matrices, the optimal parameter 
is situated between 10−12 and 10−11. To further demon-
strate the L-curve corner, the regularization parameters 
are densified around the intervals where optimal param-
eters are located (red circles in Fig. 7); the corresponding 
information can be found in Tables  3 and 4. The esti-
mated optimal regularization parameters for zero- and 
first-order regularization matrices are α  =  10−10.6 and 
α =  10−11.3, respectively. However, the L-curve method 
may lead to obtain an over-smoothed solution (Xu 1998). 
Therefore, we also provide the quality of various solu-
tions using an external validation from the GPS/leveling 
data from group III, (Tables 3, 4). These results indicate 
that the optimal parameters estimated from the L-curve 
method are consistent with the direct evaluation results, 
suggesting the L-curve method in this study is reliable. 
In addition, there are no differences in the performances 
of different first-order regularization matrices, i.e., the 
radial and horizontal constrained matrices, and thus we 
do not distinguish these matrices in the following discus-
sion. However, when comparing the quality of solutions 
derived from zero- and first-order regularization, we 
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Fig. 6  Residual gravity observations. The top and bottom panels represent data without and with RTM corrections, respectively; a, d are terrestrial 
data, b, e are shipborne data, and c, f are airborne data

Table 2  Statistics of  the residual gravity observations 
(Units: mGal)

Max Min Mean SD

Terrestrial Δg − ΔgEGM2008 57.2 −29.5 −3.0 11.9

Terrestrial Δg − ΔgEGM2008 − ΔgRTM 13.7 −18.6 −1.1 4.4

Shipborne Δg − ΔgEGM2008 13.0 −30.4 −8.6 7.2

Shipborne Δg − ΔgEGM2008 − ΔgRTM 12.9 −20.6 −5.7 6.0

Satellite altimetry Δg − ΔgEGM2008 18.9 −10.9 −0.8 2.3

Satellite altimetry Δg − ΔgEGM2008 − ΔgRTM 9.8 −8.8 −0.1 1.4
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conclude the application of first-order regularization pro-
duces better results, and the accuracy of the correspond-
ing model reaches 1.6  cm. In comparison, for solutions 
computed from zero-order regularization, the accuracy 
decreases to 1.8  cm. These results show the choice of 
regularization matrices has a non-negligible effect on the 
solutions, and the first-order regularization may be more 
preferable for local gravity field modeling.

Optimal network design for Poisson wavelets
Another key point affecting the final solution quality is 
the network design of the Poisson wavelets, where the 
optimal depth and number of Poisson wavelets need to 
be carefully estimated (Wu et al. 2016). The depth should 
not be chosen too shallow, which may lead to overfitting 
problem. However, too deep Poisson wavelets may cause 
a heavily ill-conditioned normal matrix, where strong 
regularization is need, and the associated regularization 
errors may corrupt the solution. A good depth choice 
should be a trade-off between data fit and smoothness 

of the solution (Slobbe 2013). In addition to depth, the 
number of Poisson wavelets also affects the stability and 
the quality of the solution. To obtain the optimal network 
design, we use a trial-and-error approach, i.e., preselected 
depths and number of Poisson wavelets are combined to 
form various networks; based on these networks, differ-
ent solutions are computed. For selecting the best solu-
tion, GPS/leveling points serve as evaluation data, where 
the combination of the depth and number that obtains 
the best fit to the evaluation data is the optimal param-
eterization. Through trial and error, the depth of the grid 
was found to increase from 10 to 40  km with an inter-
val of 5 km, and the number of Poisson wavelets in the 
computational domain changed from 400 to 2000 with an 
increment of 400. Similar to the case study designed in 
the previous section, the first two GPS/leveling groups, 
together with the heterogeneous gravity data, are incor-
porated for gravity field modeling. The third group of 
GPS/leveling serves as evaluation data for validating the 
different solutions. Finally, the L-curve approach with 

Fig. 7  Optimal regularization parameters computed from the L-curve methodology based on various regularization matrices. a Zero-order, b first-
order (radial gradient constraint), c first-order (horizontal gradient constraint)

Table 3  Evaluation of  different geoids with  various regularization parameters when  zero-order regularization is used 
(Units: cm)

Regularization parameters 10−14 10−13 10−12 10−11 10−10.8 10−10.7 10−10.6 10−10.4 10−10.2 10−10 10−9 10−8 10−7

2.8 2.5 2.3 2.1 2.0 1.9 1.8 1.9 2.0 2.2 2.4 2.6 3.0

Table 4  Evaluation of  different geoids with  various regularization parameters when  first-order regularization is used 
(Units: cm)

Regularization parameters 10−14 10−13 10−12 10−11.8 10−11.6 10−11.4 10−11.3 10−11.2 10−11 10−10 10−9 10−8 10−7

Radial constraint 2.4 2.2 2.1 1.9 1.8 1.7 1.6 1.7 1.7 1.8 1.9 2.1 2.3

Horizontal constraint 2.4 2.2 2.1 1.9 1.8 1.7 1.6 1.7 1.7 1.8 1.9 2.1 2.3
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first-order Tikhonov regularization is applied for manag-
ing the ill-conditioned system. Figure 8 shows the quality 
of the different models parameterized using various net-
works, where a minimum SD of 1.1 cm is obtained when 
the depth is 10 km and the number is 1600. Adding more 
Poisson wavelets only increases the computational load, 
without gaining improvement, e.g., the accuracy of the 
geoid decreases to 1.2 cm when the depth is unchanged, 
but the number increases to 2000. We also note that there 
are other choices that provide slightly worse solutions 
with a SD value a few millimeters larger than 1.1  cm, 
which indicates the solution is quite robust with respect 
to minor changes in network parameterization.

A new height reference surface over Hong Kong
Based on the optimal network designed above, a new 
height reference surface, HKGEOID-2016, over Hong 
Kong is estimated. Figure 9 provides the estimated biases 
for the gravity data, with magnitudes of −0.6, −0.7 and 
−4.5 mGal for terrestrial, shipborne and altimetry data, 
respectively. However, the estimated bias in the altime-
try data is not exactly consistent with the results shown 
in Table  1, where the bias between shipborne measure-
ments and altimetry data is roughly −4.8  mGal. This 
also indicates the biases estimated from the functional 
model parameterized in this study may deviate from 
the true value, and additional efforts are needed for fur-
ther improvements in the near future. Figure 10 displays 
the residuals of the gravity observations after the least 
squares adjustment. As shown in Table 5, the functional 
model fits the terrestrial and marine data much bet-
ter than the altimetry data, and the SD of the residuals 
for terrestrial and marine data is approximately 1.2 and 

1.1 mGal, respectively, while for altimetry data this value 
significantly increases to 4.8 mGal. In addition, the most 
prominent residuals in the altimetry data are located 
at coastal areas, which further demonstrates the poor 
DTU13 quality over these regions. Moreover, we con-
clude that the parameterization of the functional model 
with constant unknown bias parameters does not thor-
oughly remove systematic errors in the data. Future work 
should also incorporate densification of shipborne gravity 
measurements, which may further improve the solution 
quality over marine areas. Further, for the two groups 
of GPS/leveling data used to combine the gravimetric 
solution and GPS/leveling data, i.e., groups I and II, the 
residuals are displayed in Fig. 11, and the corresponding 
statistics are provided in Table 6. These results show the 
internal agreement between the model and GPS/leveling 
data. For comparison, we also provide results derived 
from the purely gravimetric geoid, i.e., the solution 
modeled only from gravity data using Poisson wavelets. 
The corresponding results display differences between 
the purely gravimetric solution and GPS/leveling data 
at the decimeter level, ranging from 6.7 to 22.3  cm. SD 
values are 4.1 and 3.6 cm, and mean values are 15.1 and 
15.4  cm for groups I and II, respectively. These statis-
tics indicate systematic errors exist between these two 
data sets. Because the GPS/leveling data are acquired 
using high-quality GPS measurements and spirit leveling 
observations, it is usually hypothesized that errors in the 
computed gravimetric model primarily account for the 
observed systematic errors; these are usually due to com-
mission errors in the GGM, as well as uncorrected sys-
tematic errors in the data. However, as shown in Table 6, 
the incorporation of two groups of GPS/leveling data 
leads to a significant reduction in SD values for differ-
ences between the modeled geoid heights and observed 
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Fig. 8  Accuracy of different geoids with respect to various Poisson 
wavelet networks
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ones, to 0.2 and 0.3 cm for groups I and II, respectively. 
More important, introducing these GPS/leveling data 
substantially reduces the mean difference between the 
model and GPS/leveling data. The zero mean values for 
both groups of data also indicate that the gravimetric 
model and GPS/leveling data can be properly combined 
through the direct approach we proposed. Furthermore, 
systematic errors, especially in the computed model, 
have been significantly reduced when compared to the 
case derived from a purely gravimetric solution.

Results from the GPS/leveling data for groups I and II 
only provide the internal agreement between the mod-
eled geoid and GPS/leveling data, and cannot be used for 
assessing the solution quality because they are used as 
observations for modeling. Thus, the third group of GPS/
leveling data, with independent 61 point-wise measure-
ments, is used for external validation and the result is dis-
played in Fig. 12. All residuals are within 2.0 cm (Table 7), 
the SD of the differences between the HKGEOID-2016 
and GPS/leveling points is approximately 1.1  cm, and 
the zero mean value also confirms the geoid model and 

a

113˚45' 114˚00' 114˚15' 114˚30'

22˚12'

22˚21'

22˚30'

22˚39'

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
mGal

b

113˚45' 114˚00' 114˚15' 114˚30'

−7−6−5−4−3−2−1 0 1 2 3 4 5 6 7
mGal

c

113˚45' 114˚00' 114˚15' 114˚30'

22˚12'

22˚21'

22˚30'

22˚39'

−20−16−12 −8 −4 0 4 8 12 16 20
mGal

Fig. 10  Residuals of gravity observations. a Terrestrial, b shipborne, c altimetry

Table 5  Statistics of  the residuals of  gravity data (Units: 
mGal)

Max Min Mean SD

Terrestrial 5.0 −5.7 0.0 1.2

Marine 5.6 −6.3 0.0 1.1

Satellite altimetry 15.4 −18.4 0.0 4.8
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Fig. 11  Residuals of geoidal heights at GPS/leveling points. a Group I; b Group II

Table 6  Statistics of  the residuals of  geoidal heights 
at GPS/leveling points (Units: cm)

Max Min Mean SD

Group I 0.5 −0.6 0.0 0.2

Group II 0.8 −1.1 0.0 0.3
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GPS/leveling data have been combined properly. For fur-
ther evaluation, we also compare HKGEOID-2016 with 
the existing model, HKGEOID-2000 (Luo et  al. 2005). 
Figure  13 shows the differences between the observed 
and computed geoidal heights at all GPS/leveling points 
based on the various geoids. Compared to the solution 
derived from HKGEOID-2000, as shown in the Table 8, 
the SD of these differences is reduced from 2.4 to 0.6 cm 
when HKGEOID-2016 is incorporated. We mainly 
attribute these improvements to the incorporation of 

more gravity-related observations, as well as recent lev-
eling network adjustments to reduce the systematic 
errors in the leveling system over Hong Kong. We also 
note that the mean value of the residuals is 0.8 cm when 
HKGEOID-2000 is used, which indicates systematic 
errors may exist in the original GPS/leveling data used by 
Luo et al. (2005).

The performances of the recently published GGMs are 
also investigated in Hong Kong, i.e., EGM2008 with d/o 
2190 (Pavlis et  al. 2012), EIGEN-6C3STAT (d/o 1949) 
and EIGEN-6C4 (d/o 2190) (Förste et  al. 2012, 2014) 
(Fig.  14). The statistics in Table  9 show the accuracy of 
these GGMs is not better than 4 cm, and the mean devia-
tion between GGM and local geoid is larger than 17 cm, 
which is undesirable for engineering purposes or geo-
physical investigation. The main reason for the poor 
performances of these GGMs is their development was 
implemented without confidential gravity data from 
China, and the quality of these models in regions such 
as China is suspect, and local refinements are necessary. 
Moreover, differences between the HKGEOID-2016 and 
GGM-derived geoids are shown in Fig.  15, these differ-
ences are at the decimeter level, and the incorporation of 
locally distributed data primarily contributes to improv-
ing the fine structures of the regional gravity field at short 
scales.
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Fig. 12  External validation of HKGEOID-2016

Table 7  External accuracy of HKGEOID-2016 (Units: cm)

Max Min Mean SD

1.8 −1.9 0.0 1.1
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Fig. 13  Differences between GPS/leveling data and geoidal heights derived from various geoids. a HKGEOID-2016; b HKGEOID-2000

Table 8  Statistical differences between  GPS/leveling data 
and geoidal heights based on various geoids (Units: cm)

Max Min Mean SD

HKGEOID-2016 1.8 −1.9 0.0 0.6

HKGEOID-2000 6.9 −6.0 0.8 2.4
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Conclusions
Poisson wavelets are used for modeling the regional 
gravity field using data from various observational tech-
niques. The method combines data with different spatial 
coverage, various noise levels, and spectral contents. As 
a case study, terrestrial, shipborne, and satellite altimetry 
gravity data, as well as GPS/leveling measurements, are 
incorporated in the Poisson wavelet model for regional 
gravity field recovery over Hong Kong.

The Tikhonov regularization is introduced to man-
age the ill-conditioned least squares system; in particu-
lar, the performances of various regularization matrices 

are investigated. The numerical results show solutions 
with first-order regularization provide better results, 
where the accuracy of the local solution increases by 
0.2 cm compared to that obtained from zero-order reg-
ularization. These results also indicate that first-order 
regularization may be more preferable in regional grav-
ity field recovery using Poisson wavelets. Moreover, a 
direct approach is proposed to properly combine the 
gravimetric quasi-geoid/geoid and GPS/leveling data; a 
subset of the GPS/leveling data is treated as an independ-
ent observation group to formulate the new functional 
model, and the quasi-geoid/geoid that fits the local lev-
eling system can be modeled in a single step. The results 
show the SD is approximately 0.3 cm for the residuals on 
the first two GPS/leveling groups, regarded as observa-
tions. The zero mean value indicates the gravimetric 
model and GPS/leveling data can be properly combined 
through this direct approach. In addition, an external val-
idation with 61 independent GPS/leveling points shows 
that the accuracy of the new geoid, HKGEOID-2016, 
is approximately 1.1  cm. Compared with the original 
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Fig. 14  Differences between GGM-derived geoidal heights and GPS/leveling data (note mean values are removed). a EGM2008; b EIGEN-6C4; c 
EIGEN-6C3STAT

Table 9  Statistical differences between  GPS/leveling data 
and GGM-derived geoidal heights (Units: cm)

Mean SD

EGM2008 17.8 4.2

EIGEN-6C4 20.4 4.5

EIGEN-6C3STAT 23.3 4.2

a

113˚51' 114˚00' 114˚09' 114˚18' 114˚27'
22˚09'

22˚12'

22˚15'

22˚18'

22˚21'

22˚24'

22˚27'

22˚30'

22˚33'

−0.12 −0.06 0.00 0.06 0.12 0.18 0.24
m

b

113˚51' 114˚00' 114˚09' 114˚18' 114˚27'

−0.12 −0.06 0.00 0.06 0.12 0.18 0.24
m

c

113˚51' 114˚00' 114˚09' 114˚18' 114˚27'
22˚09'

22˚12'

22˚15'

22˚18'

22˚21'

22˚24'

22˚27'

22˚30'

22˚33'

−0.12 −0.06 0.00 0.06 0.12 0.18 0.24
m

Fig. 15  Differences between HKGEOID-2016 and a EGM2008, b EIGEN-6C4, and c EIGEN-6C3STAT
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solution, HKGEOID-2000, the SD of the differences 
between observed and computed geoidal heights at all 
GPS/leveling points is reduced from 2.4 to 0.6 cm when 
HKGEOID-2016 is incorporated. This is a significant 
improvement. In addition, the performances of three 
recently published GGMs, EGM2008, EIGEN-6C3STAT 
and EIGEN-6C4, are investigated in Hong Kong. The cor-
responding results show the accuracies of these GGMs 
are all below 4 cm. The deviation from the local geoid at 
the decimeter level also indicates the GGM alone can-
not recover a high-quality gravity field in this region, and 
local refinement is necessary.

Several issues should be carefully considered to make 
further improvements to the local geoid. Usually, the 
geoid is poorly modeled in the coastal areas due to unfa-
vorable data coverage (Hipkin et  al. 2004; Filmer and 
Featherstone 2012). In the study region, the distribution 
of shipborne data is quite sparse, and the quality of the 
altimetry data degrades in the vicinity of coastal areas. 
Therefore, the densification of shipborne data would fur-
ther improve the local geoid in future work. In addition, 
the developments of appropriate altimeter waveform 
retracking approaches may also contribute to improving 
the geoid over coastal areas (Hwang et al. 2006; Andersen 
and Knudsen 2009). Errors in the GGM inevitably propa-
gate into regional solutions because we usually consider 
the GGM as error-free data implemented in the remove-
restore framework. The magnitude of these commission 
errors in the GGMs reaches the centimeter scale or larger 
(Pavlis et al. 2012), which should be carefully considered 
when computing the quasi-geoid/geoid at centimeter 
accuracy. These commission errors are actually calibrated 
with GPS/leveling data using the direct approach pro-
posed in this study. However, the errors in the GGM 
could also be quantified if the full error variance–covari-
ance matrix of the spherical coefficients is known, and a 
more realistic error variance–covariance matrix of the 
data could be estimated through error propagation. In 
this manner, the weights of different observation groups 
may be more properly determined, and the accuracy of 
the quasi-geoid/geoid, especially for the purely gravimet-
ric one, may be further improved.
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