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Grad–Shafranov reconstruction 
of magnetohydrostatic equilibria 
with nonisotropic plasma pressure: the theory
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Abstract 

The basic theory for reconstruction of two-dimensional, coherent, magnetohydrostatic structures with nonisotropic 
plasma pressure is developed. Three field-line invariants are found in the system. A new Poisson-like partial differential 
equation is obtained for this reconstruction, which can be solved as a spatial initial-value problem in a manner similar 
to the so-called Grad–Shafranov reconstruction, without resort to auxiliary equations. Moreover, we find that with 
some simple substitutions this new equation can be applied for field-aligned flow with isotropic plasma pressure. The 
numerical code for new reconstruction has been developed and is benchmarked with an exact analytical solution. 
Results show that the reconstruction works well with small errors in a rectangular region surrounding the spacecraft 
trajectory. Applications to in situ spacecraft measurements will be reported separately.
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Introduction
The Grad–Shafranov (GS) reconstruction is a data 
analysis tool to produce a two-dimensional (2-D) 
field or flow map of a coherent structure observed 
by a single spacecraft. The original GS reconstruc-
tion is based on spatial initial-value integration of the 
magnetohydrostatic GS equation in 2-D geometry, 
i.e., ∇2A = −µ0d(p+ B2

z

/

2µ0)
/

dA = −µ0dpt
/

dA 
(Sonnerup and Guo 1996; Hau and Sonnerup 1999). 
Here A, p, and Bz are the vector potential, the plasma 
pressure, and the axial magnetic field, respec-
tively, and ∇2 = ∂2

/

∂x2+∂2
/

∂y2. The value pt is 
invariant along the field line for which the func-
tion dpt/dA can be determined numerically. Once 
∂2A/∂y2 = −µ0dpt

/

dA− ∂2A
/

∂x2 is calculated, the 
vector potential can therefore be advanced in a small 
step along the y axis by use of the Taylor expansion to 
second order. This classical GS reconstruction has been 
successfully applied to studying magnetopause structures 

(e.g., Hau and Sonnerup 1999; Hu and Sonnerup 2000; 
Hasegawa et al. 2004), magnetic flux ropes and magnetic 
clouds (e.g., Hu and Sonnerup 2001, 2002; Hu 2017; Son-
nerup et  al. 2004). Sonnerup et  al. (2006) have further 
generalized the reconstruction method to allow for field-
aligned flow with isotropic plasma pressure (Teh et  al. 
2007) and for plasma flow perpendicular to a magnetic 
field (Hasegawa et  al. 2007). Moreover, a GS-like equa-
tion is derived to include field-aligned flow with noniso-
tropic plasma pressure (Sonnerup et al. 2006), which can 
be reduced for magnetohydrostatic equilibria with noni-
sotropic plasma pressure.

The extensions of the GS reconstruction developed by 
Sonnerup et al. (2006) have a GS-like governing equation, 
in which some quantities that appear in the equation are 
not invariant along the field lines or streamlines. Those 
quantities need to be advanced by use of auxiliary equa-
tions, and thus the reconstruction requires more x-deriv-
ative calculations in each integration step as compared 
to the classical GS reconstruction. These extra numerical 
differentiations will act as a catalyst for the error growing 
in each integration step, and that it turns out to suppress 
the reconstruction domain.

http://orcid.org/0000-0002-7114-1543
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40623-018-0802-z&domain=pdf


Page 2 of 5Teh Earth, Planets and Space  (2018) 70:34 

In this paper, we aim to develop a new GS-like equa-
tion for magnetohydrostatic equilibria with nonisotropic 
plasma pressure, which can be solved as a spatial initial-
value problem in a manner similar to the classical GS 
reconstruction, without resort to auxiliary equations. We 
find that with some simple substitutions this new GS-
like equation can be applied for field-aligned flow with 
isotropic plasma pressure. The paper is organized as fol-
lows. In “Theory” section, we describe the basic theory of 
the reconstruction of magnetohydrostatic equilibria with 
nonisotropic plasma pressure. In “Benchmark case” sec-
tion, we develop an exact analytical solution to validate 
our new reconstruction code. Finally, discussion is given 
in “Discussion” section.

Theory
In this section, we derive the GS-like equation for mag-
netohydrostatic equilibria with nonisotropic plasma 
pressure. The derivation presented here is similar to that 
used in the paper of Sonnerup et al. (2006) for structures 
with steady field-aligned flow. In the magnetohydrostatic 
conditions, two-dimensional coherent structures are 
described by the balance between pressure forces and 
magnetic forces:

Here the pressure tensor P = p⊥I+ (p� − p⊥)BB
/

B2 
where p⊥ and p‖ are the plasma pressures perpendicu-
lar and parallel to the magnetic field, respectively. By use 
of the pressure anisotropy factor α = µ0(p� − p⊥)

/

B2, 
Eq. (1) can be written as

Using ∇ · B = 0 and the notation F = (1− α)B, Eq. (2) 
becomes

Using the identity F · ∇F = (1
/

2)∇F2 − F× (∇ × F) 
and B2 = F2

/

(1− α)2, Eq. (3) then becomes

where pT = (1− α)p⊥ + α(1− α)−1(F2
/

2µ0).
Since F = (1− α)B, one can define 

F = ∇A× ẑ + ẑ(1− α)Bz for which ∇ · F = 0. Here 
A is the modified vector potential, different from the 
one in the original GS equation mentioned in the intro-
duction section. Note that ∇ = x̂∂

/

∂x + ŷ∂
/

∂y and 
∂
/

∂z = 0 . Since ∇ · F = 0, one gets F · ∇α = 0. Thus, α 

(1)∇ · P = j× B.

(2)∇ · (1− α)BB = µ0∇
(

p⊥ + B2
/

2µ0

)

.

(3)F · ∇F = µ0(1− α)∇
(

p⊥ + B2
/

2µ0

)

.

(4)
−F× (∇ × F) = µ0

[

∇pT + (1− α)−1

(

pT + F2
/

2µ0

)

∇α

] ,

is a field-line invariant. Taking dot product of (4) with F 
yields F · ∇pT = 0. Also, pT is a field-line invariant. Since 
the right-hand side of (4) does not have a z component, 
one gets Ft × (∇ × F)t = 0, where (∇ × F)t = ∇Fz × ẑ. 
Therefore, it turns out that the vector ∇Fz = ∇(1− α)Bz 
is to be perpendicular to Ft, indicating that Fz is a field-
line invariant. Furthermore, one can find from the invari-
ant Fz that the axial field Bz is also a field-line invariant 
since α is invariant along the field line.

In the transverse (x, y) part of (4), it can be written as

By substituting Ft = ∇A× ẑ, (∇ × F)z = −∇2A, and 
(∇ × F)t = ∇Fz × ẑ, Eq. (5) becomes

Since Fz, pT , and α are functions of vector poten-
tial A alone, one can write ∇F2

z = (dF2
z

/

dA)∇A, 
∇pT = (dpT

/

dA)∇A, and ∇α = (dα
/

dA)∇A. By remov-
ing the factor ∇A from (6), one can then obtain the GS-
like equation for magnetohydrostatic equilibria with 
nonisotropic pressure:

which can be further rewritten as

As a consistency check, when α goes to zero, Fz 
becomes equal to Bz and pT = p⊥ = p, and the last 
term on the right in (8) becomes zero. Therefore, as 
expected, Eq. (8) reduces to the classical GS equation, i.e., 
∇2A = −µ0d

(

p+ B2
z

/

2µ0

)/

dA. When α is equal to one, 
Eq.  (8) becomes singular. For reconstruction, one can 
use a spline function to calculate the solution at the grid 
point where α = 1 occurs, from its value at the neighbor-
ing points. In addition, it is found that the MHD force-
balanced equation for steady field-aligned flow with 
isotropic plasma pressure is similar to Eq.  (2), in which 
α and p⊥ are replaced by M2

A and p, respectively. Here 
M2

A is the Alfvén Mach number. As a result, a new GS-
like equation for field-aligned flow with isotropic plasma 

(5)
− (Ft × ẑ)(∇ × F)z − Fz[ẑ× (∇ × F)t ]

= µ0

[

∇pT + (1− α)−1

(

pT + F2

/

2µ0

)

∇α

]

.

(6)

−∇2A(∇A) = (1
/

2)∇F2

z

+ µ0

[

∇pT + (1− α)−1

(

pT + F2/2µ0

)

∇α

]

.

(7)

∇2A = −(1
/

2)dF2
z

/

dA− µ0dpT
/

dA− µ0(1− α)−1

(

pT + F2
/

2µ0

)

dα
/

dA,

(8)
∇2A = −(1

/

2)dF2
z

/

dA− µ0dpT
/

dA

+ µ0

(

pT + F2
/

2µ0

)

d ln(1− α)
/

dA.
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pressure can be obtained from (8) by simply putting 
α = M2

A and p⊥ = p.
The numerical scheme used to integrate Eq. (8) is simi-

lar to that for the magnetohydrostatic GS reconstruction 
(e.g., Hau and Sonnerup 1999; Sonnerup et al. 2006). The 
values of the vector potential A at points along the x axis 
(the spacecraft trajectory) are computed as

where dx′ = V0dt and V0 is the motion of the struc-
ture. While the functions of dF2

z

/

dA, dpT
/

dA, and 
d ln(1− α)

/

dA are determined numerically, the value 
∂2A/∂y2 on the left in (8) can then be calculated as 
∂2A

/

∂y2 =RHS− ∂2A
/

∂x2, where RHS is the right-hand 
side of (8). Thus, the vector potential A can be advanced 
in small steps, ± �y, as

where ∂A
/

∂y = Fx(x, y) = [1− α(x, y)]Bx(x, y). Similarly, 
the new value of Fx is obtained as

The new value of Fy is then calculated as 
Fy(x, y±�y) = −∂A(x, y±�y)

/

∂x. Finally, the new val-
ues of α, pT , and Fz can be obtained by use of the func-
tions d ln(1− α)

/

dA, dpT
/

dA and dF2
z

/

dA, respectively, 
with the new values of A.

Once the quantities Fx, Fy, Fz, α, and pT are 
known, the quantities Bx, By, Bz, p⊥, and p‖ 
can then be calculated, where B = F

/

(1− α) , 
p⊥ = (1− α)−1[pT − α(1− α)−1(F2

/

2µ0)], and 
p� = α(B2

/

µ0)+ p⊥. It is worth to point out that in 
the paper of Sonnerup et  al. (2006) the GS-like equa-
tion of magnetohydrostatic equilibria with nonisotropic 
pressure can be obtained from (A7) (the equation (7) in 
their Appendix) by putting M2

A = 0, G2 = 0, and v2 = 0 . 
As compared to our Eq. (8), solving that resulting equa-
tion has to deal with a 6 ×  6 sparse matrix, for which 
the integration scheme is different from the classical GS 
reconstruction.

Benchmark case
In this section, we derive an exact analytic solution 
of Eq.  (8) to validate our numerical code for integra-
tion scheme described in “Theory” section. In the cal-
culations, all the physical quantities are assumed to be 

(9)

A(x, 0) =

∫ x′=x

x′=0

∂A/∂x dx′

= −

∫ x′=x

x′=0

[1− α(x′, 0)] By(x
′
, 0)dx′

,

(10)
A(x, y± �y) = A(x, y)±�y∂A

/

∂y

+ (1
/

2)(�y)2∂2A
/

∂y2
,

(11)Fx(x, y±�y) = Fx(x, y)±�y∂2A
/

∂y2,

functions of the cylindrical radius r alone. We assume 
that A = e−r, B2

z = r2e−r, and α = 1− 1
/

r. With these 
expressions for A, B2

z, and α, d(rpT )
/

dr can thus be 
obtained from Eq. (8) as

where r0, B2
z0, and A0 are the normalized factors. By inte-

grating (12) with respect to r, one gets

where βz0 = µ0p0
/

B2
z0 and β0 = µ0p0r

2
0

/

A2
0, and p0 is 

the reference value at r = 1. The benchmark solution is 
confined within r ≥ 1.

Analytic results for βz0 = 1.0 and β0 = 1.0 are dis-
played in Figs.  1a and 2a. Figure  1a shows the in-plane 

(12)
µ0d(rpT )

/

dr = (1
/

2)B2
z0(re

−r − e
−r)

+ A2
0r

−2
0 (re−2r − 3

/

2e
−2r)

,

(13)
pT = (1

/

r)[1− (1
/

2)β−1
z0 re−r + (1

/

2)

β−1
0 (e−2r − re−2r)+ (1

/

2)β−1
z0 e

−1],

Fig. 1  a Analytic results for magnetic field lines of Ft in the x–y plane 
and pressure anisotropy α in color. b Reconstruction results in the 
same format. c Errors for vector potential in contour lines and α in 
color. The solid and dashed curves represent positive and negative 
errors at 0.5% intervals
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magnetic field lines of Ft with α in color. In Fig. 2a, black 
curves are the contour of Fz and color code is pT . The 
white horizontal line at y = 0.5 is the path of a virtual 
spacecraft through the structure. Data taken along this 
line are then used as initial values for integration. Fig-
ure  3 shows the plots of the three field-line invariants 
versus the vector potential, where the data and fitting 
curves are shown as black and red curves, respectively. 
The reconstruction results are demonstrated in Figs.  1b 
and 2b. It is seen that the reconstruction maps agree well 
with the exact solution. Errors are shown in Figs. 1c and 
2c, where solid and dashed curves indicate positive and 
negative errors, respectively. The contour of errors for 
vector potential in Fig.  1c and Fz in Fig.  2c are at 0.5% 
intervals, while the errors for α and pT are shown in color 
in Figs. 1c and 2c, respectively. It is seen that the errors 
are small and mainly in the corners of the reconstruction 
domain.

Discussion
In this paper, we have developed the theory of the 
reconstruction for magnetohydrostatic equilibria with 
nonisotropic plasma pressure, where three field-line 
invariants are found in the system. A new GS-like equa-
tion is obtained for this reconstruction, which can be 
solved as a spatial initial-value problem in a manner simi-
lar to the classical GS reconstruction, without resort to 
auxiliary equations. We have found that this new GS-like 
equation can be applied for field-aligned flow with iso-
tropic plasma pressure by simply putting α = M2

A and 
p⊥ = p. We have produced a new reconstruction code 
for integration and validated it against an exact analytical 
solution. The reconstruction results are in good agree-
ment with the exact solution. Errors remain within a few 
percent in the corners of the reconstruction domain.

Fig. 2  a Analytic results for Fz in contour lines and pT in color. b 
Reconstruction results in the same format. c Errors for Fz in contour 
lines and pT in color. The solid and dashed curves represent positive 
and negative errors at 0.5% intervals

Fig. 3  Plots of three field-line invariants a Fz
2, b pT, and c ln(1− α) 

versus vector potential for benchmark case
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For simplicity, this study does not include plasma flow, 
gravity, and other effects (e.g., gyroviscosity and parallel 
heat flux) in the new formulation of the GS-like equation 
with pressure anisotropy. There are other general formu-
lations of the GS equation with pressure anisotropy, for 
example, for ideal magnetohydrodynamic flows with the 
double adiabatic relations (e.g., Beskin and Kuznetsova 
2000) and for high-beta tokamaks (e.g., Ito and Nakajima 
2011). From the reconstruction point of view, such GS 
formulations remain challenged for reconstruction.

For applications to actual spacecraft measurements, 
important prerequisites for reconstruction are a mov-
ing frame of reference and the invariant axis of the 2-D 
structure. Detailed discussions on this issue can be found 
in Sonnerup et al. (2006) and the references therein. It is 
known that the integration of the GS equation is numeri-
cally unstable. To suppress the spurious solutions, a 
smoothing operation is taken into account in each step of 
the integration. In the benchmark case, a Savitzky–Golay 
smoothing is implemented instead of the previous three-
point smoothing used by Hau and Sonnerup (1999). Pres-
sure anisotropy is commonly seen in the magnetosheath 
and the reconnection region at the magnetopause as well 
as in the magnetotail. This type of reconstruction will be 
useful to provide new insight into the coherent structures 
being observed. Applications to in situ spacecraft meas-
urements will be reported separately.
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