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Use of ssq rotational invariant 
of magnetotelluric impedances for estimating 
informative properties for galvanic distortion
T. Rung‑Arunwan1,2,3,4*  , W. Siripunvaraporn1,2 and H. Utada3

Abstract 

Several useful properties and parameters—a model of the regional mean one-dimensional (1D) conductivity profile, 
local and regional distortion indicators, and apparent gains—were defined in our recent paper using two rotational 
invariants (det: determinant and ssq: sum of squared elements) from a set of magnetotelluric (MT) data obtained 
by an array of observation sites. In this paper, we demonstrate their characteristics and benefits through synthetic 
examples using 1D and three-dimensional (3D) models. First, a model of the regional mean 1D conductivity profile is 
obtained using the average ssq impedance with different levels of galvanic distortion. In contrast to the Berdichevsky 
average using the average det impedance, the average ssq impedance is shown to yield a reliable estimate of the 
model of the regional mean 1D conductivity profile, even when severe galvanic distortion is contained in the data. 
Second, the local and regional distortion indicators were found to indicate the galvanic distortion as expressed by 
the splitting and shear parameters and to quantify their strengths in individual MT data and in the dataset as a whole. 
Third, the apparent gain was also shown to be a good approximation of the site gain, which is generally claimed to be 
undeterminable without external information. The model of the regional mean 1D profile could be used as an initial 
or a priori model in higher-dimensional inversions. The local and regional distortion indicators and apparent gains 
could be used to examine the existence and to guess the strength of the galvanic distortion. Although these conclu‑
sions were derived from synthetic tests using the Groom–Bailey distortion model, additional tests with different dis‑
tortion models indicated that these conclusions are not strongly dependent on the choice of distortion model. These 
galvanic-distortion-related parameters would also assist in judging if a proper treatment is needed for the galvanic 
distortion when an MT dataset is given. Hence, this information derived from the dataset would be useful in MT data 
analysis and inversion.
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Introduction
To obtain reliable three-dimensional (3D) inversion from 
magnetotelluric (MT) data, either distorted or undis-
torted, the choice of an initial or a priori model is cru-
cial. The benefit of having a good model of the regional 
mean one-dimensional (1D) profile as an initial or a 
priori model has been reported in previous studies. For 
example, the optimal model of the mean 1D conductivity 

profile would minimize the lateral conductivity contrast, 
which could yield a better-conditioned system of equa-
tions (Avdeev 2005). Furthermore, the use of the mean 
1D profile as an a priori model would result in the rapid 
and stable convergence of higher-dimensional inversion 
problems (Tada et al. 2012).

If no other independent information is available, the 
initial model can be constructed from the mean 1D con-
ductivity profile, which will be described in the following. 
Ideally, if we had a sufficiently large number of electro-
magnetic (EM) observation sites densely distributed over 
the globe, the global mean conductivity profile could 
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be defined as the azimuthal average of the conductivity 
along a variable depth:

where σ(z, θ ,φ) is the distribution of the Earth’s electrical 
conductivity, S0(z) is the total surface area of the Earth at 
depth z, and dS is a spherical surface element. Once the 
global mean 1D conductivity profile is obtained in this 
way (Eq. 1), the 3D conductivity distribution at any posi-
tion within the Earth can be expressed as a combination 
of the global mean 1D model and the azimuthal conduc-
tivity contrast as

The definition of the global mean 1D conductivity 
profile and the azimuthal contrast is clear in theory, but 
the estimation of them is not easy in practice. Although 
it is possible to perform global induction studies using 
geomagnetic observatory data, there are significant dif-
ferences among existing inverted models (e.g., Kelbert 
et al. 2009; Kuvshinov and Semenov 2012; Semenov and 
Kuvshinov 2012). Most likely, such attempts may include 
biases due to the nonuniformity of their site distributions 
or false images resulting from spatial aliasing (Utada and 
Munekane 2000) because the distributions of existing 
geomagnetic observatories and MT observation sites are 
spatially nonuniform. More importantly, the EM induc-
tion method is generally sensitive to the conductivity 
beneath each observation site.

Practically, EM exploration, e.g., MT survey, focuses 
on a limited region where numerous observations are 
made. In this study, we consider a case in which the cor-
responding induction scale length is much smaller than 
the radius of the Earth; hence, the sphericity of the Earth 
can be ignored. Such a case is usually called a regional 
or local induction study. From a given array of observa-
tions, the following regional mean 1D conductivity pro-
file σR(z) can be obtained from the areal average of the 
conductivity:

where A0 is the arbitrary area in which the observation 
sites are distributed, dA is a surface element, and σ(x, y, z) 
is the regional 3D conductivity distribution. Alterna-
tively, we may use the logarithmic average to define the 
regional mean 1D profile:

Mathematically, the logarithmic scale average of the 
conductivity gives less conductive structure. As with 

(1)σ0(z) =
1

S0(z)

∫∫

� σ(z, θ ,φ)dS,

(2)σ(z, θ ,φ) = σ0(z)+�σ(z, θ ,φ).

(3)σR(z) =
1

A0

∫∫

� σ(x, y, z)dA

(4)log σR(z) =
1

A0

∫∫

� log σ(x, y, z)dA.

Eq. (2), the regional conductivity distribution can be 
expressed as a combination of the regional mean 1D pro-
file and the conductivity contrast �σ(x, y, z):

When the regional mean 1D conductivity profile is writ-
ten as the areal average (Eqs. 3 or 4) of the conductivity 
from any 3D conductivity distribution, deviations in the 
conductivity higher or lower than the average value are 
regarded as conductivity anomalies of positive or nega-
tive contrast, respectively. σR(z) defined either by Eqs. (3) 
or (4) is also regarded as an optimal mean 1D conductiv-
ity profile in the sense that the variance of �σ(x, y, z) is 
minimized (Rung-Arunwan et al. 2016).

The regional mean 1D profile σR(z) is practically 
unknown beforehand, although it can be estimated from 
σ(x, y, z) inverted from the observed data. However, in 
this study, we use an alternate method in which σR(z) 
is first estimated from the observed data in the area 
of interest. The conductivity model, either σ(x, y, z) or 
�σ(x, y, z), can then be estimated by 3D inversion using 
σR(z) as a priori information or a starting model.

This poses the problem of how to reliably estimate a 
model of the regional mean 1D profile from an array of 
MT observations in a general 3D situation. Baba et  al. 
(2010) already presented a solution to such a problem 
in the case of a seafloor MT study. Here, we consider 
the case in which MT data are obtained from an array 
of observations on land. The solution of this problem is 
not straightforward because MT data on land are usu-
ally affected by galvanic distortion, i.e., an alteration in 
the MT impedance due to near-surface small-scale het-
erogeneity that is smaller than a typical site spacing and 
confined to be shallower than the inductive scale length 
of interest (Ledo et al. 1998; Utada and Munekane 2000; 
Bibby et  al. 2005). In other words, the physical dimen-
sions of the distorting bodies are smaller than their 
inductive scale length and also that of the host.

Berdichevsky et  al. (1980) proposed a scheme to esti-
mate a model of the mean 1D profile from distorted data 
by averaging the effective resistivity, which is equivalent 
to the apparent resistivity derived from the determinant 
of the impedance tensor (hereafter denoted as the det 
impedance, Zdet =

√

ZxxZyy − ZxyZyx ). This is a statis-
tical approach to smooth the effect of galvanic distor-
tion that is supposed to be a random phenomenon, and 
the average in this method is referred to as the Berdi-
chevsky average (Rung-Arunwan et  al. 2016). When it 
was first introduced, the det impedance was generally 
used in regional studies (e.g., Berdichevsky et  al. 1980; 
Jones 1988; Berdichevsky et  al. 1989). However, it was 
later adopted in two-dimensional (2D) MT applications 
(e.g., Oldenburg and Ellis 1993; Pedersen and Engels 

(5)σ(x, y, z) = σR(z)+�σ(x, y, z).
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2005). It is also applied as the current channeling indica-
tor (Lezaeta and Haak 2003) and used in environmental 
applications (Falgàs et al. 2009). The det impedance has 
also been used in recent works. For example, Seama et al. 
(2007) inverted the det impedances from marine MT 
data at each observation point to obtain 1D conductivity 
profiles beneath the Philippine Sea, Arango et al. (2009) 
used the det impedance to interpret 3D MT data, and 
Baba et al. (2010) and Avdeeva et al. (2015) used the aver-
age det impedance in the same way as Berdichevsky et al. 
(1980).

However, when the det impedance was re-examined 
on the basis of the present knowledge of galvanic distor-
tion by applying the Groom–Bailey model (Groom and 
Bailey 1989), it was found that the magnitude of the det 
impedance is always biased downward by the geometric 
distortion expressed by the shear and splitting param-
eters (see Gómez-Treviño et  al. 2013; Rung-Arunwan 
et al. 2016). Note that Gómez-Treviño et al. (2013) stud-
ied the effect of galvanic distortion on the rotational 
invariants in the case of 2D regional structures. Even 
in the absence of a site gain, the Berdichevsky aver-
age causes downward bias in the apparent resistivity as 
compared with those from the regional mean 1D con-
ductivity profile (σR(z)) defined by Eqs. (3) or (4) (Rung-
Arunwan et al. 2016).

Rung-Arunwan et al. (2016) proposed another method 
for estimating the model of the mean 1D profile that was 
similar to the method of using the Berdichevsky average 
but redefined it with another rotational invariant: the 
sum of the squared elements of the impedance tensor 

(ssq impedance) Zssq =

√

(

Z2
xx + Z2

xy + Z2
yx + Z2

yy

)

/2 

(Szarka and Menvielle 1997). Note that the ssq and det 
impedances are identical in the case of 1D earth, but for 
2D and 3D earth, the induction sensed by the ssq and det 
impedances is different (see also Szarka and Menvielle 
1997) by Z2

ssq − Z2
det =

1
2 (Zxx − Zyy)

2 + 1
2 (Zxy + Zyx)

2 . 
In comparison with the det impedance, the ssq imped-
ance has been proven to be less biased by the distortion 
parameters (see Gómez-Treviño et al. 2013; Rung-Arun-
wan et  al. 2016). An example of the field data from the 
western part of Thailand is shown in Fig.  1. The field 
example is consistent with the theoretical prediction 
presented in Rung-Arunwan et  al. (2016) that the det 
impedance will have a smaller magnitude than the ssq 
impedance. According to the prediction, the downward 
bias for the det impedances is supposed to be caused by 
a geometric (shear and splitting) effect because the phase 
characteristics are almost identical. Consequently, the 
use of average ssq impedance is expected to more reliably 
estimate the model of the regional mean 1D profile than 
the use of the det impedance. Thus, this field example 

motivated us to present a systematic investigation of the 
approaches proposed by Rung-Arunwan et  al. (2016) in 
this paper.

Identification and removal methods for galvanic distor-
tion remain undetermined (Chp. 6 in Chave and Jones 
2012), although several attempts to solve the problem of 
galvanic distortion have been presented. Some studies 
assumed a 2D Earth (e.g., Bahr 1988; Groom and Bailey 
1989), whereas others confronted the nonuniqueness of 

a

b
Fig. 1  a Map showing the cluster of 19 MT stations from the western 
part of Thailand (see Boonchaisuk et al. 2013). They are plotted on the 
geological map of this area (after Department of Mineral Resources 
2006). b Example of rotational invariant, det (gray diamonds) and ssq 
(brown squares), impedances from an individual station (KAN-120C). 
The det impedances have magnitudes smaller than the ssq imped‑
ances, which is as predicted (Rung-Arunwan et al. 2016) because the 
det impedance is biased downward by geometric distortion
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the obtained solution (e.g., Bibby et  al. 2005). Moreo-
ver, Gómez-Treviño et al. (2014) presented an approach 
to estimate the 2D regional impedance and distortion 
parameters, i.e., twist and shear in the Groom–Bai-
ley model, using the det and ssq impedances. Inversion 
based on the phase tensor (Caldwell et  al. 2004), which 
yields a well-defined distortion-free solution, is also a 
promising strategy. However, the phase tensor is only 
a partial solution; thus, the inverted model strongly 
depends on the initial model (Patro et  al. 2013; Tietze 
et  al. 2015). In addition to decomposition approaches, 
inversion schemes that simultaneously solve the static 
shift (e.g., Sasaki and Meju 2006) have become feasible, 
but the geometric distortion is not controlled. Avdeeva 
et  al. (2015) proposed 3D inversion with the solution 
of the full distortion matrix, but this approach does not 
allow this static shift to be a free parameter.

Although a number of approaches for handling gal-
vanic distortion have been developed, an approach for 
determining the presence of galvanic distortion in the 
observed data has not been presented, except the concept 
of galvanic distortion indicators by Rung-Arunwan et al. 
(2016). The ability to identify the presence of galvanic 
distortion—either geometric or scaling—contained in the 
observed data and to quantify their intensity is undoubt-
edly important because the application of the galvanic 
distortion treatment to the observed data without know-
ing the presence of galvanic distortion and doing so may 
either improve or deteriorate the reliability of MT data 
interpretation.

Rung-Arunwan et al. (2016) proposed two types of gal-
vanic distortion indicators. First, the local and regional 
distortion indicators are used to determine the strength 
of the geometric distortion as expressed by the shear and 
splitting effects on the basis of the fact that the geomet-
ric distortion (shear and splitting) has different effects on 
the det and ssq impedances. Second, the apparent gain is 
defined to be an approximation of the site gain (scaling in 
the impedance magnitude), which has been presumed to 
be indeterminable without other independent informa-
tion (Groom et al. 1993; Bibby et al. 2005). These param-
eters may help quantitatively indicate the strength of the 
galvanic distortion posed in MT data. In addition, the 
employment of these two types of properties allows the 
effect of the site gain to be separated from the effects of the 
twist, shear, and splitting parameters. Most importantly, 
we can use these parameters to determine the necessary 
treatment of galvanic distortion for a given dataset, such as 
whether or not a removal scheme should be applied in the 
inversion (e.g., Sasaki and Meju 2006; Avdeeva et al. 2015).

The aim of this paper is to present synthetic examples 
for estimating a model of the regional mean 1D pro-
file, the local and regional distortion indicators, and the 

apparent gains using the methods proposed by Rung-
Arunwan et  al. (2016). First, the proposed methods are 
briefly summarized. The results from 1D examples are 
then discussed to illustrate the basic concepts and the 
behavior of the proposed properties and parameters. In 
addition to the estimation of the model of the regional 
mean 1D profile from distorted sets of synthetic 3D 
impedances, the estimated model of the mean 1D pro-
file is compared with σR(z) defined by Eqs. (3) or (4) 
for 3D examples. The numerical results of the local and 
regional distortion indicators and the apparent gains are 
presented and verified with synthetic values. In Rung-
Arunwan et al. (2016) and this paper, the Groom–Bailey 
model of galvanic distortion is chosen, simply because 
the site gain is distinguished from the geometric distor-
tion whose operators are normalized with their Frobe-
nius norms. Still, the choice of galvanic distortion model 
may be arbitrary. Thus, numerical examples and a discus-
sion regarding the galvanic distortion model dependence 
of the proposed methods are provided.

Theoretical background
This section briefly summarizes the method for estimat-
ing a model of the regional mean 1D profile and a set of 
parameters related to the galvanic distortion, which were 
presented in Rung-Arunwan et al. (2016).

First, a model of the regional mean 1D profile is esti-
mated by inverting the average ssq impedances. As has 
been algebraically proven, the ssq impedance is relatively 
less sensitive to the effects of the shear and splitting 
parameters e and s, which are also called the geomet-
ric distortion, than the det impedance, the amplitude of 
which is always biased downward by these two param-
eters (Rung-Arunwan et  al. 2016). After re-examination 
with the Groom–Bailey model of galvanic distortion, the 
Berdichevsky average is written as

where Z′
det(ri;ω) is the det impedance of the ith observed 

(perhaps distorted) MT impedance at the position ri; ei 
and si are the shear and splitting parameters at the ith sta-
tion, respectively; N is the total number of observations; 
ω is the angular frequency; and ZR

det(ω) is the regional det 
impedance. Note that the twist parameter has no effect 
on the det and ssq impedances (also discussed in Gómez-
Treviño et  al. 2013; Rung-Arunwan et  al. 2016). If geo-
metric distortion is contained in the data, the coefficient 

(6)

Z̄
′
det(ω) =

[

N
∏

i=1

Z
′
det(ri;ω)

]

1
N

≈

[

N
∏

i=1

√

(1− e
2
i
)(1− s

2
i
)

(1+ e
2
i
)(1+ s

2
i
)

]

1
N

Z
R
det

(ω),
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in Eq. (6) becomes effective and is always smaller than 
unity. Hence, the use of the Berdichevsky average always 
gives a downward-biased regional 1D impedance, which 
yields an inverted model of the structure that is more 
conductive than the true structure.

On the contrary, the ssq impedance was proven to be 
less affected by geometric distortion (Gómez-Treviño 
et al. 2013; Rung-Arunwan et al. 2016). Therefore, averag-
ing the ssq impedances from an array of MT observations 
gives a good approximation of the true regional response:

where Z′
ssq(ri;ω) is the ssq impedance of the observed 

MT impedance tensor at the position ri and ZR
ssq(ω) is the 

regional ssq impedance (Rung-Arunwan et  al. 2016). A 
detailed discussion regarding the geometric and arithme-
tic averages of the MT impedances can be found in Sec-
tion  1 of the Additional file  1. Moreover, the validity of 
the approximate equality in Eq. (7) will be examined in 
Section 2 of the Additional file 1.

Additionally, a set of parameters related to the galvanic 
distortion is defined as follows.

The local distortion indicator (LDI) indicates the 
strength of the shear and splitting parameters at a single 
station individually and is defined as the squared ratio of 
the ssq impedance to the det impedance:

Defined in this way, the LDI is intrinsically independ-
ent of the site gain. As the twist parameter has no effect 
on the det and ssq impedances, the presence of the twist 
effect cannot be ascertained from the LDI. Employing 
the fact that the shear and splitting distortion affects the 
det and ssq impedances differently (Gómez-Treviño et al. 
2013; Rung-Arunwan et al. 2016), the LDI represents the 
effects of the shear and splitting parameters as a combi-
nation, which is unlike the decomposition approaches 
(e.g., Groom and Bailey 1989; McNeice and Jones 2001; 
Gómez-Treviño et al. 2014), where the distortion param-
eters, twist and shear in particular, are estimated.

The regional distortion indicator (RDI) also indicates 
the strength of the shear and splitting parameters but 
on a regional scale, i.e., it quantitatively indicates how 
strongly distorted the dataset is on average. It is defined 
as the geometric mean of the LDIs:

(7)Z̄′
ssq(ω) =

[

N
∏

i=1

Z′
ssq(ri;ω)

]

1
N

≈ ZR
ssq(ω),

(8)γi(ω) =
Z′
ssq(ri;ω)

2

Z′
det(ri;ω)

2
≈

(1+ e2i )(1+ s2i )

(1− e2i )(1− s2i )

ZR
ssq(ri;ω)

2

ZR
det(ri;ω)

2
.

(9)

γR(ω) =

[

N
∏

i=1

γi(ω)

]

1
N

≈

[

N
∏

i=1

(1− e
2
i
)(1− s

2
i
)

(1+ e
2
i
)(1+ s

2
i
)

]

1
N
Z̄
R
ssq(ω)

2

Z̄
R
det(ω)

2
,

where Z̄R
ssq(ω)

2 and Z̄R
det(ω)

2 are the averages of the 
regional ssq and det impedances, respectively.

The apparent gain is defined as the ratio of a rotational 
invariant at a given position to its regional average. As 
we are interested in two rotational invariants, the corre-
sponding apparent det and ssq gains are derived as

and

where gi is the site gain for the ith observation site. Obvi-
ously, if the data are strongly distorted, the apparent det 
gain underestimates the site gain because of the shear 
and splitting parameters. Thus, the apparent ssq gain is 
expected to be the more accurate approximation of the 
site gain when the data are strongly distorted. In the fol-
lowing sections, the characteristic and behaviors of these 
parameters are synthetically examined.

Estimation of a model of the regional mean 1D 
profile
Rung-Arunwan et  al. (2016) proposed a modification 
to the Berdichevsky average—the use of the average 
ssq impedance instead of the average det impedance—
to avoid biasing from galvanic distortion. This section 
examines whether the proposed method can reliably esti-
mate a model of the regional mean 1D profile from syn-
thetically distorted data.

 Here, we synthesize the Earth conductivity model by a 
combination of 1D structure and lateral heterogeneity, as 
given by Eq. 5. The 1D part is based on a reference model 
of the continental crust and upper mantle by Jones (1999) 
and has the main features of a resistive upper crust and a 
conductive lower crust (Fig. 2a). In this model, the upper 
crust extends from 3.5 to 14.8 km in depth, and the lower 
crust extends to a depth of 33.3 km. The corresponding 
1D impedance (Fig.  2b) was obtained from the analyti-
cal solution, i.e., the recursive formulas in terms of coth 
functions, for the 1D MT problem (e.g., Chave and Jones 
2012). Note that the complex impedance is generally rep-
resented as an apparent resistivity and phase. Here, the 
period range was selected to sense a structure existing 
between 10 and 100 km in depth. Therefore, any small 
structures confined in the near-surface layer of a few 
kilometers or less, which is shallower than the induc-
tive scale length of present interest, are considered to be 
galvanic distorters (Utada and Munekane 2000). We fur-
ther assume for simplicity that galvanic distorters have 

(10)gdeti (ω) =
Z′
det(ri;ω)

Z̄′
det(ω)

≈ gi

√

(1− e2i )(1− s2i )

(1+ e2i )(1+ s2i )

(11)g
ssq
i (ω) =

Z′
ssq(ri;ω)

Z̄′
ssq(ω)

≈ gi,
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a typical size smaller than the typical site spacing of the 
observation array. The effect of these near-surface dis-
torters is therefore a random phenomenon, and it can be 
expressed as a mathematical model such as the Groom–
Bailey model of galvanic distortion, which is adopted in 
this work. The site gain and other distortion parameters 
(twist, shear, and splitting) are treated as random vari-
ables (e.g., Avdeeva et al. 2015).

The synthetic MT array contains 25 MT stations. 
Therefore, 25 cohorts of the site gain g and the twist t, 
shear e, and splitting s of the parameters of the Groom–
Bailey model were generated following a normal dis-
tribution  ​(Fig.  3). The distorted impedances were then 
calculated by applying these random parameter values to 
the synthetic impedances. More explicitly, we assumed 
that each set of distortion parameters has a mean of zero 
and is bounded by (−1,+1). If any values are outside the 
bound, random numbers were generated again so that 
the set of random distortion parameters conforms with 
the bound. The random site gain was generated on a log-
arithmic scale without a bound. To quantitatively control 

the strength of the galvanic distortion, the standard devi-
ation (SD) of the normal distribution of each param-
eter was varied. Five SD values of 0.1, 0.2, 0.3, 0.4, and 
0.5 were used. Finally, five MT datasets with 25 stations 
each and different galvanic distortion strengths were 
considered.

1D example
First, we consider the simplest case with a 1D (horizon-
tally stratified) Earth structure where the impedance at 
each site contains galvanic distortion. In this case, the 
galvanic distortion causes no phase mixing but only a 
static shift, g2, which is the frequency-independent shift 
in the apparent resistivity (e.g., Beamish and Travassos 
1992). As an example of distorted data, the ssq and det 
impedances from the synthetic 1D impedance distorted 
with (g , t, e, s) = (1.20, 0.11,−0.37, 0.49) are shown in 
Fig. 4. Here, the synthetic site gain is greater than unity; 
therefore, the distorted ssq impedance is shifted upward. 
In general, the site gain equally affects the det and ssq 
impedances, i.e., the det impedance should also be shifted 
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upward. However, the effect of the shear and splitting 
shifts the distorted det impedance downward instead. As 
a result, the magnitude of the distorted det impedance at 
this site is smaller than the undistorted one. All distorted 
sounding curves with an SD of 0.3 are shown in Fig.  5. 
These curves are shifted irregularly because of the ran-
dom distortion parameters.

After the distortion parameters with different SDs were 
applied, five MT datasets with different galvanic distor-
tion strengths were obtained. For each dataset, the aver-
age det and ssq impedances were then calculated using 
Eqs. (6) and (7) (Fig.  6), respectively. Here, the error 
bars indicate the SD, which were calculated in the loga-
rithmic space, of the data and thus represent the level of 
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dispersion in the galvanic distortion strengths. At equal 
distortion strengths, the distorted det impedances are 
generally more disperse than the ssq impedances, as 
demonstrated by the larger error bars in the det imped-
ance results. This is a result of the fact that the det imped-
ance is systematically biased downward by the shear and 
splitting parameters in addition to the effect of the site 
gain, whereas the ssq impedance is affected mostly by the 
site gain. The downward bias of the average det imped-
ance becomes noticeable when the SD of the distortion 
parameters is greater than 0.2.

To obtain the regional mean 1D profile, the average 
invariant impedances were inverted with 1D Occam 
inversion, in which the second derivative of the con-
ductivity with respect to the depth and conductivity is 

penalized (Constable et al. 1987). Here, the errors in the 
apparent resistivity and phase were fixed to 2.3% and 
0.66◦, respectively. All inverted models fit the data within 
a root-mean-square (RMS) misfit of unity. Because of the 
downward bias mentioned above, the models inverted 
from the average distorted det impedances tend to be 
more conductive than the synthetic profile when the dis-
tortion is stronger (Fig.  7a). As a consequence, the 1D 
models from the downward-biased det impedances may 
misinterpret the depth of the structure. Conversely, the 
average distorted ssq impedance is much less sensitive to 
the geometric distortion parameters; therefore, the mod-
els inverted from the distorted ssq impedances were all 
similar to that from the undistorted impedance (Fig. 7b). 
These numerical results confirmed the validity of the the-
oretical prediction that the average ssq impedance will 
yield an unbiased estimate of the regional 1D structure. 
Moreover, the behaviors of the det and ssq impedances 
under galvanic distortion, in which the det impedance is 
biased downward by and the ssq impedance is less sensi-
tive to the geometric distortion, are also consistent with 
the numerical results presented in Gómez-Treviño et al. 
(2013). Next, we consider a case when the regional struc-
ture includes a 3D anomaly.

3D example
To generate synthetic 3D data, a model of a checkerboard 
structure with resistivities of 10 and 100 �m and a size of 
80 km × 80 km each (Fig. 8) embedded in the lower crust 
of the layered-earth model used in the 1D example is 
constructed (Fig. 2a). The anomaly is large and systematic 
and corresponds to the inductive scale lengths (see Utada 
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and Munekane 2000) approximately ranging from 1.68 to 
53.1 km at the shortest (1 s) and longest periods (1000 
s), respectively. The inductive effect from the anomaly 
is expected to have a significant effect on the response 
because its corresponding inductive scale length is com-
parable to its physical dimension, and the 3D inductive 
effect from each anomaly is recognizable because it is 
embedded at a depth that could be recognized within the 
given period range. An array of 25 irregularly distributed 
MT stations was assumed to cover the 160 km × 160-km 
area of interest. The typical site spacing was then set to 
32 km, which is smaller than the anomaly size. On aver-
age, each site represents an area of 32 km × 32 km (1/25 
of the study area). The random location (xi, yi) of the ith 
station is given by

where (xc, yc) is the coordinate of the mesh center repre-
sented by each MT site; s is the typical site spacing, which 
is 32 km in this case; and rx and ry are uniform random 
numbers bounded by (−0.5,+0.5).

In this work, the synthetic 3D MT responses were cal-
culated using the software WSINV3DMT (Siripunvara-
porn et al. 2005; Siripunvaraporn and Egbert 2009). The 
size of the entire checkboard anomaly is 320 km × 320 
km, and the horizontal mesh resolution is 5.0 km × 5.0 
km. The accuracy of the calculation with this resolution 

(12)
xi = xc + s × rx

yi = yc + s × ry,

was confirmed by another calculation with a smaller 
mesh. The diagonal elements of synthetic undistorted 
impedances are smaller in magnitude than that of the 
off-diagonal elements by a few orders of magnitude (Fig-
ure S9 in Section 3 of the Additional file 1). The det and 
ssq impedances from this array are shown in Fig.  9a, b, 
respectively. The frequency-dependent variation due to 
the embedded anomalies can be recognized both for the 
det and ssq impedances.

To obtain distorted 3D synthetic data, the randomly 
generated distortion tensors used in the 1D example were 
applied to the synthetic data from this array. When the 
MT impedance is distorted, the diagonal elements become 
significant and can be comparable to the off-diagonal ele-
ments (Figure S10 in Section 3 of the Additional file 1). In 
the 3D situation, the effect of the distortion parameters 
on the rotational invariants is different from that in the 
1D case because the near-surface distorter causes a static 
shift and phase mixing, i.e., mixing among the different 
elements of the MT impedance tensor. An example of the 
rotational invariants from the distorted data is shown in 
Fig.  10a. The ssq impedance is shifted upward (because 
of the site gain at this station) and contains a frequency 
dependence, as demonstrated by differences in the magni-
tude and phase derived from the distorted and undistorted 
ssq impedances (Fig. 10b). Unlike the ssq impedance, only 
the magnitude of the det impedance is affected by the dis-
tortion. From Fig.  10b, the magnitude of the det imped-
ance is biased downward because the impedance at this 
site is distorted by the shear and splitting parameters, 
whereas its phase remains unchanged.

All det and ssq impedances distorted by distortion 
parameters with an SD of 0.3 from this array are shown in 
Fig. 11. The difference between those using the distorted 
det impedances and those using the distorted ssq imped-
ances is clear when they are averaged (Fig.  12). Here, 
the error bars indicate the SD. At the same distortion 
strengths (SD), the average ssq impedances have smaller 
SDs than the det impedances, which is the same as in the 
1D case. This also confirms that the ssq impedance is less 
sensitive to galvanic distortion. Consequently, the appar-
ent ssq gain (Section 6) should be a good approximation 
of the site gain. In addition, the approximations that the 
effects of the dimensionality and geometric distortion 
would be minor after averaging over a number of MT sta-
tions, which is applied in Eq. (17) of Rung-Arunwan et al. 
(2016), have been verified with the calculation detailed in 
Section 2 of the Additional file 1.

Next, we inverted the average det and ssq impedances to 
obtain models of the regional mean 1D profiles for differ-
ent cases with the same criteria used in the 1D examples. 
Because the average det and ssq impedances from the 
undistorted data are similar, the models derived from them 
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are approximately the same (Fig.  13). These models are 
also consistent with the theoretical models of the mean 1D 
profile, which were calculated by applying Eqs. (3) and (4) 
to the conductivity distribution within the area of interest 
in this setting (dashed frame in Fig. 8). However, with the 
presence of galvanic distortion, the models of the mean 1D 
profile derived from the average det impedances tend to be 
more conductive. Conversely, at any distortion strength, the 
average ssq impedances yield models of the regional mean 
1D profile that are close to the undistorted one. None-
theless, we should note that this result is obtained simply 
because the array size is sufficiently larger than the typical 
anomaly size. In the 3D situation, estimation of the regional 
mean 1D profile could be affected by the size of the obser-
vation array and its location relative to the location of the 
anomaly, even if the same number of observation sites is 
involved. We will examine these issues in the next section.

Examination of the consistency between the 
theoretical and estimated models of the regional 
mean 1D profile
According to the fact that the host layer earth or back-
ground is absolutely unknown in reality, the estimated 
models of the regional mean 1D conductivity profiles 
from 3D models should not be compared with the syn-
thetic layered-earth model (the model in Fig.  2a, for 
example). Instead, it should be compared with the theo-
retical regional mean 1D conductivity profiles, the linear 
and logarithmic averages of the lateral conductivity dis-
tribution (Eqs.  3 and  4). Obviously, the regional mean 
1D profiles, either theoretical or estimated, depend on 
the array size and location when the subsurface structure 
is laterally heterogeneous. This section aims to examine 
the consistency between the defined and estimated mod-
els of the regional mean 1D profile and the effect of the 
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consistency on the location of the array and its size rela-
tive to the anomaly size through synthetic modeling.

We again use the model of the checkerboard structure, 
as described in Section 3.2. In the first example, the obser-
vation array is also the same, i.e., 25 MT stations within an 
area of 160 km × 160 km, but the arrays are set in three 
different locations at central, northwest, and northeast 
locations (Fig.  14). At the central location, the array is 
concentric with the anomaly intersection, whereas at the 
northwest and northeast locations, the arrays are centered 
over the 10 and 100 �m anomalies, respectively.

As shown in the previous sections, the det impedance 
is biased by the geometric distortion (shear and split-
ting) so that the ssq impedance is only considered in 
the following. The average ssq impedances from these 
arrays were calculated and inverted in the same manner 
as described in Section  3.2. The theoretical models of 
the mean 1D profile (Fig. 15a) were calculated using Eq. 

(3) or (4) from the conductivity distribution within the 
area of the observation array (e.g., the dashed frames in 
Fig. 14). The MT responses from the theoretical models 
(Fig. 15b) were then calculated using the analytical solu-
tion (see Chave and Jones 2012).

In this situation, where the array is much larger than 
the typical anomaly, the regional mean 1D conductivity 
profiles from different array locations, both theoretical 
and estimated, are shown to be almost identical to the 
theoretical model. This is also a consequence of the appli-
cation of the averaging approach, in which the effects of 
the positive and negative anomalous conductivities are 
averaged out. In other words, the theoretical and esti-
mated models of the regional mean 1D profile are nearly 
independent of the array location when the array size is 
much larger than the typical anomaly size.

Next, to demonstrate the effect of the array size, we 
decrease the size of each array to 80 km × 80 km (Fig. 16), 
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which is equal to the anomaly size. From this setting, 
the estimated results are shown to be spatially depend-
ent (Fig.  17). Moreover, the inconsistency between the 
theoretical and estimated models of the regional mean 
1D profiles is evident, particularly in the layer where 
the anomaly is embedded (Fig.  17). The inconsistency 
becomes more obvious if the array size is further reduced. 
This is a consequence of the inappropriate design of the 
observation array, i.e., it is not large enough to cover the 
structure of interest. However, having an array with an 
appropriate size and site spacing may be difficult in real-
ity without any a priori knowledge because the size of 
structure is usually unknown beforehand. Thus, the esti-
mation of the mean 1D profile with a larger array would 
be more reliable.

 In general, the observation array should be designed to 
cover the structure of interest if its size is known a priori. 
However, if the anomaly size is found a posteriori to be 
comparable to or even larger than the size of observation 
array, 3D inversion of any approach will fail to accurately 
image the heterogeneity. To obtain more reliable results, 
one suggestion in such a case is to add more MT observa-
tions to make the array size sufficiently greater than the 
anomaly size.

Local and regional distortion indicators
On the basis of the fact that the galvanic distortion has 
different effects on the det and ssq impedances, the LDI 
and RDI given by Eqs. (8) and (9), respectively, were 
constructed to quantify the strength of the geometric 
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distortion that can be described by the shear and splitting 
parameters. This section examines the numerical results 
of LDIs and RDIs derived from the synthetic 1D and 3D 
examples presented in Sections 3.1 and 3.2, respectively.

For the 1D case without distortion, where the det and 
ssq impedances are identical, the LDI is unity. How-
ever, when the impedances are distorted, the LDIs from 
the 1D example are shifted upward (larger than unity) 
but remain real-valued (Fig.  18a). Larger LDIs cor-
respond to stronger geometric distortions at the MT 
sites. The 3D anomalies at the depth of interest cause a 
frequency-dependent difference between the det and ssq 
impedances because of the inductive effect. The LDIs 
then become frequency-dependent and complex-val-
ued (Fig. 18b), but the effect of the geometric distortion 
dominates.

The RDIs also show features similar to the local ones. 
In the 1D case, the RDIs are shifted upward depending on 

the distortion strength throughout the dataset (Fig. 19a). 
Thus, the RDI will be able to tell whether or not a sim-
ple galvanic distortion model is applicable to the given 
dataset. In contrast to the LDI, the frequency-dependent 
features from the 3D effect are smoothed, as shown in 
Fig.  19b, such that the RDIs are almost real-valued and 
weakly frequency-dependent if the distortion is purely 
galvanic.

For practical usage of the LDI, we calculate the mean 
LDI γ̄i as the geometric average of the real part of the 
LDIs over a given period range. The real part chosen as 
the LDI is a real-valued number in cases of 1D earth. At 
the ith station,

(13)γ̄i =
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Fig. 12  Average a det and b ssq impedances from the 3D datasets distorted with different galvanic distortion strengths
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where M is the number of periods. The percentage error 
in the mean LDI is calculated with

where the synthetic LDI is calculated using

As the LDI correctly estimated the integrated effect of 
shear and splitting in 1D cases, their means (Eq. 14) are 
not shown here. However, as shown earlier, the underly-
ing structures affect the LDIs (Fig. 18b) if they are not 1D. 
The mean LDIs from the 3D example may include some 
error in the estimate of the effect of the geometric distor-
tion at each station (Fig. 20). The error bars of the mean 
LDIs (Fig. 20b) here are set to the SD of the real part of 
the mean LDI in order to represent the dispersion in the 
frequency-dependent part contributed by the underlying 
structure.

(14)P(γ̄i) =
γ̄i − γi

γi
× 100%,

γi =
(1+ e2i )(1+ s2i )

(1− e2i )(1− s2i )
.

One possible practical usage of the LDI is the omission 
of some stations with heavily distorted impedances from 
the interpretation or inversion if the number of such sites 
is small. If a limited number of sites showing heavy dis-
tortion are removed, the RDI after removal is supposed 
to be small. Conversely, if the RDI still exhibits a high 
value, a proper treatment for the galvanic distortion, 
such as inversion including the galvanic distortion (e.g., 
DeGroot-Hedlin 1995; Ogawa and Uchida 1996; Sasaki 
and Meju 2006; Avdeeva et al. 2015) or an MT data anal-
ysis (e.g., Weaver et al. 2000; Caldwell et al. 2004), will be 
essential. The combination of LDIs and RDI helps to pro-
vide insight, at least to some extent, as to which approach 
should be applied to a set of MT impedances obtained 
from observation.

Apparent gains
From the theoretical derivation, the apparent ssq gain 
is expected to correctly estimate the site gain in 1D 
cases and to yield a good approximation of it in 3D 
cases, whereas the apparent det gain underestimates the 
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synthetic site gain if the data are strongly affected by geo-
metric distortion. In this section, we demonstrate the 
use of the apparent gains obtained from the synthetic 
1D and 3D examples described in Sections  3.1 and 3.2, 
respectively.

From our 1D example, the apparent ssq gain (Eq.  11) 
perfectly agrees with the synthetic site gain, but the 
apparent det gain (Eq.  10) is biased downward, as 
expected (Fig. 21a). Here, the error bars of the apparent 
det and ssq gains are derived from the SD when estimat-
ing the regional averages of the det and ssq impedances, 
Z̄′
det and Z̄′

ssq in Eqs. (6) and (7), respectively. However, in 
the 3D case, the induction effect of the 3D heterogene-
ity, which can be observed in the frequency-dependent 
features of both the magnitude and phase (Fig.  21b), is 
included. For example, the apparent ssq gain from the 
station syn08 (Fig.  21b) is biased downward and then 
underestimates the synthetic site gain in the period range 
where the induction from the underlying regional con-
ductive anomaly is effective. Moreover, a variation in the 
apparent gains among different sites due to the under-
lying 3D structure is observed (Fig.  23). However, the 
apparent ssq gain still agrees with the synthetic site gain 
within the standard error.

To meaningfully interpret these results, we calculated 
the mean apparent det and ssq gains, ḡdeti  and ḡ ssqi , using 

the geometric mean of the real part of the apparent gains 
over a given period range (as with Eq. 13). Only the real 
part was used to ensure consistency with the mathemati-
cal assumption that the distortion operator is a 2× 2 ten-
sor of real-valued numbers. Given that the number of 
periods where the impedances were obtained at each sta-
tion is M, the mean apparent gains can be written as

and

The mean apparent gains estimated at synthetic MT 
sites from 1D and 3D examples are all presented in 
Figs.  22a and  23a, respectively. The percentage differ-
ences between the mean apparent gains and the synthetic 
site gains are shown in Figs.  22b and  23b, respectively. 
They are given by

and

where gi is the synthetic site gain at the ith station. In 
spite of the large site-to-site variation in the synthetic 
site gain of nearly one order of magnitude (two orders 
of magnitude in terms of the static shift in the apparent 
resistivity), its estimation error by the mean apparent ssq 
site gains is as small as only a few percent.

The mean apparent gains from the 1D example are 
shown in Fig. 22a. The error bars in this figure are derived 
from the error propagation in calculating the mean of 
the apparent gain at each station. In this case, the mean 
apparent ssq gains and synthetic site gains are the same 
for every MT observation (Fig.  22b). Conversely, the 
apparent det gain may either underestimate or overesti-
mate the synthetic site gain depending on the strength of 
the local galvanic distortion.

Unlike the 1D case, the existing 3D anomalies may 
cause further uncertainty, as the apparent ssq gain has 
been demonstrated to be affected by the induction effect 
from the underlying 3D structure. For example, the mean 
apparent ssq gains from stations over the conductive 
structure (e.g., stations syn07 and syn19) tend to be 
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



M
�

j=1

R gdeti (ωj)


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a depth of 14.8 to 33.3 km in the layered-earth model shown in 
Fig. 2a). Three arrays of 25 MT stations (crosses), each with a size of 160 
km × 160 km (dashed frames), were placed at central (black), northeast 
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slightly smaller than the synthetic site gains (Fig.  23b). 
In spite of this, the percentage differences (Eq.  18) still 
remain about 10% which is within the statistical uncer-
tainty (Fig.  23a). The regional distortion indicator in 
this case (Fig.  19b) shows a feature consistent with 
the distorted 1D case (Fig.  19a) at periods shorter than 
15 s. If we estimate the mean ssq gain from this period 
band instead of Eq. (16), the percentage gain difference 
becomes as small as 5%.

In previous works, the site gain is considered or 
regarded to be an indeterminable distortion parameter if 
other independent geophysical data, e.g., transient elec-
tromagnetic (TEM) data (Beamish and Travassos 1992; 
Groom et al. 1993; Bibby et al. 2005; Árnason 2015), are 
not available. However, the TEM data may not be avail-
able at all MT stations. In addition, the static shift could 
be corrected with the TEM data with some limitations 
(see Watts et  al. 2013; Tournerie et  al. 2007; Wilt and 
Williams 1989), e.g., when the heterogeneity is smaller 

than the transmitter loop. Utada and Munekane (2000) 
attempted to solve this problem by introducing Faraday’s 
law as a constraint, but the solution was not practical. 
The numerical examples presented here show that the 
concept of the apparent gain can be used to approximate 
the site gain in the assumed situation.

This paper considers the galvanic distortion caused 
only by small-scale heterogeneities (smaller than the 
typical site spacing and confined within a near-surface 
layer shallower than the inductive scale length of inter-
est). Thus, the effect of galvanic distortion is considered 
as spatial aliasing in the MT data. The apparent gain 
can then be regarded as a shift in the magnitude of the 
impedance relative to the average value. For the case 
where the data are systematically shifted by some near-
surface structure larger than or comparable to the array 
size (see Section 4), e.g., a valley environment such as of 
the Rhine Graben model (see Chp. 6 in Chave and Jones 
2012), the apparent ssq gain may be distributed around 
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some biased central values or may not be normally dis-
tributed on a logarithmic scale. In such cases, the con-
cept of the apparent gain should be used with caution.

Dependence on the distortion model
The proposed method (Rung-Arunwan et  al. 2016) is 
theoretically formulated on the basis of the Groom–Bai-
ley model of galvanic distortion. In this paper, it is shown 
numerically that the use of the average ssq impedance is a 
reliable method for estimating the regional mean 1D con-
ductivity profile, and the combination of the two rota-
tional invariant impedances helps to detect the geometric 
distortion and to approximate the site gain. Although 
the Groom–Bailey model is well known and adopted by 
a number of studies, it is not the only model. The dis-
tortion operator C can be parameterized using other 
models (e.g., Bahr 1988; Chave and Smith 1994; Smith 
1995; Tietze et  al. 2015). Therefore, the galvanic distor-
tion model dependence of the proposed methods may be 
questionable.
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In this section, we examine the galvanic distortion 
model dependence of the proposed methods by using the 
perturbed identity matrix (PIM) model for the distortion 
operator, which has been recently introduced to model 
the galvanic distortion (e.g., Tietze et al. 2015). Like the 
Groom–Bailey model, the PIM model has four degrees of 
freedom. In the PIM model, the distortion operator C is 
expressed as the perturbation of the identity matrix, i.e., 
C = I+D, where I is a 2× 2 identity matrix, and D is a 
2× 2 perturbation matrix describing the distortion. In 
the test, we simulate an array of 25 MT stations over 1D 
earth, as in Section 3.1. The 25 cohorts of D elements are 
to be normally distributed random numbers with various 
SD levels, and the distortion operators are then formed 
and applied to the 1D impedance tensors (Section  3.1). 
The average det and ssq impedances from the distorted 
data are calculated. Figure 24a shows the average imped-
ances for the case with an SD of 0.5. The average det and 
ssq impedances are then inverted in the same manner as 

in Section  3.1, and the resulting 1D models are shown 
in Fig.  25. As expected by our theory, the average det 
impedance gives an underestimate of the regional mean 
1D conductivity profile, while the average ssq impedance 
depends less on the distortion.

Approaches for detecting the galvanic distortion are 
also effective for the PIM model. The LDIs from the data-
set distorted using D are shown in Fig. 24b. The LDIs in 
the PIM model are consistent with the theoretical expec-
tation that they are greater than unity if geometric distor-
tion exists, and their magnitudes represent the distortion 
strength. The concept of the apparent gain is also appli-
cable under the PIM model. The apparent ssq gains from 
different stations and their mean values (Fig. 26) are cal-
culated using Eqs. (11) and (16), respectively. They seem 
consistent with the Frobenius gain, the gain derived from 
the Frobenius norm of the distortion tensor C (see Bibby 
et al. 2005), although the Frobenius gains are neither nor-
mally distributed nor have zero mean (Additional file 1: 
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Figure S16). It is shown that the apparent ssq gain still 
gives a good approximation of the site gain under the 
PIM model.

Under the PIM model, the site gain is likely to have 
a skewed distribution, which can compensate for the 
downward bias of det impedances caused by geometric 
distortion (shear and splitting), e.g., the case of weak dis-
tortion in the PIM model. Therefore, it is possible that 
there may be a case where the average det impedance is 
more appropriate than the average ssq impedance for a 
particular condition. However, searching for a special 
case where the skewed site gain and the bias due to the 
geometric distortion are balanced is out of the scope of 
this paper.

From results shown above, it is clear that the proposed 
method does not strongly depend on the choice of gal-
vanic distortion model. The use of the average ssq imped-
ance is a promising method for estimating the regional 

mean 1D conductivity profile and a good approximation 
for the site gain. The results confirmed that a combina-
tion of the rotational invariants (det and ssq) is useful for 
detecting the galvanic distortion. More details of the PIM 
model test can be found in Section  4 of the Additional 
file 1.

Conclusions
This paper presents numerical examples of the prop-
erties and galvanic-distortion-related parameters (a 
model of the regional mean 1D conductivity profile, the 
local and regional distortion indicators, and the appar-
ent gains) that can be obtained from a set of distorted 
MT impedances. By correcting the traditional Berdi-
chevsky average, this study has shown that a model of 
the regional mean 1D profile can be correctly estimated 
by using the average ssq impedance. Regardless of the 
galvanic distortion strength, the average ssq impedance 
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gives a reliable model of the regional mean 1D conduc-
tivity profile. The local and regional distortion indica-
tors were defined to detect the effects of the shear and 
splitting parameters in the Groom–Bailey model of 
galvanic distortion, and the apparent gains were used 
to approximate the magnitude of the site gain in some 
cases presented in this paper. The use of these param-
eters may help to quantify the intensity of the galvanic 
distortion contained in MT data and determine the 
need for the proper treatment of the galvanic distor-
tion. For example, if the distortion in a given dataset is 
proven to be solely caused by the site gain, only gain 
correction is required. In addition to gain correction, if 
the data at only a few stations include strong geometric 
distortion, as revealed by the local and regional distor-
tion indicators, the data could be omitted or weighted 
less during 3D inversion. Note that a model of galvanic 
distortion is applicable for a particular frequency band 
where the distortion is expressed by a real-valued 2× 2 
tensor. This can be tested by checking whether the 
apparent ssq gain and LDI are real-valued and almost 
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frequency independent at each site. This test also shows 
that the LDI can be used to justify the use of the imped-
ance phase tensor as well. Because the apparent gain is 

a good approximation of the site gain, it can be used as 
an initial guess for the static shift in a 3D inversion. All 
of the results of the present study would resolve several 
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difficulties encountered during the inversion of a set 
of MT impedances that are contaminated by galvanic 
distortion.
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