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Spectral moments for the analysis 
of frequency shift, broadening, and wavevector 
anisotropy in a turbulent flow
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Abstract 

Turbulence represents essentially random fluctuations that evolve both spatially and temporally, and appear in vari-
ous geophysical and space science applications. A spectral moment method is proposed to characterize the turbu-
lence energy spectra in the wavevector and frequency domain in the lowest-order sense. The frequency shift velocity 
and the random sweeping velocity are obtained from the first-order and second-order moments of the wavenum-
ber–frequency spectra. The maximum extension direction and the elliptic spectral shape are obtained from the 
second-order moments of the wavevector spectra. The algorithm for the spectral moment computation is presented 
with synthetic energy spectra and solar wind energy spectra.

Keywords:  Turbulence energy spectra, Moment calculation, Random sweeping model

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made.

Introduction
Turbulent fluctuations appear commonly in various 
fluid and gaseous media in geophysical and space sci-
ence applications, e.g., ocean turbulence, atmospheric 
turbulence, and plasma turbulence in near-Earth space. 
The fluctuating fields (flow velocity, density or pressure 
variation, or electromagnetic field) develop both spatially 
and temporally. One method to study the turbulent fluc-
tuations is to determine the correlation in the space–time 
domain (He and Zhang 2006; Zhao and He 2009). The 
other method, complementary to the space–time correla-
tion, is to determine the energy spectrum in the wavevec-
tor and frequency domain as the Fourier transform of the 
space–time correlation (Kraichnan 1964; Wilczek and 
Narita 2012).

The wavevector–frequency spectra are accessible by 
numerical simulations or multi-point measurements 
using a properly placed sensor array. In the lowest-order 
picture, the frequencies of the turbulent field are subject 
to the Doppler shift and broadening caused by the mean 

flow and the large-scale variation of the flow (referred to 
as the random sweeping field), and the wavevector ani-
sotropy (caused, for example, by a large-scale magnetic 
field in plasma) can be fitted by a set of elliptic energy 
contour levels.

Here we propose a spectral moment method to char-
acterize the wavevector–frequency spectra of turbulence 
using a smallest set of parameters: the shift velocity, the 
sweeping velocity, and the eigenvalues and eigenvectors 
of the spectral moment tensor. The shift velocity is asso-
ciated with the phase speed in the observer frame in the 
turbulent medium. In the case of supersonic or super-
Alfvénic media such as in the solar wind, the shift velocity 
should sufficiently be close to the mean flow speed (Dop-
pler shift). The sweeping velocity is associated with the 
frequency broadening of the energy spectrum around the 
Doppler shift or the frequency shift when the spectrum is 
sliced over the frequencies at a given wavenumber. In the 
limit of hydrodynamic treatment, the sweeping velocity 
can be of the order of root-mean-square of the large-scale 
flow variations (Doppler broadening), or can be influ-
enced by changes in the spatial structure. The eigenvalues 
and the eigenvectors are obtained from the second-order 
spectral moment tensor in the wavevector domain and 
can be used to determine the direction of maximum and 
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minimum variation directions (or spectral extension 
directions) and to characterize the elliptic shape of the 
spectral anisotropy in the wavevector domain. The algo-
rithm for the spectral moments is presented along with 
examples of the wavevector–frequency spectra using 
synthetic data and the spacecraft data in the solar wind.

The moment calculations are a common exercise in 
the gas and plasma kinetic treatment (moments of veloc-
ity distribution function) and in the probability theory 
(moments of probability density function). The spectral 
moment method has advantages that the analysis needs 
only the first-order and the second-order moment calcu-
lations of the energy spectra and that the method does 
not require the knowledge on the power-law behavior 
(spectral index) or even a shape of the spectrum (on 
reconstruction of the spectra, however, one has to spec-
ify the spectral index). The method in the article is devel-
oped for the multi-spacecraft data because the method 
requires the wavevector dependence of the fluctuation 
energy. Upon using single spacecraft data only, one has 
to assume Taylor’s hypothesis and project the spacecraft 
frame frequencies onto the wavevector components 
with respect to the mean magnetic field (Dasso et  al. 
2005; Matthaeus et al. 1990). The choice of the wavevec-
tor spectrum model depends on the applications. The 
elliptic wavevector spectrum (Carbone et al. 1995; Nar-
ita 2014) is implemented in this article. An extension of 
the reconstruction model to different spectral indices 
is possible. For the critical balance wavevector spec-
trum, the large-scale parameter L (Forman et  al. 2011) 
needs to be determined from the observation. For the 
non-elliptic wavevector anisotropy model (Narita 2015), 
the shape parameter (the ratio of the coefficients on the 
parallel and perpendicular wavenumbers) needs to be 
determined from the observation. In the case of the one-
dimensional probability distribution f over a domain of χ 
(e.g., the frequencies and the wavenumber in this study; 
other choices such as particle velocities or fluctuation 
amplitudes are also possible), the zeroth-order moment 
is estimated as

The first-order and the second-order moments are esti-
mated, respectively, as

Normalization of the nth-order moments is possible by 
dividing by the zeroth-order moment.

(1)χ(0) =
∫

dχ f (χ).

(2)χ(1) =
∫

dχ f (χ)χ

(3)χ(2) =
∫

dχ f (χ)
(

χ − χ(1)
)2

.

The goal of the  article is to develop an algorithm to 
determine the shift velocity (the phase speed of the 
major fluctuation component), the sweeping veloc-
ity, and the sense of wavevector anisotropy using the 
measurement of the energy spectrum in the wavevec-
tor–frequency domain. The essence of the analysis is 
to extract the information on the principal axis (or the 
maximum and minimum variance directions) using the 
spectral moments, and to interpret the spectra in the 
frame of random sweeping model. Using the assumption 
of Gaussian statistics (which requires the smallest set of 
free parameters to characterize the energy spectrum in 
the wavenumber–frequency domain) and a power-law 
elliptic shape of the wavevector anisotropy, it is possible 
to reconstruct the energy spectra in the wavevector and 
frequency domains.

Two different methods are introduced in the  article: 
(1) computation of the spectral moments in the wave-
number–frequency domain and in the wavevector 
domain and (2) reconstruction of the spectrum using 
Gaussian statistics or a power-law distribution. The 
former is an objective, mathematical exercise and the 
method itself does not require any specific type of fluc-
tuation data as far as the fluctuations belong the same 
statistical family (so, discontinuities should be avoided 
in the data). The latter is a subjective, interpretation 
work and the results depend on the choice of phys-
ics model of interest. We use a Gaussian shape of the 
spectrum both in the wavenumber–frequency domain, 
and an elliptic power-law spectrum in the wavevector 
domain. The corresponding physics model is the ran-
dom sweeping model in the wavenumber–frequency 
domain (Kraichnan 1964; Narita 2017; Wilczek and 
Narita 2012) and the random spatial variation model 
(Gaussian statistics) with an elliptic sense of wavevec-
tor anisotropy (Carbone et al. 1995) for power-law spec-
trum of elliptic wavevector anisotropy.

It is worth noting that turbulence inherits inter-
mittency (Sorriso-Valvo et  al. 1999); otherwise, fully 
Gaussian fluctuations (no intermittency) imply that 
there is no wave–wave interaction or fluid nonlinearity 
(like eddy distortion, vortex line entanglement). In the 
reconstruction method in the wavenumber–frequency 
domain assuming Gaussian statistics, the analytic deri-
vation was originally proposed for random sweeping 
field by Kraichnan (1964), for random sweeping field in 
a mean flow by Wilczek and Narita (2012), and for ran-
dom sweeping hydromagnetic field in a mean flow by 
Narita (2017). Intermittency is renormalized into small-
scale fluctuating fields and that fields are regarded as 
frozen-in into the mean flow and the random sweeping 
flow in an advected fashion without intrinsic turbulent 
evolution.
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Frequency shift and broadening
Random sweeping model
The lowest-order picture of turbulence frequency spec-
tra (in the Eulerian frame) is a combination of frequency 
shift and broadening of the energy spectra in the stream-
wise wavenumber domain (primarily in the mean flow 
direction). The frequency shift is caused by the mean 
flow (Doppler shift) or by a linear mode wave such as 
the Alfvén wave. The frequency shift maps uniquely the 
streamwise wavenumbers onto the frequencies through 
the relation ω = ksUsft, where ω, ks, and Usft denote the 
Eulerian frequencies, the streamwise wavenumbers, and 
the frequency shift velocity, respectively. The shift veloc-
ity essentially represents the Doppler shift, which is the 
basis of Taylor’s frozen-in flow hypothesis (Taylor 1938). 
In addition, the frequency broadening occurs whenever 
(1) the flow has large-scale variations with the zero mean 
such that the root-mean-square of the frequency devia-
tion (measured from the Doppler-shifted frequency) is 
linearly proportional to the root-mean-square of the flow 
velocity variation, so we associate the frequency broad-
ening with the relation 

√

�δω2� = ksUswp, by regard-
ing the sweeping velocity Uswp as the root-mean-square 
of the flow velocity fluctuation Urms. Here the angular 
bracket denotes the operation of statistical averaging, or 
(2) wave–wave interactions produce waves with deviating 
frequencies from the Doppler shift such as linear modes, 
sideband waves, nonlinear modes (Howes and Nielson 
2013). In the spectral moment method, we determine 
the shift velocity and the broadening velocity from the 
measurements, and compare with the Doppler shift and 
broadening.

A convenient representation of the wavenumber–fre-
quency spectra is given by the random sweeping model; 
that is, the spectrum is a product of the energy spectrum 
in the wavenumber domain with a Gaussian frequency 
distribution (Wilczek and Narita 2012). The energy spec-
trum is constructed or modeled as follows.

Here E(ks,ω) is the wavenumber–frequency spectral 
energy, E(ks) the wavenumber spectral energy, Usft the 
frequency shift velocity, and Uswp the sweeping velocity. 
The Gaussian frequency distribution reduces to the Dirac 
delta function, δ(ω − ksUsft), in the limit of vanishing 
sweeping velocity, Uswp → 0.

An example of the spectrum model is displayed in 
Fig.  1 for a shift velocity of Usft = 5VA and a sweeping 
velocity of Uswp = VA/2. in the space plasma context. The 
wavenumber spectrum is modeled as E(ks) = E0k

−5/3
s  . 

The Alfvén speed VA and the ion gyrofrequency �i are 

(4)E(ks,ω) =
E(ks)

√

2πk2sU
2
swp

exp

[

− (ω − ksUsft)
2

2k2sU
2
swp

]

used to normalize the velocities and the frequencies, 
respectively. The wavenumbers are normalized to the 
ion inertial length, VA/�i. It is important to note that 
the assumption of Gaussian statistics is helpful to visu-
alize the spectrum, but is not necessary upon using the 
spectral moment method. The Gaussian distribution is 
used only when reproducing or reconstructing the meas-
ured spectrum using the first-order and the second-order 
moments.

Spectral moments
The spectral moment method extracts the information 
about the shift velocity Usft and the sweeping veloc-
ity Uswp from the measurement of the spectrum E(ks,ω) . 
The shift velocity is a different quantity from the mean 
flow velocity, and the shift velocity can be estimated at 
different wavenumbers. The essence of the method is to 
cut the spectrum into slices over the frequencies at the 
selected wavenumbers. Three slices of the model spec-
trum in Fig. 1 are displayed in Fig. 2 at wavenumbers of 
ksVA/�i = {0.2, 0.5, 0.8}, respectively.

The spectral centers of symmetry (or peaks in the above 
example) correspond to the peak frequencies associated 
with the shift velocity (e.g., Doppler-shifted frequency 
in the hydrodynamic case) and are obtained by estimat-
ing the first-order moments. The sliced peak frequencies 
increase at higher wavenumbers. The mean flow speed 
is estimated from the first-order moments of the energy 
spectrum sliced at various wavenumbers. The first-order 
moment is computed by multiplying the frequency ω by 

Fig. 1  Energy spectrum in the wavenumber–frequency domain 
for the random sweeping model. Color bar scale shows levels of the 
spectral energy density in the wavenumber–frequency domain, so 
the squared fluctuation amplitude divided by the frequency interval 
and by the wavenumber interval. The fluctuation amplitudes are 
normalized to the mean field (e.g., magnetic field), the frequencies to 
the ion cyclotron frequency, and the wavenumber interval to the ion 
inertial scale. The color bar scale is normalized here, and reads E/Eωk, 
where Eωk = B

2
0
VA/�

2
i
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the spectrum E(ks,ω), and integrating over the frequen-
cies up to the cutoff frequency or over the entire fre-
quency range. The obtained moment represents the peak 
frequency when normalized to the zeroth-order moment, 
∫

dω E(ω, ks). The shift velocity is obtained by dividing 
the normalized first-order moment by the slice wave-
number ks:

The frequency broadening appears as a frequency spread 
of the sliced spectrum, and increases at higher wavenum-
bers. The sweeping velocity (e.g., the root-mean-square 
of flow speed in the hydrodynamic case) is estimated 
from the second-order moment by multiplying the sliced 
spectrum by the square of the frequency (measured from 
the frequency shift as ω − ksUsft) integrating over the fre-
quencies, normalizing to the zeroth-order moment, and 
dividing by the square of the slice wavenumber k2s . The 
estimator for the squared sweeping velocity is:

The advantage of the spectral moment method is that the 
knowledge on the wavenumber spectra E(ks) or slices 
over the frequencies is not needed because the spectral 
moments can determined for any physically relevant 
spectral forms. The information on the frequency shift 
and broadening is obtained by slicing the energy spec-
trum at various wavenumbers. Moreover, it is possible to 
perform a statistics of the shift velocity and the sweeping 
velocity by regarding the wavenumber slices of the spec-
trum as an ensemble. Yet, the direction of the stream-
wise wavenumbers must be known or given by the other 
means.

(5)Usft(ks) =
1

ks

∫

dω E(ks,ω)ω
∫

dω E(ks,ω)

(6)U2
swp(ks) =

1

k2s

∫

dω E(ks,ω) (ω − ksUsft)
2

∫

dω E(ks,ω)

Frequency shift and broadening in the solar wind
The analysis method for the shift velocity Usft and the 
sweeping velocity Uswp is tested against the four-point 
magnetic field data in the solar wind obtained by the 
Cluster spacecraft (Balogh et  al. 2001; Escoubet et  al. 
2001) for a time interval of March 19, 2005, 0300–
0600  UT. The four Cluster spacecraft formed a nearly 
regular tetrahedron with a spacecraft separation of about 
1000  km. The spacecraft are near the apogee and are 
almost standing in the solar wind at a distance of about 
20 Earth radii ahead of the Earth. Figure  3 displays the 
magnetic field magnitude measured by the fluxgate mag-
netometer (Balogh et al. 2001) and the ion bulk velocity 
and the ion number density measured by the ion electro-
static analyzer (Rème et al. 2001) as time series plots.

The mean magnetic field is nearly dawnward, 
(1.0,−6.4, 1.4 nT) in the GSE (geocentric, solar, eclip-
tic) coordinate system, with a mean magnitude of about 
6.7 nT. The mean ion bulk velocity is nearly anti-sunward 
(−438, 34, 51 km/s) in GSE with a mean magnitude of 
about 442.2 km/s, and (433, 0,−90 km/s) in the mean 
field-aligned (MFA) coordinate system with the z axis 
pointing in the direction of the mean magnetic field and 
the x–z plane spanning the mean magnetic field and the 
mean ion bulk velocity. The mean ion number density is 
7.4 cm−3. The standard deviation of the magnetic field 
vector fluctuations is (2.2, 2.2, 3.3 nT) and that of the ion 
bulk velocity fluctuations is (15, 17, 16 km/s) in the GSE 
coordinate system. The observation is made in a slow 
solar wind.

The angle between the mean magnetic field and the 
mean ion bulk velocity is about 102◦. Even though the 
observation is made upstream of quasi-perpendicular 
shock (after a crossing at about 0130 UT), there is a mod-
erate, intermittent high-frequency activity at frequencies 
from 20 to 80 kHz primarily between 0430 and 0500 UT, 

Fig. 2  Slices of the energy spectrum in Fig. 1 at wavenumbers 
of ksVA/�i = 0.2 (left curve), ksVA/�i = 0.5 (middle curve), and 
ksVA/�i = 0.8 (right curve)

Fig. 3  Magnetic field magnitude, ion bulk velocity, and ion number 
density measured by Cluster-1 spacecraft in the solar wind on a time 
interval of March 19, 2005, 0300–0600 UT
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presumably associated with the electron foreshock. We 
note that the analyzed time interval is moderately mixed 
by the electron foreshock activity.

The energy spectrum is determined in the streamwise 
wavenumber–frequency domain in the spacecraft frame 
(Eulerian frame) from the four-point magnetic field data 
using the wave telescope (multi-point signal resonator 
extension or MSR extension), which is a combination of 
the minimum variance projection with the eigenvalue-
based projection (Narita et al. 2011). Figure 4 exhibits a 
slice of the magnetic energy spectrum as a function of 
the streamwise wavenumbers ks and the spacecraft frame 
frequencies ωsc (angular frequencies). The spectrum 
exhibits an extension with a peak line and a broadening 
around the peak line. The spectral extension (peak line) is 
analyzed to determine the shift velocity Usft and the fre-
quency broadening around the peak line to determine the 
sweeping velocity Uswp.

The spectral moments are evaluated at various wavenum-
bers up to the Nyquist wavenumber (3.0× 10−3 rad/km).  
Figure 5 displays three examples of the frequency slice of the 
energy spectrum at wavenumbers of 1.0× 10−3 rad/km  
(top panel), 1.5× 10−3 rad/km (middle panel), and 
2.0× 10−3 rad/km (bottom panel). From the moment cal-
culation, we obtain shift velocities and sweeping velocities  
(Usft,Uswp) = (396, 82 km/s) at a wavenumber of 
1.0× 10−3 rad/km, (Usft,Uswp) = (425, 85 km/s) at  
a wavenumber of 1.5× 10−3 rad/km, and (Usft,Uswp) =

(401, 76 km/s) at a wavenumber of 2.0× 10−3 rad/km.  
The Gaussian frequency distributions are over-plotted 
using the shift and sweeping velocities in each panel.

The shift velocity and the sweeping velocity are deter-
mined as a function of the wavenumbers, and are shown 
as histograms in Fig. 6. The distributions maximize at a 
shift velocity of about 400 km/s and sweeping velocities 
between 80 and 100  km/s. The mean ion bulk speed is 
443 km/s, so the shift velocity obtained from the multi-
point magnetometer data is smaller than the flow speed 
by about 10%. The sweeping velocity is larger than the 
root-mean-square of the ion bulk speed fluctuation 
17 km/s and is closer to the Alfvén speed 54 km/s esti-
mated from the mean magnetic field and the mean ion 
density. The sound speed cs =

√
γ pth/ρ =

√

γ kBT/m 
is estimated as 56 km/s, where γ = 5/3 is the polytropic 
index, pth = nkBT  the thermal pressure, ρ = mn the ion 
mass density, m the proton mass, n the ion number den-
sity, kB the Boltzmann constant, and T = 0.23 MK the 
ion temperature. Magnetosonic speed is 

√

V 2
A + c2s = 78 

km/s.
Uncertainties in the shift velocity and the sweeping 

velocity are estimated as follows.

Fig. 4  Streamwise wavenumber–frequency spectrum for magnetic 
field fluctuations in the solar wind

Fig. 5  Slices of the energy spectrum over frequencies at differ-
ent wavenumbers and Gaussian fitting curves using the spectral 
moments

Fig. 6  Histogram of shift velocity and sweeping velocity obtained 
from the spectral moment method
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1.	 The uncertainty in the shift velocity estimate is taken 
from the standard error by using the central limit 
theorem. That is, the true shift velocity Usft(0) is 
within a interval of 

at a probability of 95%. Here n stands for the degree 
of freedom. We use the number of time subintervals 
in the analysis (n = 24). Note that the sweeping veloc-
ity is proportional to the standard deviation of the fre-
quency-sliced spectrum with the difference in the fac-
tor of the streamwise number ks. The standard error 
of the shift velocity is 

and it is estimated as �Usft = 17 km/s at 
ks = 1.0× 10−3 rad/km, �Usft = 17 km/s at 
ks = 1.5× 10−3 rad/km, and �Usft = 15 km/s at 
ks = 2.0× 10−3 rad/km, respectively.

2.	 The uncertainty in the sweeping velocity is estimated 
using the chi-squared distribution with n− 1 degrees 
of freedom, χ2

n−1. The chi-squared distribution has 
a variance of 2(n− 1) (Lehmann and Casella 1998). 
The standard error of the squared sweeping velocity 
is 

for a sufficiently large value of n (typically n > 10). 
See, for example, Eq. 19 in Ref. Harding et al. (2014). 
From Eq.  (9), we obtain the standard error of the 
sweeping velocity estimate as �Uswp = 12 km/s 
at ks = 1.0× 10−3 rad/km, �Uswp = 13 km/s at 
ks = 1.5× 10−3 rad/km, and �Uswp = 11 km/s at 
ks = 2.0× 10−3 rad/km using n = 24.

The facts that the shift velocity has an offset from the 
flow speed by about 10% and that the sweeping veloc-
ity is of the order of the Alfvén speed are interpreted 
as follows. First, Alfvén waves exist in the solar wind, 
propagating both sunward and anti-sunward in the 
plasma co-moving frame and contributing to the fre-
quency broadening. Second, there is more energy in 
the sunward-propagating Alfvén waves such that the 
Doppler shift becomes weaker (or frequency becomes 
lower) than the simple flow advection case without 
waves. Table  1 displays the velocity measurements 
(shift velocity and sweeping velocity) from the spectral 
analysis and compares with the theoretically expected 
values (ion bulk speed, Alfvén speed, and sound speed). 

(7)Usft −
2Uswp√

n
< Usft(0) < Usft +

2Uswp√
n

(8)�Usft =
Uswp√

n
,

(9)�Uswp = Uswp

√

1

2(n− 1)

The error in the spectral velocity measurements is not 
significant, being between 10 and 20 km/s. The meas-
ured shift velocity is closest to the ion bulk speed sub-
tracted by the Alfvén speed. The analyzed time interval 
is not so representative of the solar wind property, as 
one expects Alfvén waves propagating radially away 
from the Sun, not toward the Sun. The measured 
sweeping velocity is of the order of Alfvén speed VA 
and the sound speed cs, and is closest to the magneto-
sonic speed 

√

V 2
A + c2s .

Wavevector anisotropy
Spectral moment matrix
Turbulent fluctuations can be anisotropic in the wavevec-
tor domain imposed by a boundary effect or a large-scale 
magnetic field. If the Eulerian frequencies are limited to 
the positive domain and the turbulent fluctuations are 
measured in a flow, the spectral extension reasonably 
reflects the direction of the mean flow (hereafter the 
maximum extension direction).

The wavevector anisotropy is characterized by estimat-
ing the moment tensor κ from the energy spectrum E(�k) . 
The moment tensor is a 2× 2 or a 3× 3 matrix, depend-
ing on the dimension of the wavevectors. The moment 
tensor is obtained by evaluating the second-order 
moments of the spectrum for two different components 
of the wavevectors and by normalizing to the zeroth-
order moment:

Hereafter we concentrate on the wavevector anisot-
ropy in two dimensions for simplicity. The moment 

(10)κ =
∫ �k�kE(�k) d�k
∫

E(�k) d�k
.

Table 1  Measured shift velocity and  sweeping velocity 
in comparison to the theoretical estimate for the ion bulk 
speed, Alfvén speed, and sound speed using the mean val-
ues of plasma and magnetic field data
Streamwise 
wavenumber ks 
(rad/km)

Shift velocity  
measurement  
Usft ±�Usft (km/s)

Ion bulk speed with Alfvén 
speed Uflow ± VA ( km/s)

1.0× 10
−3 396± 17

1.5× 10
−3 423± 17 443± 54

2.0× 10
−3 401± 15

 Streamwise 
wavenumber ks
(rad/km)

Sweeping velocity  
measurement 
Uswp ±�Uswp (km/s)

Alfvén  
speed VA  
(km/s )

Sound  
speed cs  
(km/s)

1.0× 10
−3 82± 12

1.5× 10
−3 85± 13 54 56

2.0× 10
−3 76± 11
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tensor κ is composed of real numbers, and is symmetric 
with respect to the matrix transpose. The tensor can be 
diagonalized into a set of eigenvalues �1 and �2 using the 
associated eigenvectors, �e1 and �e2, respectively. Since the 
eigenvectors are mutually orthogonal, the second-order 
moment representation of the wavevector anisotropy 
is equivalent to a fitting of the wavevector spectrum by 
an ellipse characterized by the two eigenvalues (and the 
associated eigenvectors) as the semi-major and semi-
minor axes in the wavevector domain. The ratio of the 
eigenvalues �2/�1 serves as a measure of the wavevector 
anisotropy. The eigenvalues represent typical wavenum-
bers in the maximal and the minimal spectral extension 
directions pointed by the eigenvectors.

The ratio of the second-order moments �2/�1 can be 
simplified when the integration is replaced by a sum over 
the wavevectors (Saito et al. 2008; Shebalin et al. 1983):

where k1 and k2 are the wavenumbers in the maximum 
and minimum extension directions identified as the 
eigenvectors of the moment tensor, respectively.

Anisotropy analysis
The moment tensor method is tested against the syn-
thetic data. The energy spectrum is modeled using an 
elliptic power law as:

Figure  7 left panel shows an example of the spectrum 
model for a ratio of cy/cx = 1/2 and a slope of α = 2, and 
the maximum extension direction is tilted from the x axis 
by 30◦.

The eigenvalues and the eigenvectors are determined 
for the spectrum model. We obtain eigenvalues of 
�1 ≃ 0.084 and �2 ≃ 0.040 and a tilt angle of about 33◦ 
between the maximum extension direction (the eigen-
vector for the largest eigenvalue) and the x axis (reference 
axis). The wavevector anisotropy for the example case is 
thus characterized by an elliptic ratio of ǫ = �2

�1
≃ 2.1 and 

a tilt angle of θ ≃ 33◦. Both the eigenvalue ratio and the 
tilt angle reasonably reproduce the true anisotropy prop-
erties (cy/cx = 1/2 and θ = 30◦) though the results are 
not exactly the same as the true values. The systematic 
error is estimated in more detail below.

Using the eigenvalues and the eigenvectors, the 
wavevector spectrum can be reconstructed by using 
a model spectrum. We use a Gaussian function in the 
synthetic data analysis for the sake of contrast here, and 
use a power-law function in the spacecraft data analysis 

(11)
�2

�1
≃

∑

�k(k2)
2E(k1, k2)

∑

�k(k1)
2E(k1, k2)

,

(12)E(kx, ky) ∝
(

c2xk
2
x + c2yk

2
y

)−α

(shown below). The spectrum is centered at the origin 
of the wavevector domain and characterized by the two 
eigenvalues:

where the wavevector coordinates are transformed into 
the x–y reference system as:

The Gaussian fit of the wavevector anisotropy is dis-
played in Fig. 7 right panel.

Three different studies are performed using the syn-
thetic spectrum.

1.	 Maximum extension directions are determined for 
different values of spectral slopes (α = {1, 2, 3}) at a 
fixed value of the elliptic shape ǫtrue = cy/cx = 1/2 . 
Figure  8 top panel displays the observed (or meas-
ured) tilt angle θobs against the true tilt angle θtrue. 
The tilt angle is within an error of about 6◦ (Fig. 9).

2.	 Maximum extension directions are determined for dif-
ferent values of elliptic shape (ǫtrue = {0.05, 0.1, 0.5})  
at a fixed spectral slope α = 2 . Again, the observed 
tilt angle is almost linearly proportional to the true 
tile angle within an error of about 3◦ (Figs. 8 middle 
panel, 9).

3.	 Elliptic shapes (the ratio of eigenvalues) are evaluated 
for different values of spectral slopes (α = {1, 2, 3}) 
at a fixed tilt angle (θ = 0◦). The observed eigenvalue 
ratios ǫtrue monotonously increase with the true 
ratios ǫtrue. The increase rate is larger at smaller val-
ues of the elliptic ratio (Fig. 8 bottom panel).

(13)E(k1, k2) =
1

2π
√
�1�2

exp

[

−
(

k21
2�1

+ k22
2�2

)]

(14)kx = k1 cos θ + k2 sin θ

(15)ky =− k1 sin θ + k2 cos θ .

Fig. 7  Elliptic power-law spectrum (left panel) and a Gaussian fit 
using the moment tensor method (right panel). Color bar scale 
shows levels of the spectral energy density in the two-dimensional 
wavevector domain, so the squared fluctuation amplitude divided by 
the square of wavenumber interval. The fluctuation amplitudes are 
normalized to the mean field (e.g., magnetic field) and the wavenum-
ber interval to the ion inertial scale. The color bar scale is normalized 
here, and reads E/Ekk, where Ekk = B

2
0
V
2
A
/�2

i
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Wavevector anisotropy in the solar wind
The spectral moment method is applied to the magnetic 
energy spectrum in the wavevector domain using the 

same solar wind data as that shown in Fig. 3. Figure  10 
left panel displays the energy spectrum (integrated 
over the frequencies) in the parallel and perpendicular 
wavevector components to the mean magnetic field.

We construct the spectral moment matrix κij and 
determine the eigenvalues �1 (maximum variance) and 
�2 (minimum variance) and the associated eigenvec-
tors �e1 and �e2. The eigenvalue ratio �2/�2 is about 0.32. 
The maximum and minimum variance directions in the 
wavevector spectrum show an offset angle from the mean 
magnetic field by 76.9◦.

The energy spectrum is reconstructed using a power-
law elliptic spectrum (Carbone et  al. 1995) with a one-
dimensional spectral index of −5/3,

in the domain spanning the wavevector components in 
maximum and minimum variance directions, k1 and k2, 
respectively. The reconstructed or fitted spectrum is dis-
played in the right panel of Fig. 10. In this way, an over-
all structure or shape of the spectrum in the wavevector 
domain can be reproduced using only a small set of 
parameters.

The spectral moment method extracts the information 
on the principal axis and its ratio to the minor axis auto-
matically from the second-order moment calculations. 
It is true that the method can detect only one spectral 
extension direction, and if double-anisotropy exists, the 
spectral moment method cannot properly reproduce the 
secondary anisotropy direction; The secondary anisot-
ropy is lost by being integrated as an artificial broaden-
ing in the direction to the secondary spectral extension. 
Studying anisotropy cases with more power in the par-
allel directions (Bruno and Telloni 2015; He et al. 2012) 
would be an important application to further test the 
validity of the spectral moment method.

(16)E(k1, k2) ∝
[

�1

�2
(k1)

2 + (k2)
2

]−5/6

Fig. 8  Observed tilt angle of wavevector anisotropy as a function 
of the true tilt angle at different values of spectral slopes (top panel) 
α = 1 (black), α = 2 (gray), and α = 3 (light gray). The same angle rela-
tion at different elliptic ratios ǫtrue = 0.05 (black), ǫtrue = 0.1 (gray), and 
ǫtrue = 0.5 (light gray). The observed elliptic ratio as a function of the 
true ratio at different values of spectral slopes (bottom panel) α = 1 
(black), α = 2 (gray), and α = 3 (light gray)

Fig. 9  Tilt angle deviations of the measured principal axis from the 
true anisotropy direction (spectral extension direction) for Fig. 8 top 
and middle panels. Top panel shows the angle mismatch for different 
values of spectral slopes: α = 1 (black), α = 2 (gray), and α = 3 (light 
gray). Bottom panel shows the angle mismatch for different elliptic 
ratios ǫtrue = 0.05 (black), ǫtrue = 0.1 (gray), and ǫtrue = 0.5 (light gray)

Fig. 10  Cluster observation of wavevector spectrum in the solar 
wind (left panel) and reconstruction using the spectral moments 
(eigenvalue ratio of 0.32 and eigenvectors of the spectral moment 
tensor) and the elliptic power-law model (right panel). The flow direc-
tion is normal to the panel
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Conclusion
The spectral moment method is robust in character-
izing the energy spectra in the wavevector–frequency 
domain in two aspects. First, the lowest-order picture of 
the turbulence energy spectra is obtained in the wavevec-
tor–frequency domain by estimating the frequency shift 
velocity, the sweeping velocity, and the eigenvalues and 
eigenvectors of the second-order spectral moment tensor 
for the elliptic wavevector anisotropy. Second, the spec-
tral moment method does not require the knowledge on 
the power-law index when estimating the sense of ellipti-
cal shape in the spectrum. The spectral index needs to be 
specified when one reproduces the wavevector spectrum 
using a model. The spectral moment method is advan-
tageous in that the shift and sweeping velocities can be 
determined in a statistical way by repeating the analysis 
procedure at various wavenumbers. In contrast, the pre-
viously known method performs a fitting between the 
measurement and the spectrum model under a given 
set of free parameters (the shift velocity and the sweep-
ing velocity) (Narita et al. 2013). In the spectral moment 
method, one can average the estimated shift and sweep-
ing velocities over the wavenumbers.

The spectral moment method can be applied to vari-
ous multi-point measurements in geophysical and space 
plasma measurements. The spectral moment method can 
also be used in the study of dispersion relation from the 
spectral measurements. The frequency estimate from the 
first-order moments can be compared with the theoreti-
cal branches of dispersion relation such a sound waves or 
Alfvén waves. The frequency estimate from the second-
order moments can be used as an error or an uncertainty 
measure of the dispersion relation study. The dispersion 
analysis in a mean flow, however, requires the knowledge 
of the flow velocity in order to correct for the Doppler 
shift.
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