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Abstract 

We present a new tool for modelling time-lapse magnetotelluric (MT) data, an emerging technique for monitoring 
changes in subsurface electrical resistivity. Time-lapse MT data have been acquired in various settings, including sites 
of hydraulic fracturing, dewatering and sequestration. It has been shown in other geophysical techniques that the 
most effective way to model time-lapse data is with simultaneous inversion, which uses information from all time-
steps to produce models with higher accuracy and fewer artefacts. We introduce this method to model time-lapse 1D 
MT data. As with a standard MT inversion, our routine penalises spatial roughness at each time-step, however we also 
introduce temporal regularisation. The inversion is simple to apply, requiring only the ratio between regularisation 
parameters and the desired level of misfit from the user. The algorithm is tested on both synthetic data, and a case 
study. We find that in the synthetic example our inversion successfully retrieves the main characteristics of the test 
model and introduces minimal artefacts, even in the presence of significant noise. We also test the effect of chang-
ing the ratio of regularisation parameters. In the case study, we produce an easily interpretable model that compares 
favourably with previous inversions of the synthetic data. We conclude that time-lapse modelling of 1D MT data can 
be a valuable tool for imaging subsurface change.
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Introduction
In recent years, the magnetotelluric method (MT) has 
been increasingly used as a cost-effective technique for 
subsurface resistivity monitoring (see Rees et  al. 2016, 
for a general introduction). As this is a relatively new 
application for MT, there are few modelling tools avail-
able. Peacock et  al. (2012) have used differences in MT 
phase tensors to qualitatively interpret resistivity changes 
due to fluid injection in an enhanced geothermal system 
(EGS) at Paralana, South Australia. This technique has 
also be used by Didana et al. (2017) interpreting change at 
the Habernero EGS. Recent work includes parameteris-
ing resistivity changes as a three-dimensional (3D) plume 
structure and inverting using Markov Chain Monte 
Carlo (Rosas-Carbajal et al. 2015). Another approach has 
been to use 1D layer-stripping, where the effect of over-
lying structures is removed to model the time-varying 

magnetotelluric responses at depth (Ogaya et  al. 2016). 
Standard MT modelling tools such as inversion can also 
be adapted, for example Rees et al. (2016) use cascading 
two-dimensional (2D) inversions to model a coal-seam 
gas depressurisation, where the results from the pre-
injection inversion are used as a prior-model for the post-
injection. An improvement on cascaded inversion has 
been implemented by Rosas-Carbajal et al. (2012), where 
differenced 2D MT inversions have achieved high accu-
racy by subtracting the prior-model response from all 
data and reducing the data error. High-accuracy simul-
taneous time-lapse 1D MT inversions have also been 
approximated using 2D MT codes (e.g. Rees et al. 2016; 
Didana et al. 2017); however, this approximation leads to 
small errors in the calculation of the forward-model and 
hence inversion result.

The problem of inverting time-lapse data is fairly well 
researched in other geophysical methods. Hayley et  al. 
(2011) have compared the various techniques used for 
inverting electrical resistivity tomography (ERT) time-
lapse data. They showed that a simultaneous inversion of 
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time-lapse ERT data gives a superior result compared to 
independent inversions, cascading inversions or differ-
enced inversions. Their preferred technique was a special 
case of the 4D algorithm of Kim et al. (2009), which has 
also successfully been applied to gravity (Karaoulis et al. 
2013a), induced polarisation (Karaoulis et al. 2013b), and 
seismic tomography (Karaoulis et  al. 2015). This tech-
nique has not yet been presented for magnetotelluric 
inversion.

We present an implementation of a simple time-lapse 
algorithm to simultaneously invert 1D MT monitoring 
data. Firstly, we present the results from synthetic inver-
sions of 1D magnetotelluric data to test the validity of the 
algorithm. We then present inversions from a case study 
of data from a coal-seam gas production survey (Rees 
et al. 2016).

Inversion method
The algorithm is an Occam style inversion (Constable 
et al. 1987), seeking to find the model which fits the data 
to a desired level whilst introducing the least amount 
of structure—in this case in both temporal and spatial 
domains. We seek to find the model (m) which minimises 
the model roughness (R(m)) subject to the constraint 
that the model misfit (χ2(m)) is less than a desired target 
misfit (χ2

target). That is,

χ2 misfit is given by the weighted differences of n 1D 
MT forward responses (F(m)) with the data (d) and data 
errors (σ):

It is more convenient to express the misfit in terms of 
root-mean-square error (RMS), given by

The model roughness is the sum of regularisation in both 
spatial (S) and temporal (T) directions, weighted by a fac-
tor β:

The temporal regularisation is given by the squared sum 
of the model changes in time:

minimize
m

R(m)

subject to χ2(m) ≤ χ2
target.

(1)χ2
=

n
∑

i=1

(F(m)− d)2

σ 2
.

(2)RMS =

√

χ2

n
.

(3)R(m) = S(m)+ βT (m).

and the spatial regularisation by the sum of second deriv-
atives at each time slice:

The optimisation is performed using the Sequential Least 
SQuares Programming (SLSQP) algorithm available in 
scipy (Jones et al. 2001), which is based on the algorithm 
by Kraft and Schnepper (1989). The algorithm does not 
require any tradeoff parameter between data misfit and 
smoothing, as this is encapsulated in the target RMS. 
Data are read into the program using the mtpy module 
(Krieger and Peacock 2014).

Due to the efficiency of the 1D MT algorithm, which 
is calculated analytically, the model readily reaches an 
acceptable misfit within a few iterations. Subsequent iter-
ations reduce the roughness of the model.

Synthetic study
Numerical data are first used to study the results of the 
time-lapse MT algorithm. The data are produced from a 
model of an idealised resistivity change at a single site for 
a coal-seam gas pump into a shallow aquifer. The initial 
resistivity is a 10 �m halfspace. At survey day 4 a sharp 
change occurs at a depth of 665–958 m, with the resistiv-
ity dropping to 2 �m. The input model for the synthetic 
study is shown in Fig. 1.

Magnetotelluric impedance data are produced at 
17 frequencies ranging from 0.14 to 6.26  Hz. The data 
were computed using the standard analytic 1D forward 
algorithm. The 1D assumption is valid if the resistiv-
ity changes are sufficiently laterally continuous, which 
we would expect for changes in a lateral coal-bed. The 
assumption is not perfect however, as 3D effects would 
be present during the development of the resistivity 
front. The data were then contaminated with 5% Gauss-
ian random noise on the impedance tensor, which is a 
reasonably high estimate of the errors expected in field 
operations. The data errors were fixed at 5%.

The inversion was conducted with a RMStarget of 1.0. 
Smaller target RMS values result in overfitted models 
which mapped noise in the data as temporal change, 
whilst larger target RMS values underfit the change in 
the data. The β value, which weights the relative impor-
tance of temporal and spatial change, was varied between 
in three separate inversions with values of β = 100, 
β = 1000 and β = 10, 000 in order to show the effect of 
this parameter.

(4)T (m) =
∑

time=i

(mi −mi−1)
2,

(5)
S(m) =

∑

layer=i

(mi−1 − 2mi +mi+1)
2.
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For each inversion the target RMS was achieved within 
5 iterations, however additional smoothing iterations 
were run, with a total of 100 iterations for each inversion.

Results and discussion
Figure  2 shows the resistivity for three synthetic inver-
sions with varying ratios of temporal smoothing to spa-
tial smoothing. On the left panels the absolute resistivity 
is shown, and on the right panels the change in resistivity 
relative to the initial resistivity is displayed.

The main feature in common to all three figures is the 
strong decrease in conductivity from day 2–3 onwards. In 
each inversion, the change is diffusively spread out across 
multiple layers, with the amount of spread dependent on 
the value for β. The diffusive spreading is most evident 
with the smallest β value in Fig. 2a, and the largest value 
of β in Fig. 2c has the changes confined to almost a single 
layer.

Compared to the input model, each inversion model 
underestimates the change in the data. The relative 
change in the input model is an 80% drop over two lay-
ers, whereas the three inversion models have drops in the 
order of 50–60%. The extent of the conductive change is 
overestimated by the β = 100 model and underestimated 
by the β = 10, 000 model, with the middle β = 1000 
model providing a fairly accurate image. With increas-
ing β the models also become rougher spatially. In the 
β = 10, 000 scenario, for example, the model changes 
from 1 to 100 �m between three layers.

Example model fit curves from the first and final days 
are overlain in Fig. 3 for the β = 1000 inversion, plotted 
alongside the synthetic data used in the tests. The curves 
show that a good fit to the data is achieved at conver-
gence. They also highlight the substantial change in the 
synthetic data due to the resistivity changes.

The inversions were reasonably accurate in terms of 
the absolute resistivities and the relative changes in resis-
tivity. The smaller β value, however, spread the changes 
out over a large spatial area. The algorithm will prefer-
ence changes over as many layers as possible for two rea-
sons. Firstly, the temporal roughness is calculated on the 
square of the change in any one layer, which means that it 
is preferable to spread changes over multiple layers if pos-
sible. Secondly, and more importantly, the entire model is 
smoothed in the spatial dimension. The lowest β param-
eter resulted in a less concentrated area of change, with 
smaller changes spread over a greater area. The highest 
β weighting gave a stronger concentration of change and 
a smaller overall change in resistivity. The model, how-
ever, became rougher in the spatial dimension leading to 
improbable absolute resistivities.

It is worth noting that the inverted models accurately 
pick the time when the resistivity change occurs. There 
is a slight change in resistivity before the inversion; 
however  this change is unavoidable as the small data 
misfit which it introduces is offset by the improved tem-
poral smoothing. If a priori information exists regarding 

Fig. 1  Input model for synthetic study. The model used to generate input data for the synthetic test study. The first layer is at 30 m depth and all 
subsequent layers are at a factor of 1.2 greater depths. The model is broken into 10 equal time periods
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Fig. 2  Inversion of synthetic model results. Inversion results for synthetic inversions using the parameters a β = 100, b β = 1000 and c β = 10, 000. 
The left panels show the final resistivity models for the inversions at each day. The right panels show the proportional difference between the linear 
resistivities of the models at ti and t0. Dotted lines show the extent of the resistivity changes in Fig. 1
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the time tc when a resistivity change occurs, it can be 
included by restricting all temporal change for t < tc.

Case study
An example from a coal-seam gas field is used to fur-
ther examine the algorithm. A coal-seam gas monitoring 
experiment is ideal to test the 1D time-lapse MT algo-
rithm, as changes occur at shallow depths where the MT 

response is better approximated by a 1D algorithm, and 
we expect any changes to be laterally continuous through 
the coal seam.

We use time-lapse MT data from a 2013/2014 sur-
vey of a coal-seam gas field in the Surat Basin, Queens-
land, Australia (Rees et  al. 2016). Data for this survey 
were collected along two lines near several produc-
tion wells. The wells extracted both water and gas from 

Fig. 3  Response curves from synthetic inversion. Response curves showing the difference between the data fits at t0 (blue) and the final time slice 
of synthetic data, t10 (green). The data used for inversion are shown as points with error bars attached, and then the smooth curves show the model 
responses obtained from the inversion for β = 1000
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depths of 400–700  m, and a resulting resistivity change 
was observed by Rees et  al. (2016) in differenced MT 
inversions.

A schematic of the survey design is shown in Fig.  4, 
which also features production well locations. Site 105 

was used for our inversion, which is the same site used 
for the 1D inversions in Rees et al. (2016). Data were used 
from 10 days between January 23, 2014 and February 19, 
2014. The site is nearby the most active production well 
and had reasonable data quality during these days. MT 
data are taken from the YX mode as these are of higher 
quality than the XY mode data.

Identical to the synthetic study, the data have 17 fre-
quencies ranging from 0.14 to 6.26 Hz. We invert these 
data using the presented time-lapse algorithm. We use 
parameters RMStarget = 1.0, β = 1000 and an error floor 
of 2%. The inversion is run for 100 iterations and com-
pleted within 20 min on a 4 core machine.

Results and discussion
The inversion resistivity model is shown in Fig. 5, with the 
resistivity differences shown in the same figure. A slight 
reduction in resistivity between 500 and 700  m begins on 
day 9 and slowly increases with time, culminating with a 
drop of roughly 15% in resistivity by the final day. There is 
also a slight (≈ 5%) increase in resistivity in the area between 
100 and 500 m. Finally, there is also a reduction in resistiv-
ity at depth; however, this is smaller than the resistivity drop 
in the higher zone. Notably this would be near the penetra-
tion depth of the data, and would be less constrained than 
the other areas of the model. The entire model resistivity is 
between 1.25 and 16 �m. When considering the commence-
ment date of pumping, shown as a dashed line in Fig. 5, we 
see that the resistivity changes occur slightly before the com-
mencement of dewatering. In the synthetic model, temporal 

Fig. 4  Schematic of survey extents. A schematic of the site used for 
inversion in the case study. Site 105 (highlighted) was one of the clos-
est sites to the active pump well W4, and the most likely candidate for 
resistivity change. Electric field data were collected at each e-logger 
site, and MT responses calculated using the magnetic field data at the 
single b-logger site

a b

Fig. 5  Inversion of case-study results. a The final resistivity model for the case-study inversion at each day. b The proportional difference between 
the model at ti and t0
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changes were smoothed  by the algorithm to  include dates 
before the change in the target model, and we would suggest 
that the same phenomenon is occurring here.

Looking at the fit of the response curves in Fig. 6, we see 
that the model slightly underfits some of the changes in the 
MT data. This is expected as the algorithm introduces the 
minimum change required to fit the data. This would place 
the estimations of 15% change in resistivity as conservative 
and shows the importance of obtaining high-quality data, as 
tighter error bars would lead to stronger changes in resistiv-
ity. Notably there is a significant dip in the model fit curves 
between the first (in blue) and final (in green) time slices.

The most important area to consider in interpretation 
is the area of the resistivity decrease between 500 and 
700 m, as the other resistivity changes in the model are 
much smaller and should not be overinterpreted. There 
seems to be a strong link between the start of the resis-
tivity change and the dewatering event at W4. There 
is no gas extraction during this time. Hence, our new 
model would agree with the interpretation in Rees et al. 
(2016) that the changes are due to the increased perme-
ability of dewatered coal-seams, potentially due to the 
reduction in the coal matrix as gas is released from the 
matrix.

Fig. 6  Response curves from case study. Response curves showing the difference between the data fits on January 23, 2014 (blue) and the final day 
of inversion, February 19, 2014 (green). The data used for inversion are shown as points with error bars attached, and then the smooth curves show 
the model responses obtained from inversion
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Unlike the synthetic example, the changes in the model 
were slow, with a build up to the maximum change in the 
final day included in the inversion. This would lead us to 
believe that resistivity changes resulting from coal-seam 
gas pumping are related not just to the rate of pumping, 
but also the amount of material that has been removed 
from the pores.

Conclusion
We presented a simple time-lapse inversion of 1D MT 
data, which we tested on synthetic data and case-study 
data. Both inversions resulted in defined areas of resistiv-
ity change with few artefacts in the models. The synthetic 
inversion obtained resistivity changes which slightly 
underestimated the changes in the input model; however, 
it accurately retrieved spatial and temporal locations, as 
well as absolute resistivities. We investigated the effect of 
the weighting parameter β between spatial and temporal 
smoothing and showed that there is a tradeoff between 
models which are overly sharp spatially and models 
which overestimate the extent of the resistivity change. 
We also showed results from applying the algorithm to 
a case study with coal-seam gas MT data. The inversion 
resulted in small changes in the area of the coal-seams.

Compared to other modelling techniques, our algo-
rithm has several advantages. Full 3D modelling is highly 
computationally intensive. A 1D approximation is simple 
to compute, which leads to a  rapidly converging model. 
This allows the modeller to trial several parameters and 
select the best model. It also allows a large amount of data 
to be inverted at once—it is feasible to invert data from 
each day for several months, which would result in an 
extremely large model space in 3D. Compared to inde-
pendent inversions, or time-lapse inversions using 2D MT 
codes as approximations, it has previously been shown 
that simultaneous inversion results in a model with fewer 
artefacts and stronger constraints on areas of change.

One of the disadvantages of the technique is that it is 
unable to fit any 2D or 3D aspects of the data. Further 
work could expand the technique into higher spatial 
dimensions, or to deal with anisotropy. It would be useful 
to extend the inversion into 3D space and incorporate all 
data into the inversion; however, the long processing times 
of higher-dimensional MT forward codes would make the 
resulting code extremely computationally intensive.      
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