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Abstract 

The 2016 moment magnitude (Mw) 7.8 Kaikoura earthquake demonstrated that multiple fault segments can undergo 
rupture during a single seismic event. Here, we employ Global Positioning System (GPS) observations and geodetic 
modeling methods to create detailed images of coseismic slip and postseismic afterslip associated with the Kaik-
oura earthquake. Our optimal geodetic coseismic model suggests that rupture not only occurred on shallow crustal 
faults but also to some extent at the Hikurangi subduction interface. The GPS-inverted moment release during the 
earthquake is equivalent to a Mw 7.9 event. The near-field postseismic deformation is mainly derived from right-
lateral strike-slip motions on shallow crustal faults. The afterslip did not only significantly extend northeastward on 
the Needles fault but also appeared at the plate interface, slowly releasing energy over the past 6 months, equivalent 
to a Mw 7.3 earthquake. Coulomb stress changes induced by coseismic deformation exhibit complex patterns and 
diversity at different depths, undoubtedly reflecting multi-fault rupture complexity associated with the earthquake. 
The Coulomb stress can reach several MPa during coseismic deformation, which can explain the trigger mechanisms 
of afterslip in two high-slip regions and the majority of aftershocks. Based on the deformation characteristics of the 
Kaikoura earthquake, interseismic plate coverage, and historical earthquakes, we conclude that Wellington is under 
higher seismic threat after the earthquake and great attention should be paid to potential large earthquake disasters 
in the near future.
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Introduction
On November 13, 2016, a destructive earthquake with 
Mw 7.8 struck the Kaikoura region, South Island, New 
Zealand, which triggered large-scale crustal deformation 
(Hamling et  al. 2017), thousands of landslides (Gorum 
and Yildirim 2017), and a widespread tsunami (Power 
et  al. 2017). The earthquake rupture was initiated in 
North Canterbury and propagated more than 170  km 
northward along at least 12 separate faults (Bradley et al. 
2017; Hamling et  al. 2017; Kaiser et  al. 2017). Geologi-
cal field investigations and seismological and geodetic 

constraints show that the Kaikoura earthquake was an 
extraordinarily complex multi-fault rupture incident 
(Duputel and Rivera 2017; Hamling et al. 2017; Hollings-
worth et al. 2017; Shi et al. 2017; Zhang et al. 2017).

The complex tectonic setting of New Zealand contrib-
uted to the occurrence of the 2016 Mw 7.8 multi-fault 
rupture event. Tectonically, New Zealand, consisting of 
the South and North islands, is dominated by oblique 
convergence of the Australian and Pacific plates at 
rates of 39–48 mm/year (Fig. 1; Beavan et al. 2016). The 
Hikurangi subduction zone on the North Island accom-
modates most of the relative plate convergence (Nicol 
and Beavan 2003), whereas oblique-dextral transpres-
sional convergence along the Alpine strike-slip fault 
dominates the tectonics of the central South Island 
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(Norris and Cooper 2007). In addition, the tectonics of 
southwestern New Zealand are dominated by oblique 
convergence at the Puysegur subduction interface, where 
the Mw 7.8 Dusky Sound earthquake occurred on July 
15, 2009 (Beavan et  al. 2010). New Zealand’s tectonics 
are incredibly active, and interseismic accumulated strain 
is released by various mechanisms such as instantane-
ous earthquake ruptures (Beavan et al. 2010; Elliott et al. 
2012), volcanic explosions (Chardot et  al. 2015; Kilgour 
et  al. 2016), ongoing postseismic mechanisms (Motagh 
et al. 2014), and aseismic slow-slip events (SSEs; McCaf-
frey et al. 2008; Wallace and Beavan 2006).

The 2016 Kaikoura earthquake took place in an 
extremely complex and active tectonic environment, 
destroying two distinguishing seismotectonic domains 
(Fig.  1) including the contractional North Canterbury 

fault zone and dominantly strike-slip Marlborough 
fault system (Hamling et  al. 2017). Seismological stud-
ies indicate that the coseismic rupture included at least 
three distinct southwest–northeast-propagating phases 
(Kaiser et  al. 2017). Geodetic and geological evidence 
reveals highly complex surface deformation character-
istics associated with the 2016 Kaikoura earthquake, 
mainly showing right-lateral oblique-slip motion in 
the North Canterbury region and dominantly right-
lateral strike-slip motion in the Marlborough fault zone 
(Hamling et  al. 2017). The earthquake caused consider-
able coseismic deformation, more than 10  m horizontal 
deformation along multiple faults, and ~ 8 m uplift of the 
Papatea fault-bounded block (Hamling et al. 2017; Kääb 
et al. 2017; Shi et al. 2017). The Kaikoura earthquake also 
triggered highly variable coastal deformation, reflecting 
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Fig. 1 Tectonic context of the 2016 Mw 7.8 Kaikoura earthquake. The green lines indicate surface ruptures formed during the earthquake, which 
are also displayed in the top right inset. The red star represents the epicenter of the Kaikoura earthquake. The magenta circles and blue triangles 
are the continuous and campaign GPS sites, respectively. The illustration in the upper left represents the tectonic setting of New Zealand, located 
between the Australian and Pacific plates. The red square indicates the study area. The inset in the bottom right shows the distribution of after-
shocks (M > 3, from the GeoNet earthquake catalogue) occurring after the mainshock
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the rupture complexity along a transpressional plate 
boundary (Clark et al. 2017). Seismological and geodetic 
inversion models indicate that coseismic rupture not 
only occurred on shallow crustal faults but also at the 
Hikurangi subduction interface with small-scale thrust-
ing-dominated movements (Hamling et al. 2017; Holden 
et  al. 2017). Clustered aftershocks were mainly concen-
trated in mainshock rupture regions (Fig.  1), showing a 
mixture of reverse and strike-slip faulting across three 
dominant spatial clusters (Kaiser et al. 2017). Widespread 
slow-slip movements in two known regions offshore the 
east coast of the North Island and beneath the Kapiti 
region and in a slow-slip region in the subduction zone 
beneath the upper South Island were immediately trig-
gered by the Kaikoura earthquake and continued over a 
period of weeks to months (Wallace et al. 2017).

Previous studies illuminated the complexity of the 2016 
Mw 7.8 multi-fault rupture using geodetic, seismologi-
cal, and geological observations. However, ongoing fault 
movements should be investigated to assess the poten-
tial earthquake risk in New Zealand. In our study, we use 
Global Positioning System (GPS) observations to con-
struct a coseismic model with six-segment geometry and 
preliminarily investigate the postseismic 6-month defor-
mation. Coulomb stress changes due to coseismic and 
postseismic fault slip are also investigated. Our extensive 
analysis of complex fault interactions and the kinemat-
ics of the multi-fault rupture contributes to clarifying 
the seismogenic patterns and occurrence mechanisms, 
assessing the seismic hazard, and estimating the earth-
quake magnitude.

Data
Data collection
The GeoNet (https://www.geonet.org.nz/), based on a 
collaboration between the Science and Earthquake Com-
mission and the Institute of Geological and Nuclear Sci-
ences (GNS) with funding from Land Information New 
Zealand (Hamling et al. 2017), has been used to monitor 
geological disasters in New Zealand such as earthquakes, 
volcanic activities, massive landslides, tsunamis, and 
slow-slip events (SSEs). In our study, we only consider 
GPS observations from GeoNet to construct seismic geo-
detic inversion models and investigate fault movements 
during the coseismic and postseismic phases of the Kaik-
oura earthquake.

The coseismic deformation is investigated using a 
superset of GPS-determined surface coseismic offsets 
from previous studies (Hamling et  al. 2017) including 
191 continuous and 80 campaign stations. These obser-
vations and that of more than 100 International Global 
Navigation Satellite System (GNSS) Service (IGS) refer-
ence stations were processed using the GPS Analysis at 

Massachusetts Institute of Technology/Global Kalman 
filter (GAMIT/GLOBK, version 10.60) software; final sta-
tion coordinates were projected in the International Ter-
restrial Reference Frame 2014 (ITRF14). The coseismic 
offsets at continuous GPS stations were estimated using 
observations made 5 days prior to and 12 h following the 
earthquake, whereas the campaign GPS observations 
(available since 1999) made days (near field) to weeks 
(far field) after the earthquake in the northern part of the 
South Island were remeasured (Hamling et al. 2017).

Only available continuous GeoNet GPS stations were 
chosen to examine the postseismic deformation of the 
Kaikoura earthquake. Daily GeoNet GPS time series 
in the IGS08 reference frame including GPS data pro-
cessed using the GNSS-Inferred Positioning System and 
Orbit Analysis Simulation Software (GIPSY-OASIS-II 
6.1.1) are available from the Nevada Geodetic Labora-
tory, University of Nevada, Reno (NGL/UNR, http://
geodesy.unr.edu/, last accessed on May 20, 2017). The 
data analysis (http://geodesy.unr.edu/gps/ngl.acn.txt) was 
based on the final, non-fiducial daily products from the 
Jet Propulsion Laboratory (JPL) archive including satel-
lite orbit and clock estimates, wide-lane and phase bias 
estimates, Earth orientation parameters, and an IGS 
antenna calibration file. The tropospheric refractivity was 
modeled using the global mapping function (GMF); the 
first-order ionospheric effects were removed by applying 
ionosphere-free combinations of both carrier phase and 
pseudo-range measurements, and the ocean tidal load-
ing effects were corrected using the tidal model FES2004 
(Finite element solutions, 2004).

Postseismic signal extraction
We only utilized GPS stations of a region with a longi-
tude range of 170.2°E–176.5°E and latitude range of 
40.0°S–44.0°S, considering insignificant contributions of 
postseismic fault movements to the deformation of GPS 
observations away from mainshock rupture regions. We 
used a general expression for the time-series function 
[Eq.  (1)] to parameterize multi-various signal constitu-
ents (such as tectonic motion mechanisms, hydrological 
loading effects, atmospheric refraction delays, and other 
factors) and applied the least squares fitting algorithm to 
extract postseismic signals (Jiang et al. 2017):

where ti is the ith daily epoch (unit: year); y0 is the nomi-
nal position; v is the linear trend term; A and φ are the 

(1)

y(ti) = y0 + vti +

2
∑

b=1

Ab sin(2bπ ti + ϕb)+

k
∑

j=1

H(ti − toj)Oj

+

m
∑

l=1

H(ti − tql)
(

cl + pl ln(1+ (ti − tql)/τ
log
l )

)

+ εi
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amplitude and initial phase of annual and semiannual 
sinusoidal terms, respectively; O is the offset caused by 
non-seismic sources; c, p, and τlog are the coseismic off-
set, postseismic amplitude, and relaxation time, respec-
tively; to and tq are the occurrence epochs related to 
non-seismic and seismic sources, respectively; H is the 
step function; and ε is the error term.

We performed four steps to gain the postseismic 
deformation field: (1) calculating the interseismic veloc-
ity field of the 53 continuous GPS stations (Additional 
file 1: Table S1) using least squares fitting. Most of these 
stations witnessed interseismic, coseismic, and post-
seismic deformation; (2) interpolating the interseismic 
3-D velocities of the six stations (Fig. 2a and Additional 
file  1: Table S1) installed after the mainshock based on 
the velocity interpolation for stain rate (VISR) software 
(Shen et al. 2015); (3) identifying the optimal logarithmic 
relaxation time based on ten stations (Fig. 2a) with good 
signal-to-noise ratios. The optimal logarithmic relaxation 
constant was inferred to be 6 days in our study (Fig. 2b); 
(4) estimating the logarithmic amplitudes for the north, 
east, and up directions of all stations. Finally, we chose 
57 stations (Additional file 1: Table S2) to investigate the 
postseismic afterslip during the first 6-month period.

Coseismic and postseismic deformation fields
A superset of GPS coseismic observations from Hamling 
et al. (2017) reliably captured abundant surface deforma-
tion characteristics in response to complex multi-fault 
ruptures. Campaign GPS stations made up the deficiency 

in the spatial coverage of the measurements in the main-
shock regions in which only few continuous GPS stations 
are distributed in the near field (Fig. 1). Investigation of 
the static coseismic deformation suggests that the Kaik-
oura earthquake mainly destroyed two distinct tectonic 
domains, showing right-lateral oblique-slip movements 
in the North Canterbury region and dominantly right-
lateral strike-slip motions in the Marlborough fault 
system (Fig. 4a). Continuous and campaign GPS observa-
tions indicate more than 6  m of lateral movement near 
Cape Campbell. Coseismic uplift occurred in the vicinity 
of Kaikoura and Cape Campbell. Regions of subsidence 
are observed in North Canterbury, near the epicenter 
and in the mid–far field of coseismic deformation in the 
Marlborough fault system. The GPS-derived coseismic 
deformation shows that horizontal northeastward peak 
motions can reach 6.1  m at the station AAR8, whereas 
the maximum vertical uplift reaches 2.7 m at the station 
AC6K.

Postseismic afterslip started immediately after the 
earthquake and decayed rapidly during the first 6-month 
postseismic period. Figure 3 shows the postseismic GPS 
coordinate time series with long-term trends and sea-
sonal signals corrected, which fit logarithmic decay 
function models well and are typically dominated by 
time-dependent, stress-driven afterslip following moder-
ate or massive earthquakes. Regarding surface movement 
patterns, postseismic horizontal deformation exhibits 
coseismic deformation patterns (Fig. 4) and shows much 
greater spatial-scale wavelengths. In addition to larger 
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Fig. 3 Raw (blue dots) and fitted (red line) position time series (long-term rates and seasonal signals were removed) at several representative sta-
tions in the postseismic phase
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deformation around the mainshock areas, visible defor-
mation was also recorded in the uppermost South Island 
regions, suggesting that the afterslip continued to move 
northeastward. When compared with coseismic defor-
mation in the vertical direction, postseismic deformation 
as a whole shows uplift in the northern South Island and 
southern North Island. The accumulated GPS-derived 
postseismic deformation shows a maximum horizontal 
movement of ~ 14.5 cm at the station LOK1 and a maxi-
mum vertical uplift of ~ 14.5  cm at the station CMBL, 
both of which are located next to Cape Campbell.

Geodetic slip models
Coseismic slip model
Relevant information about the active faults is available 
from the New Zealand Active Faults Database, which 
is widely used for geological research, hazard mode-
ling, and infrastructure planning (Langridge et  al. 2016; 
Litchfield et  al. 2013). A multi-fault rupture model was 
reported by Hamling et  al. (2017). This well-established 
model consists of 19 shallow crustal faults and the south-
ern Hikurangi subduction interface. We simplified the 
fault model using six separated rectangular faults to 
investigate the first-order patterns of coseismic slip, con-
sidering the limited spatial coverage of GPS observations 
to constrain more detailed slip models. We properly sim-
plified the fault geometry and adopted fault parameters 
(Additional file  1: Table S3) from Hamling et  al. (2017), 
which can be used to constrain the major deformation 
characteristics of the earthquake. Shallow crustal faults 

were discretized into a series of rectangular patches with 
a spatial scale of 4  km × 4  km, whereas a larger spatial 
scale of 6  km × 6  km was used for the deep subduction 
interface.

Based on the elastic half-space dislocation theory 
(Okada 1985), we inverted the GPS coseismic offsets 
from Hamling et  al. (2017) to investigate the coseismic 
slip of multiple seismogenic faults. The smoothing coseis-
mic slip model was achieved using the steepest descent 
method (SDM; https://www.gfz-potsdam.de/sektion/
erdbeben-und-vulkanphysik/daten-produkte-dienste/
downloads-software/) iterative algorithm (Wang et  al. 
2013), a constrained least squares optimization problem 
for estimating the dip-slip and strike-slip components 
of all discretized subpatches. The optimal smoothing 
model was achieved through adjusting the normalized 
smoothing factor, which is usually determined by using a 
trade-off value between model roughness and data misfit 
(Fig. 5a).

The detailed spatial distribution of the coseismic slip 
is shown in our best-fitting geodetic model (Fig. 5b and 
Additional file  1: Figure S1). The smoothing geodetic 
coseismic model suggests that the mainshock rupture not 
only propagated along shallow crustal multiple faults, but 
also involved a small contribution of the deep subduction 
interface (Fig. 5b). The coseismic slip shows dominantly 
right-lateral strike-slip motions in the Marlborough 
fault system, dextral oblique-slip motions in North Can-
terbury, and more thrusting motions at the Hikurangi 
subduction interface. Our coseismic model shows that 
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Fig. 4 GPS coseismic and postseismic deformation fields of the Kaikoura earthquake. a and b Horizontal and vertical displacement fields with 
coseismic deformation (black arrows) and postseismic 180-day deformation (red arrows), respectively
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https://www.gfz-potsdam.de/sektion/erdbeben-und-vulkanphysik/daten-produkte-dienste/downloads-software/
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the strike-slip movement reaches up to 23.9 m and dip-
slip movement reaches up to 13.8 m, assuming absolute 
dextral strike-slip and thrusting movements that agree 
with the focal mechanism and surface deformation. Our 
results demonstrate that the maximum slip of ~ 24.2  m 
occurs at a depth of ~ 10  km, in a transition region 
between the Needles and Kekerengu faults (Fig. 5b).

The predicted coseismic deformation is highly consist-
ent with the observed GPS deformation (Fig. 5c, d), and 
the correlation between the GPS observations and model 
predictions reaches up to ~ 99% (Table  1). The total 
moment released by the earthquake is ~ 8.28 × 1020 Nm, 
equivalent to a magnitude of Mw 7.9 with a uniform 
crustal shear modulus of 30  GPa, which is consistent 
with previous studies based on GPS and Interferometric 

Synthetic Aperture Radar (InSAR) observations (Ham-
ling et al. 2017).

Postseismic afterslip model
Afterslip describes postseismic ongoing aseismic fault 
motions occurring on or beneath mainshock rupture 
regions over several months to several years (Huang et al. 
2014). In our study, postseismic deformation derived 
from continuous GPS observations was inverted for opti-
mal smoothed afterslip based on a homogeneous elastic 
half-space crust model. Compared with the coseismic 
model, the shallow crustal faults are extended along the 
strike and the Hikurangi subduction interface is extended 
along the strike and downdip (Additional file  1: Table 
S4) to investigate the more widely distributed afterslip. 
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Fig. 5 Coseismic inversion results. a Trade-off curve (L-curve) between data misfit and model roughness in the coseismic model. b Spatial distribu-
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Considering more time-consuming computation, we dis-
cretized the shallow faults and deep subduction interface 
into 5  km × 4  km and 10  km × 10  km rectangular sub-
patches, respectively, in the postseismic inversion model.

Based on our best fits (Fig.  6b and Additional file  1: 
Figure S2), the first-order patterns of the afterslip show 
more dextral strike-slip movements on the five crus-
tal faults and visible thrusting motion at the Hikurangi 

subduction interface. The near-field postseismic defor-
mation is mainly derived from the significant right-lateral 
strike-slip motions on the shallow crustal faults, whereas 
the deep-seated afterslip at the Hikurangi subduction 
interface mostly contributes to mid- and far-field sur-
face deformation. During the postseismic phase, appar-
ent postseismic fault movements not only continue 
along the northeastern Needles fault but also occur at 

Table 1 Coseismic and postseismic inversion results

Model Mw Data-model Slip peak Slip range

Correlation Value (cm) Depth (km) Strike (cm) Dip (cm)

Coseismic 7.9 0.99 2416.0 9.4 [0.0, 2390.5] [0.0, 1379.0]

Postseismic 7.3 0.99 56.1 1.9 [0.0, 35.5] [0.0, 47.6]
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the Hikurangi subduction interface (Fig.  6b). The maxi-
mum afterslip was associated with the shallow Needles 
fault with a magnitude of 56 cm at ~ 2 km depth (Fig. 6b), 
revealing that fault rupture continues to move north-
eastwards but much smaller than the mainshock rupture 
reaching up to 24 m. In addition, one high-slip concen-
tration area with a peak of 53  cm was identified at the 
deep (~ 35 km) Hikurangi subduction interface (Fig. 6b), 
which is partially recovered by our model according to 
the resolution test (Additional file  1: Figure S4), mainly 
resulting from the poor spatial coverage of observations 
in the postseismic phase.

The model predictions agree well with GPS obser-
vations (Fig.  6c, d); the data-model correlation of our 
postseismic model reaches up to 99% (Table  1). The 
6-month afterslip has a cumulative geodetic moment of 
1.19 × 1020  Nm, corresponding to 14% of the coseismic 
moment release and Mw 7.3, assuming a uniform crustal 
shear modulus of 30 GPa.

Discussion
Coseismic Coulomb stress changes in mainshock rupture 
regions
Calculation of static Coulomb stress changes
Coulomb stress change analysis contributes to illumi-
nating stress transmissions, understanding earthquake 
interactions, and assessing seismic hazard associated 
with large earthquakes. The Coulomb failure criterion 
describes the fracture behavior of rock considering both 
shear and normal stress changes on a predefined surface 
(King et al. 1994; Liu et al. 2017; Shan et al. 2013a; Stein 
2000):

where ΔCFS is the Coulomb failure stress (CFS) change; 
Δτs and Δσn are the shear stress and normal stress 
changes on the receiver fault, respectively; and µ′ is the 
equivalent friction coefficient. Based on the seismic stress 
triggering theory, positive (increased) CFS change causes 
regional faults to be closer to failure and leads to seismic 
activity, whereas faults in stress shadow areas are further 
away from failure, reducing the possibility of seismicity 
(Freed 2005; Shan et al. 2015).

We employed the PSGRN/PSCMP code (Wang et  al. 
2006) to calculate ΔCFS induced by the 2016 Kaikoura 
mainshock slip and afterslip, which determines forward 
solutions of surface and subsurface deformation resulting 
from common geophysical sources in a layered gravita-
tional half-space. The simplified finite fault models and 
corresponding slip distribution results were regarded to 
be dislocation sources when examining coseismic Cou-
lomb stress changes. The differential Green’s functions 

(2)�CFS = �τs + µ′�σn

were generated using a homogeneous elastic half-space 
model with a uniform crustal shear modulus of 30 GPa.

We calculated the Coulomb stress changes around the 
mainshock regions induced by coseismic slip at differ-
ent depths (1, 9, 17, and 35 km). Based on the mainshock 
rupture patterns, the shallow (< 25  km depth) receiver 
faults were assigned average parameters (230° strike, 70° 
dip, and 150° rake), whereas a 221° strike, 12° dip, and 
125° rake were considered for the deep interface fault. 
Multiple friction coefficients (µ′) were tested to verify 
the stability of the results. The numerical results indicate 
that the amplitudes of ΔCFS vary depending on the dif-
ferent friction coefficients, but the spatial distribution 
patterns of Coulomb stress changes are highly consistent 
(Additional file 1: Figure S5). Therefore, we considered an 
empirical and moderate effective coefficient of friction of 
0.4 (Shan et al. 2013a, b; Xiong et al. 2010, 2017) for our 
ΔCFS calculation and discussion.

Static Coulomb stress changes
The coseismic stress perturbation results suggest that the 
ΔCFS due to the Kaikoura earthquake can reach several 
MPa around mainshock rupture regions. The ΔCFS also 
exhibits complex coseismic deformation patterns and 
diversity for each depth (Fig. 7a–d), undoubtedly reflect-
ing the complexity of multi-fault ruptures associated with 
the Kaikoura earthquake.

In terms of coseismic stress perturbation at 1  km 
depth, the stress shadow covers most of the major rup-
ture zone, which explains that aftershocks occurred only 
sporadically at shallow depths (< 5 km depth). However, 
a large increase in the Coulomb stress was observed at 
the end of the Kekerengu fault, which meets the Needles 
fault offshore the east coast of the upper South Island. In 
addition, positive Coulomb stress change was observed at 
the northeastern Needles fault (Fig. 7a), which triggered 
shallow afterslip (reaching up to 0.56  m at 2  km depth; 
Fig.  6b). At the depth of coseismic peak slip (~ 9  km 
depth), widespread increased Coulomb stress was 
observed in North Canterbury. The occurrence of nearly 
half of the aftershocks can be explained by the Coulomb 
stress triggering mechanism. In the deep regions (17 km 
depth) of shallow crustal faults, most of the mainshock 
rupture regions experienced loaded stress changes, 
which contributed to the occurrence of most aftershocks. 
In Fig. 7b (9 km depth) and c (15 km depth), many after-
shocks surround the Needles fault, characterized by high 
positive stress changes of more than 6  MPa. This con-
firms that stress loading derived from earthquake defor-
mation contributes to the failure of regional faults. We 
can conclude that the stress is unloaded in a wider area 
in the Marlborough fault system (Fig. 7b, c), whereby the 
Kekerengu fault is the major source of moment release 
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of the earthquake. The earthquake released most of the 
interseismic accumulated tectonic stress around the 
Kekerengu fault, which indicates reduced seismic risk in 
these regions. We calculated the Coulomb stress changes 
at 35 km depth, where deep peak slip occurs. We discov-
ered that aftershocks rarely appear along the downdip 
of the subduction interface, but most of these regions 
experienced coseismic stress increase. We therefore 
assume that afterslip was relatively active, as evidenced 

based on one high-slip concentration in our study. In 
addition, many aftershocks occurred in stress shadow 
regions, which may be the result of the use of a too sim-
plified model responding to such complex multi-fault 
rupture. Widely distributed positive coseismic Coulomb 
stress was also observed around Wellington, although the 
magnitudes are much smaller than the ΔCFS around the 
mainshock regions.
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Fig. 7 Coseismic Coulomb stress changes in the mainshock regions. a–c Coseismic Coulomb stress changes corresponding to 1, 9, and 17 km 
depth, which reflect Coulomb stress changes on shallow receiver faults. d Coseismic Coulomb stress changes at 35 km depth at the southwestern 
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Seismic hazard assessment in the Wellington region
Wellington, the nation’s capital, is the largest city within a 
zone with very high seismic risk and has witnessed many 
devastating earthquakes (Fig.  8b) including the 1460  M 
7.5 Wellington earthquake and 1855 Mw 8.2 Wai-
rarapa earthquake (Eiby 1968). Rapid plate convergence 
(~ 40  mm/year) of the Australian–Pacific collision zone 
contributes to relatively frequent strain accumulation, 
which is released in form of earthquake deformation and 
volcanic explosion. Geodetic investigations carried out 
over more than 10  years suggest that the SSEs preced-
ing the Kaikoura earthquake are absent in the Wellington 
region. They are aseismic relative to normal earthquakes 
and show a diverse behavior with respect to duration, 
moment release, occurrence depth, and recurrence inter-
val at the Hikurangi margin (Wallace and Beavan 2010; 

Wallace and Eberhart-Phillips 2013). An interseismic 
long-term fault coupling investigation (Fig. 8a) and geo-
detic studies revealed that the Wellington region was 
highly locked and strongly aseismic in the decades before 
the 2016 Kaikoura earthquake (Wallace 2004; Wallace 
and Beavan 2010).

The 2016 Mw 7.8 Kaikoura earthquake that severely 
destroyed the northern South Island had a coseismic slip 
of more than 20  m beneath the Marlborough fault sys-
tem. However, no significant surface deformation was 
observed during the coseismic or postseismic phases in 
the Wellington region, especially in the eastern regions. 
The CFS change investigation at 9 km depth suggests that 
the total CFS increase induced by coseismic and post-
seismic slip covers the Wellington region (Fig. 8c), which 
might lead to future seismic activity. We also checked the 
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spatial distribution of the stress changes at the Hikurangi 
subduction interface and found that most of the plate 
interface is loaded due to the Kaikoura earthquake. Based 
on the static stress triggering mechanism, we suggest 
that the widely distributed CFS increase could promote 
widespread slow-slip movements along the Hikurangi 
subduction interface on the North Island. Aftershocks 
(based on the GeoNet earthquake catalogue) are widely 
distributed in the mainshock regions and on the North 
Island, but only a few of them occurred in the Wellington 
region (Fig. 8b). According to the study of Wallace et al. 
(2017), the Kaikoura earthquake immediately triggered 
widespread slow-slip movements, but none of them 
occurred in the Wellington region.

Considering the deformation characteristics associ-
ated with the Kaikoura earthquake and interseismic plate 
coverage and historical earthquakes, we conclude that 
no effective tectonic movements adequately encouraged 
the release of stress in Wellington. Multifaceted evidence 
consistently confirms that the Wellington region is still 
under high seismic threat. Accordingly, great attention 
should be paid to these regions and measures should be 
taken to reduce future earthquake damage.

Conclusions
We used GPS measurements to establish coseismic 
and postseismic models, investigated Coulomb stress 
changes, and assessed the seismic hazard associated with 
the 2016  Mw 7.8 Kaikoura earthquake. Several conclu-
sions can be drawn:

1. The coseismic deformation mainly involved two differ-
ent tectonic regions: right-lateral oblique-slip move-
ments in North Canterbury and right-lateral strike-slip 
motions in the Marlborough fault system. Postseismic 
deformation shows a logarithmic behavior in time 
and decays slowly in space, with the motion tendency 
being consistent with coseismic patterns.

2. Our optimal geodetic coseismic model shows that 
coseismic rupture did not only occur with domi-
nantly dextral strike-slip motions on shallow crustal 
faults but also at the Hikurangi subduction interface 
characterized by small-scale thrusting motions. The 
GPS-inverted moment of the coseismic model is 
equivalent to a magnitude 7.9 earthquake.

3. The near-field postseismic deformation is mainly 
derived from right-lateral strike-slip motions on shal-
low crustal faults. The postseismic model suggests 
that the afterslip not only significantly extends north-
eastward on the Needles fault but also occurs at the 
plate interface, slowly releasing energy over the past 
6  months, which is equivalent to a magnitude 7.3 
earthquake.

4. The ΔCFS exhibits coseismic deformation complex 
patterns and diversity for each depth, undoubtedly 
reflecting multi-fault rupture complexity associated 
with the Kaikoura earthquake. The increased ΔCFS 
of coseismic deformation can reach several MPa, 
which can explain the occurrence of afterslip in two 
high-slip regions and the majority of aftershocks.

5. Considering the deformation characteristics asso-
ciated with the Kaikoura earthquake and the inter-
seismic plate coverage and historical earthquakes, 
we conclude that no effective tectonic movements 
adequately encouraged the release of stress in Wel-
lington. Therefore, this region is currently under high 
seismic threat.
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