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Abstract 

A laser strainmeter with a 1500-m baseline was constructed at an underground site in Kamioka, Gifu Prefecture, Japan, 
and has been operating since August 2016. The laser interferometer measures the change in distance between two 
retroreflectors housed in two vacuum chambers with a separation of 1500 m. The retroreflectors are fixed to the 
ground in the tunnel of the KAGRA gravitational wave telescope. A high-frequency-stabilized laser is used as a light 
source; it achieves an Allan variance of 3 × 10−13. Since operations began, ground motions with large amplitude and 
timescale variations have been detected. The recorded tidal waveform almost agrees with the theoretical waveform; 
however, a slight difference of ~13% in amplitude is found, likely due to a topographic effect. The strain spectrum of 
the observed data for the 1500-m strainmeter indicates that the lowest background noise attained is less than 10−12 
in the mHz band. Seismic waves up to 6 × 10−7 in amplitude have been observed without saturation or fringe steps. 
The strainmeter, with its excellent resolution, dynamic range, and bandwidth performance, provides a new method 
for observing low-frequency ground motion on seismic, geodetic, and intermediate timescales.
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Introduction
Ground motions are measured using various methods 
depending on the spatial scale and frequency range. For 
large ground motions, the global navigation satellite 
system (GNSS) is commonly used to measure ground 
motions with amplitudes of more than ~1  mm at fre-
quencies below ~10 Hz. In contrast, strong-motion seis-
mometers cover accelerations of ~10−4 to 40  m/s2 at 
frequencies <30  Hz. For small ground motion, short-
period or broadband seismometers are suitable for the 
high-frequency range, with accelerations of ~10−9 to 10−3 
m/s2 in the frequency range of 3 mHz–100 Hz. However, 
their sensitivity is limited at low frequencies due to the 
short resonant period of the reference pendulum.

Strainmeters can measure low-frequency ground 
motion at high resolution either with a mechanical ref-
erence to a low-expansion rod or wire (Benioff 1959; 
Mentes 2010; Zürn et  al. 2015) or with an optical ref-
erence to a laser wavelength (Vali et  al. 1965; Vali and 
Bostrom 1968; Berger and Lovberg 1970; Agnew 1986; 
Crescentini and Renzella 1991; Buklerskii et  al. 1995; 
Araya et al. 2002; Takemoto et al. 2004; Park et al. 2008). 
The performance of mechanical strainmeters is essen-
tially limited by reference problems, due to such physi-
cal parameters as thermal expansion and nonlinearities 
in rods or wires. Laser strainmeters solve these problems 
by replacing the reference with a highly stabilized opti-
cal wavelength. Nevertheless, laser strainmeters are still 
affected by local site characteristics. For example, the 
100-m laser strainmeter in Kamioka, Japan, is capable of 
measuring small coseismic strain steps originating from 
distant earthquakes even following strong motion from 
seismic waves (Araya et  al. 2010). However, this laser 
strainmeter can be affected by ground water on longer 
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timescales (Araya et al. 2007). Such local effects might be 
mitigated using a long-baseline strainmeter.

A 1500-m laser strainmeter, the longest laser interfer-
ometer for geophysical observations to our knowledge, 
was constructed at an underground site at Kamioka, Gifu 
Prefecture, Japan. In addition to the 100-m-scale inter-
ferometers, km-scale interferometers, especially geo-
physical strainmeters requiring broadband and a wide 
dynamic range, need to be carefully designed for optics 
and signal detection. In this study, after describing the 
laser strainmeter design and operation, observation data 
and instrument performance estimated from the data are 
discussed.

The 1500‑m laser strainmeter
The location of the laser strainmeter is shown in Fig. 1. 
The site is part of the tunnel housing the KAGRA gravita-
tional wave telescope (Somiya 2012) and is located below 
the cosmic-ray research facilities Super Kamiokande, 
KamLAND, CLIO, and XMASS (Fukuda et  al. 2003; 
Araki et  al. 2005; Miyoki et  al. 2006; Abe et  al. 2013). 
The measuring orientation of the strainmeter is N60°E, 
horizontal, and it is nearly parallel to the Atotsugawa 

fault, which is approximately 0.5  km from the instru-
ment (Ohzono et al. 2011). The depth of the tunnel from 
the surface is more than 200  m at the location of the 
laser strainmeter. The temperature of the site is stable at 
approximately 11.4 ± 0.1 °C without any diurnal change. 
Two vacuum chambers with a diameter of 1.1  m and a 
height of 1.0 m are mounted on granite blocks, which rest 
on a smoothly polished bedrock surface. Cement is cast 
around the granite blocks to fix them. The thicknesses of 
the granite blocks are 650 and 945 mm, depending on the 
depth of bedrock below the floor, and the granite blocks 
are separated from the floor by grooves. The separa-
tion of the chambers is 1500 m, and they are connected 
with vacuum pipes. Bellows are inserted between the 
pipes and chambers to reduce any disturbance from the 
pipes. The parameters related to the configuration of the 
strainmeter and optics are summarized in Tables 1 and 2, 
respectively.  

The optical layout of the 1500-m laser strainme-
ter is shown in Fig.  2. Two retroreflectors, each housed 
in a chamber, and a beam splitter form an asymmet-
ric Michelson interferometer. The long measurement 
arm, formed between both vacuum chambers with a 
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Fig. 1  Location of the 1500-m laser strainmeter and other facilities at the Kamioka underground site. The Atotsugawa fault is located approximately 
0.5 km from the strainmeter and is almost parallel. This figure is modified from a map released by the Geospatial Information Authority of Japan 
(GSI)
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1500-m baseline, responds to the ground motion. The 
short reference arm, formed within the front chamber 
with a 0.5-m baseline, is fixed on a plate made of super 
invar, which has a low thermal expansion index. The 
plate is regarded as the constant baseline. All interfer-
ometer optical paths are maintained in a vacuum. The 
optical path length (Lopt) of the baseline (L) is given by 
Lopt = nL, where n is the average refractive index of the 
optical path relative to the path in the vacuum. Index n 
is approximated as n = 1+ c0p/p0, where 1+ c0, p0, and 
p are the relative refractive index, pressure in standard 

air (at 1  atm), and vacuum pressure, respectively. The 
apparent strain due to the vacuum pressure is approxi-
mated using �ε = (Lopt − L)/L = c0p/p0  ~  3 ×  10−9 p 
(Pa) (Ciddor 1996). To attain the designed strain sensitiv-
ity (3 × 10−13), the vacuum is required to remain below 
1 × 10−4 Pa. By considering the attainable pressure in the 
current vacuum system and actual background strain, the 
average pressure in the pipes is designed to remain below 
0.01 Pa, as listed in Table 1, and the measured pressure is 
used to correct the strain to attain actual strain sensitivity 
�ε ~ 10−12.

The laser beam is introduced into the vacuum cham-
ber through an optical window after it has been col-
limated in the input path with optical benches at 5-m 
separation. To avoid aberrations in the expansion optics, 
the beam diameter is gradually expanded to ~100 times 
from the output of the optical fiber. The beam diameter 
of the interferometer needs to be large enough to prevent 
degrading due to a mismatch in interference beams dur-
ing the 3-km round-trip. Furthermore, it needs to allow 
confinement in the vacuum pipes because the beam 
diameter (d) at wavelength (λ) and distance (z) from 
the beam waist position is approximately inversely pro-
portional to the beam waist size (diameter d0), given as 

d = d0

√

1+ (4�z)2/
(

π2d40
)

∼ 4�z/(πd0) for a Gauss-

ian beam, where z ≫ d20/� (Kogelnik and Li 1966). To 
minimize the diameter for the 3-km round-trip beam, 
the beam waist should be d0 =

√

4�L/π  and located at 
the end reflector. Then, the beam diameter of the front 
reflector is minimized to 

√
2d0. Accordingly, the retrore-

flectors and beam splitter have a large aperture, more 
than ~3d, to prevent chipping of the beam. Because the 
diameters of the vacuum pipes need to be much more 
than 6d = 270 mm to confine the round-trip beams, we 
used 400 mm for the actual system. The optical param-
eters used for this design are listed in Table 2.

The light source is a frequency-doubled Nd:YAG 
laser emitting at an optical wavelength of λ =  532  nm. 
The laser frequency is stabilized with reference to an 

Table 1  Configuration parameters of  the 1500-m laser 
strainmeter

Item Value

Coordinates 36°25′48′′N, 137°18′36′′E

Altitude above sea level 358 m

Depth below the surface >200 m

Orientation N60°E, horizontal

Baseline length 1500 m

Diameter of vacuum pipes 400 mm

Designed average pressure in vacuum pipes <0.01 Pa

Table 2  Optical parameters for the 1500-m laser strainme-
ter

Item Value

Laser (wavelength) Frequency-doubled Nd:YAG (532 nm)

Estimated frequency stability 3 × 10−13 (Allan variance estimation)

Beam diameter

 Front 45 mm

 End 32 mm

Retroreflector

 Aperture diameter 380 mm

 Flatness 0.2 μm

 Parallelism 2 μrad

1500 m

End reflector

Front reflector and
beam splitter

Vacuum system
Laser

Input and output path

Enclosure

5 m

Optical bench

Optical fiber
Optical
bench

Photodetectors
Quarter
wave plate

Fig. 2  Optical layout of the 1500-m laser strainmeter. Two retroreflectors, each housed in a chamber, and a beam splitter form a Michelson interfer-
ometer with a high-frequency-stabilized laser
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iodine-saturated absorption spectrum and attains an 
Allan variance of 3 ×  10−13 as the lowest relative fre-
quency stability (Araya et al. 2002). The stabilized laser 
beam is introduced into the input path through a polari-
zation-maintaining optical fiber. The interference fringes 
are detected using two photodetectors on the input opti-
cal bench. A quadrature detection technique, as shown 
in Fig.  3, is used. Using a quarter-wave plate inserted 
in the reference arm of the interferometer, the optical 
phase is shifted by π/2 between the horizontal and verti-
cal polarizations, and thus, quadrature fringe signals are 
obtained for both polarizations. The Lissajous curve pro-
duced from the two complementary fringe signals allows 
bidirectional detection of the mirror motion. The dis-
placement resolution depends on both the wavelength 
and its detectable fraction, as in ordinary interferome-
ters. However, the measurement range is arbitrarily wide 
because the fringes are periodic, unless they are lost 
due to misalignment or a low sampling rate. The fringe 
signals are sampled using 24-bit analog-to-digital con-
verters (ADCs, PXI-5922, National Instruments Corp.) 
located onsite with a sampling rate of 50  kHz, which 
is synchronized with a rubidium atomic clock. The 
recorded data can be accessed from outside the tunnel 
and downloaded every minute to a storage device out-
side the mine, and the stored data are converted to strain 
automatically as follows.

The Lissajous curve is fitted to an ellipse (Heydemann 
1981; Zumberge et al. 2004) and normalized to a unit cir-
cle to obtain the optical phase, ϕ, which is proportional to 
the change in the interferometer arm length, �L,

Therefore, the strain, ε, can be obtained from the 
formula

where L is the baseline length of 1500 m. The raw strain 
data (50  kHz samples) are filtered and averaged to 
produce 5  kHz, 200  Hz, or 20  Hz data. These data are 
stored and used for maintenance, seismic, and geodetic 
analyses.

Results and discussion
In Fig. 4, a typical strain change observed by the 1500-m 
laser strainmeter (blue) is shown together with the the-
oretical tidal change (green) calculated with the tidal 
calculation program GOTIC2 (Matsumoto et  al. 2001), 
including both solid and ocean tides. The waveforms are 
in good agreement with each other; however, a slight 
difference in amplitudes can be seen. An approximately 
13% reduction in the theoretical amplitude (red) fits the 

(1)ϕ = 4π

�
�L.

(2)ε = �L

L
= �

4πL
ϕ,

Fig. 3  Quadrature interferometer used in the 1500-m laser strainmeter (left). A quarter-wave plate inserted in the interferometer produces a 90° 
phase shift between the horizontal and vertical polarizations. As a result, the intensities of the interference beams for both polarizations separated 
by the polarizing beam splitter complementarily change as sine and cosine (bottom right). By normalizing the observed elliptic Lissajous curve (top 
right) into a circular one, mirror motion can be determined from the phase angle
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observations. The reduction ratio is consistent with the 
topographic effects at the underground site, as observed 
from the 100-m strainmeter at Kamioka (Takemoto et al. 
2004, 2006).

The background strain spectrum obtained using the 
1500-m laser strainmeter (red) together with those for 
other strainmeters is shown in Fig.  5. A fast Fourier 
transform is applied to the 20 Hz strain data (32,768 data 
points) to obtain the frequency spectra with an applied 
Hanning window. The figure shows the square root of 
the power spectral density (ε̃) in units of 1/√Hz. The 
dash-dotted lines indicate the estimated detectable strain 
based on the root-mean-square amplitude (εRMS) under 
the assumption

where f is the frequency. The detection limit for the 
1500-m strainmeter is estimated as better than 10−12 
in the 2–20 mHz range and 10−11 in the 1 mHz–10 Hz 
range. Compared to the 100-m strainmeter in Kamioka, 
the 1500-m strainmeter has a lower background noise 
in the 1–20  mHz range. Both strainmeters have nearly 
identical laser stabilization systems, and the reduction in 
background noise in this frequency range indicates the 

(3)ε̃ ∼ εRMS
√

f
,

effects of spatial averaging for the long-baseline strain-
meter. The noise level rapidly increases below 2 mHz and 
is larger than that found at the Black Forest Observatory 
(BFO) below ~1.5 mHz. According to Zürn et al. (2015), 
the barometric pressure affects the background strain in 
this frequency range, and therefore, the observed noise 
is inferred to be the ground response to air pressure 
changes.

Conversely, the response of the long-baseline strain-
meter to seismic waves diminishes at high frequencies. 
It is assumed that sinusoidal plane seismic waves with 
a displacement amplitude of −→u0 =

(

u0x,u0y,u0z
)

, angu-
lar frequency of ω = 2π f , and wavenumber vector of 
�k =

(

kx, ky, kz
)

 are incident on the laser strainmeter with 
baseline L and orientation �nx = (1, 0, 0). Then, the change 
in mirror separation detected by the laser interferometer 
can be expressed as

Because the waves generate strain amplitude of u0xkx, 
the response of the laser strainmeter (H(f )) to the seis-
mic strain is given by:

(4)

�L = u0x sin(ωt)− u0x sin(ωt − kxL)

= 2u0x sin

(

kxL

2

)

cos

(

ωt − kxL

2

)

.
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Fig. 4  Changes in the strain observed using the 1500-m laser 
strainmeter (blue). The waveform nearly agrees with the theoretical 
tides (green) but with a slightly smaller amplitude. The theoretical 
tides downscaled by a factor of 13% (red) are consistent with the 
topographic effects previously observed using the 100-m strainmeter 
located at the same Kamioka site
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Fig. 5  Background strain spectrum for the 1500-m laser strainmeter 
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tory (PFO, black, Berger and Lovberg 1970; Berger and Levine 1974), 
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for the 1500-m strainmeter is estimated as better than 10−12 in the 
2–20 mHz range and 10−11 in the 1 mHz–10 Hz range
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where vx is the apparent velocity in the x-direction. The 
corresponding cutoff frequency for the strain response is

Assuming vx  =  5  km/s, fc is 1.8  Hz for the 1500-m 
strainmeter. Therefore, it can respond to seismic strains 
below ~1  Hz. For this reason, the background noise 
above 1 Hz in Fig. 5 may not indicate the actual ampli-
tude of the seismic strain.

The laser frequency stabilization is based on Araya 
et  al. (2002). The square root of the Allan variance is 
approximated as 5 × 10−13/

√
τ  for a measurement time 

interval of τ < 20 s from Figure 5 in Araya et al. (2002). 
White frequency noise with a constant power spectral 
density (h0) has a dependency on 

√

h0/(2τ) in the square 
root of the Allan variance (Barnes et al. 1971), and laser 
frequency noise is estimated as 

√
h0 =  7 ×  10−13/√Hz 

above ~0.05  Hz. The background strain noise in Fig.  5 
above ~1  Hz is about three times the estimated fre-
quency noise. However, the white nature and baseline 
independence, compared to the 100-m interferometer, 
suggest that the background noise level above ~1  Hz is 
laser frequency noise.

The 1500-m laser strainmeter began operating in 
August 2016 and has detected a number of seismic waves 
associated with earthquakes. Figure  6 shows seismic 
waves from the Fukushima earthquake (Mw 6.9) that 
occurred at 20:59:49 (UTC) on November 21, 2016. The 
observed peak-to-peak strain amplitude was 6.4 × 10−7, 
which is approximately 20 times larger than typical earth 
tide amplitudes in this area. Even when the seismic waves 
passed, no misalignments in the 1500-m optical path 
were found as a result of the earthquake. The maximum 
strain rate was dε/dt =  4.8 ×  10−7/s, which produced 
a fringe frequency of (dε/dt)(2L/�)  =  2.7  kHz. Using 
the quadrature interferometer and analysis methods 
described in the previous section, fringe signals sam-
pled at a rate of 50  kHz (≫2.7  kHz) can be safely used 
for conversion to strain. This conversion can even be 
used during the passing of the seismic waves, without any 
saturation or discontinuity due to cycle slips generally 
caused by missing fringes.

The initial strain motion shown in the inset to Fig.  6 
indicates expansion. Based on the centroid moment ten-
sor (CMT) solution for the earthquake (Global CMT 
Catalog 2017), the Kamioka site (back azimuth of 256.5° 

(5)

H(f ) = �L

u0xkxL
= 2 sin

(

kxL

2

)/

(kxL) ∼ 1− 1

6

(

kxL

2

)2

= 1− 1

6

(

πL

vx

)2

f
2
,

(6)fc =
√
3

π

vx

L
.

and distance of 383  km from the epicenter) is likely to 
be in a compressional field, which is consistent with the 
sense of the initial strain motion and agrees with the ini-
tial pulling motion observed by local seismometers.

Conclusions
A laser strainmeter with a baseline of 1500  m was con-
structed at an underground site in Kamioka, Japan, and 
began operating in August 2016. The interferometer mir-
rors are fixed to the ground with granite blocks in the 
tunnel housing the KAGRA gravitational wave telescope. 
All optical paths for the interferometer are housed in a 
vacuum. A high-frequency-stabilized laser, whose wave-
length is locked to an iodine absorption spectrum, is used.

The observed tidal waveform shows reasonable agree-
ment with the theoretical waveform (Fig.  4). The slight 
difference in amplitude, corresponding to a 13% reduction 
in the observed waveform, is consistent with topographic 
effects previously observed for the nearby 100-m strain-
meter. Strain spectra from the observed data (Fig. 5) show 
lower background noise than those obtained from other 
strainmeters at 2–20 mHz, less than 10−12 in the same fre-
quency range. This result suggests that spatial averaging 
over the long baseline of the strainmeter contributes to 
noise reduction. Seismic waves up to 6.4 × 10−7 in ampli-
tude were observed without saturation or fringe steps 
with a signal sample rate of 50 kHz (Fig. 6).
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Fig. 6  Seismic waves associated with the Fukushima earthquake 
(Mw 6.9) that occurred at 20:59:49 (UTC) on November 21, 2016 
(expansion positive); the inset is a magnified view around the initial 
motion. The peak-to-peak strain amplitude was 6.4 × 10−7. The 
fringe signals were normally converted to strain without saturation or 
discontinuity due to cycle slip
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It has been demonstrated that a km-class long-base-
line laser strainmeter, without active alignment control, 
can operate stably and achieve close to design perfor-
mance. This strainmeter, which has excellent resolution, 
dynamic range, and bandwidth, provides a new mecha-
nism for observing small ground motion, in particular, at 
low frequencies on seismic, geodetic, and intermediate 
timescales.
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