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Abstract 

In this study, we evaluate the El Niño–Southern Oscillation (ENSO) signals in the two dominant temperature diurnal 
tides, diurnal westward wavenumber 1 (DW1) and diurnal eastward wavenumber 3 (DE3) on the quasi-biennial oscil‑
lation (QBO) scale (18–34 months) from 50 to 100 km altitudes. The tides are derived from the 21-year (January 1996–
February 2017) Ground-to-Topside model of Atmosphere and Ionosphere for Aeronomy (GAIA) temperature simula‑
tions and 15-year (February 2002–February 2017) Thermosphere Ionosphere Mesosphere Energetics and Dynamics 
(TIMED)/Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) temperature observations. The 
results show that ENSO warm phases shorten the period (~ 2 years) of the QBO in DW1 amplitude near the equator 
and DE3 amplitude at low latitudes of the Northern Hemisphere. In contrast, the QBO period lengthens (~ 2.5 years) 
during the ENSO neutral and cold phases. Correlation analysis shows the long-lasting effect of ENSO on the tidal QBO 
in the mesosphere and lower thermosphere.
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Introduction
The El Niño–Southern Oscillation (ENSO) is a planetary-
scale ocean–atmosphere-coupled phenomenon (e.g., 
Trenberth 1997) that affects global climate and weather 
systems across spatial and temporal scales (e.g., Diaz and 
Markgraf 2000; Sarachik and Cane 2010). Recent stud-
ies have suggested that the ENSO is a significant source 
of tidal variability in the mesosphere and lower thermo-
sphere (MLT) (Gurubaran et  al. 2005; Lieberman et  al. 
2007; Pedatella and Liu 2012, 2013; Warner and Ober-
heide 2014). These tides can be modulated by tropo-
spheric forcing and have been suggested as a driver for 
the ionospheric dynamo (e.g., Jin et  al. 2011; Yamazaki 
and Richmond 2013; Liu 2016b). Gurubaran et al. (2005) 
first discovered a correlation between interannual 

variability of low-latitude MLT tides and the ENSO 
warm phase in 1997/1998. They suggested that large-
scale convective systems originating over the western 
Pacific region in response to the ENSO facilitate excita-
tion of nonmigrating tides through latent heat release or 
large-scale redistribution of water vapor. Lieberman et al. 
(2007) reported that the diurnal tides observed at Hawaii 
and Christmas Island exhibit a pronounced ‘‘spike’’ in 
amplitude from late 1997 to early 1998 and also specu-
lated that this variability may be linked to the ENSO 
warm phase. Based on Whole Atmosphere Community 
Climate Model (WACCM) simulations, Pedatella and Liu 
(2012, 2013) suggested that the diurnal westward wave-
number (DW1) (1), diurnal eastward wavenumber (DE2) 
(2), diurnal eastward wavenumber (DE3) (3), and semidi-
urnal westward wavenumber (SW4) (4) in the lower ther-
mosphere at 110 km respond strongly to the ENSO from 
November to April. Warner and Oberheide (2014) pre-
sented variability of tidal harmonics of the latent heating 
from 2002 to 2011 associated with the ENSO and found 
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that the nonmigrating tidal response to ENSO is largest 
during the winter months of 2010/2011.

Numerous studies have also reported that the ENSO 
controls the stratospheric quasi-biennial oscillation 
(QBO) through the interactions of broadband atmos-
pheric waves and mean flows (e.g., Taguchi 2010; 
Geller et  al. 2016; Newman et  al. 2016; Das and Pan 
2016; Christiansen et  al. 2016). The deep convec-
tion and latent heat release in the tropics are source 
processes for broadband atmospheric waves, such as 
Rossby, Kelvin, and gravity waves (Dunkerton 1997; 
Baldwin et  al. 2001). Taguchi (2010) statistically ana-
lyzed the stratospheric zonal wind data archive of 
radiosonde observations at equatorial stations from 1953 
to 2008 and found that the change in QBO amplitude 
between La Niña and El Niño conditions corresponds to 
about 9% of the grand mean. In contrast, the phase pro-
gression rate for the ENSO cycle changes as much as 26% 
compared to the grand mean. Broadband waves also drive 
for the QBO above 80 km altitude (Baldwin et al. 2001). 
Possible ENSO signals with temporal scales longer than 
one year in the thermosphere (Liu 2016a) and ionosphere 
(Pedatella and Forbes 2009) have also been reported.

One challenge for exploring the ENSO signal with 
periods longer than one year in the MLT region is that 
the QBO and ENSO share a similar period band, which 
makes them difficult to distinguish using a time series 
with a limited duration (Warner and Oberheide 2014). 
The challenge motivates us to analyze longer datasets, 
including the 21-year GAIA (Ground-to-Topside model 
of Atmosphere and Ionosphere for Aeronomy) simula-
tions and the 15-year Thermosphere Ionosphere Meso-
sphere Energetics and Dynamics (TIMED)/Sounding 
of the Atmosphere using Broadband Emission Radiom-
etry (SABER) observations, and study the response of 
the MLT tides to the ENSO on a quasi-biennial scale. 
The two dominant diurnal tides, DW1 and DE3, and the 
equatorial zonal winds are analyzed in this study.

Data and methodology
The 21-year (January 1996–February 2017) simulations 
of temperature and zonal wind at altitudes of 50–100 km 
from the self-consistent GAIA (Jin et al. 2011; Liu et al. 
2017) were employed in this study. GAIA consists of 
a whole atmospheric general circulation, ionospheric, 
and electrodynamics models. Fields from the Japanese 
25-year Reanalysis meteorological data in the tropo-
sphere and lower stratosphere (below 30  km) were 
assimilated into the model to drive the simulations (Jin 
et al. 2012). In the GAIA database, the latitude–longitude 
resolution is 2.0° latitude by 2.5° longitude; the vertical 
spacing is 10 km between 0 and 650 km altitude; and the 
temporal resolution is 30 min. GAIA has previously been 

employed to study the effect of the lower atmosphere on 
the upper atmosphere (e.g., Jin et al. 2012; Liu et al. 2013; 
Miyoshi et al. 2017).

The 15-year (February 2002–February 2017) ther-
mospheric temperature observations from SABER instru-
ment aboard the TIMED spacecraft were also employed 
here. SABER provides continuous temperature soundings 
between 10 and 110  km altitudes within 50°S and 50°N 
geographic latitudes (Remsberg et al. 2008). The TIMED/
SABER data were binned into 2.5° latitude for the tidal 
computation.

The tidal amplitudes were fitted from the temperature 
values (F) at each latitude grid using the linear least-
squares method (Wu et al. 1995) with the following basis 
function:

where F̂  and ψ̂ are the tidal amplitude and phase. F  
is the zonal mean value. n and s are the tidal harmonic 
and zonal wave number (westward negative), respec-
tively. Then, Ω =

2π
24
h
−1 , in which λ and t are longitude 

and universal time, respectively. The tides from GAIA 
were estimated monthly. The tides from SABER were 
estimated from the data collected with a 60-day window, 
which moved monthly through the period of 2002–2017. 
The tidal fitting was conducted separately at each 10 km 
altitudinal grid for both the observation and simulation.

Wavelet analysis (Torrence and Compo 1998) was 
applied to show the overall temporal variation features 
in the tidal amplitudes at low latitudes and equatorial 
zonal mean zonal wind on various scales. A band-pass 
filter (Matlab fir1) with cutoff periods ranging from 
18 to 34 months (Xu et al. 2009) was applied to extract 
the quasi-biennial oscillation component from the tidal 
amplitudes and zonal wind. The Oceanic Niño Index 
(ONI), which is the 3-month running mean of sea surface 
temperature anomalies in the Niño 3.4 region (5°N–5°S, 
120°–170°W), was chosen as a proxy for the ENSO phases 
(http://www.cpc.noaa.gov/produ​cts/analy​sis_monit​oring​
/ensos​tuff/ensoy​ears.shtml​). The U30 index is the zonally 
averaged wind at 30 mb over the equator from the CDAS 
Reanalysis data (http://www.cpc.ncep.noaa.gov/data/
indic​es/) and represents the stratospheric QBO at 30 mb 
pressure level (Naujokat 1986).

Results
Figure 1 shows the year-to-year variability in amplitudes 
of temperature DW1 (diurnal westward wavenumber 1) 
and DE3 (diurnal eastward wavenumber 3) from GAIA 
and SABER at 100  km altitude. The GAIA and SABER 
DW1 is pronounced within 10°S–10°N and its seasonal 

(1)F(�, t) = F +

3∑

n=1

4∑

s=−4

F̂n,scos

(
nΩt − s�− ψ̂n,s

)
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variation reaches maxima near March and August. The 
DE3 amplitudes from both GAIA and SABER maximize 
in the Sothern Hemisphere (0°–20°S) near August. In the 
Northern Hemisphere, the GAIA DE3 amplitude reaches 
maxima near January and is stronger than that from 
SABER. Oberheide and Forbes (2008) applied the Hough 
Mode Extension to analyze temperature and wind meas-
urements from SABER and TIDI (TIMED Doppler Inter-
ferometer) in the mesosphere and lower thermosphere 
region. They presented seasonal DE3 variations in terms 
of symmetric and antisymmetric modes at various alti-
tudes. The difference between the two DE3 temperature 

amplitudes (Fig. 1) is due to the presence of the antisym-
metric mode in the GAIA DE3 at 100  km altitude. The 
temporal scales of these clear variations in the DW1 and 
DE3 amplitudes are near or shorter than 1 year.

ENSO controls the stratospheric QBO, which in turn 
affects the tidal variation in the MLT region (e.g., Hagan 
et al. 1999; Forbes et al. 2008; Oberheide et al. 2009; Gan 
et al. 2014). Correlation analysis is a traditional method 
that can be applied to detect ENSO signals in the atmos-
phere (Calvo et al. 2008 and references therein). Accord-
ingly, the correlation analysis has been applied to detect 
the ENSO signal in the tidal QBOs at altitudes from 50 to 

Fig. 1  Amplitude of the two dominant diurnal tides DW1 (diurnal westward wavenumber 1) and DE3 (diurnal eastward wavenumber 3) from GAIA 
and TIMED/SABER temperature at an altitude of 100 km. (Bottom) Red and blue (exceeding the threshold of ± 0.5 °C) on the Oceanic Niño Index 
(ONI) indicate the ENSO (El Niño–Southern Oscillation) warm and cold phases
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100 km. We note that, as described in “Data and method-
ology” section, a band-pass filter was applied to extract 
the tidal QBO embedded in those short-period signals 
from the amplitudes. However, the correlation between 
the ONI and QBOs of DW1 and DE3 is low (data not 
shown). Das and Pan (2016) also reported a low corre-
lation between the Niño 3.4 index and equatorial zonal 
mean zonal wind in the stratosphere from 1979 to 2013 
and suggested that ENSO and QBO are not linearly 
related. The ENSO signals are not easily isolated from the 
QBO. Usually, anomalies of a parameter can be defined 
as departures from the mean cycle with a constant period 
(e.g., annual mean cycle). However, it is difficult to derive 
the amplitude anomaly of the QBO by using traditional 
way due to its flexible period.

A wavelet analysis was further applied to examine the 
QBO period in detail. The wavelet power spectra (Fig. 2) 
show that the signal with a period near 2 years is a strong 
component in the DW1 and DE3 amplitude at 100  km 
altitude. Gan et  al. (2014) also reported that the spec-
tra of the DW1 and DE3 amplitudes from the extended 
Canadian Middle Atmosphere Model and SABER peak at 
a period near 25 months. The DW1 QBO is intense over 
the equator, but the DE3 QBO is stronger in the North-
ern Hemisphere (0° to 20°N) than that in the Southern 
Hemisphere (0° to 20°S). Figure  3 shows a time series 
comparison of the periods for the tidal QBO and QBO-
scale component in ONI. The periods of the QBOs in 
DW1 and DE3 in the Northern Hemisphere transit 
from ~ 2.5 years to ~ 2 years between 2001 and 2003 and 
from ~ 2  years to ~ 2.5  years between 2006 and 2008. A 
similar period transition can be found in the ONI.

The stratospheric QBO can affect the tidal variation 
in the MLT region (e.g., Hagan et al. 1999; Forbes et al. 
2008; Oberheide et  al. 2009; Gan et  al. 2014). Diurnal 
tides interact with the zonal mean zonal wind fields in 
the MLT (Miyahara 1978; McLandress 2002; Miyoshi 
et al. 2017). Accordingly, Fig. 4 shows the wavelet spectra 
of the equatorial zonal mean zonal wind from GAIA at 
100 km (in lower thermosphere) (Fig. 4a) and 60 km (in 
mesosphere) (Fig. 4b) as well as the U30 index (in strat-
osphere) (Fig.  4c). The QBO components in zonal wind 
mingle with fluctuating short-period signals such as the 
annual variation in the MLT. In Fig. 4d, the QBO periods 
at the three altitudes consistently change from ~ 2.5 years 
to ~ 2  years near 2002 and from ~ 2  years to ~ 2.5  years 
near 2008. The period transition can be found from the 
QBOs in the zonal mean zonal wind and tidal DW1 
amplitude at various altitude from 50  km to 100  km 
(Additional file 1: Figs. S1, S2, and S4). The transition is 
most significant in DE3 QBO at 100 km altitude (Addi-
tional file 1: Figs. S3 and S5).

The left panels in Fig.  5 show the time series of the 
QBO periods in the GAIA zonal mean zonal wind, DW1, 
and DE3 at altitudes from 50  km to 100  km. The time 
series of the QBO period is obtained from the wavelet 
spectra of the GAIA zonal mean zonal wind (Additional 
file 1: Fig. S1), DW1 (Additional file 1: Fig. S2), and DE3 
(Additional file 1: Fig. S3). The periods for both the tidal 
and zonal wind QBOs are short (~ 2  years) from 2003 
to 2007. That duration contains three ENSO warm and 
one ENSO cold phases. By contrast, the QBO periods 
are longer (~ 2.5 years) in the 1999–2001 and 2008–2013 
durations. Within the two durations, only one ENSO 
warm phase occurred in 2009/2010, while three strong 
ENSO cold phases occurred over the remaining time.

The weaker DW1 near the stratopause (~ 50 km) over 
the equator (Pancheva and Mukhtarov 2011) and the 
significant QBO phase shift near 70–80  km (Huang 
et  al. 2008) result in an obscuration of the QBO period 
transitions in zonal mean zonal wind and DW1. It is dif-
ficult to detect the period transition in DE3 QBO below 
100 km because there the DE3 QBO is much weaker than 
the short-period components, such as the annual varia-
tion. Significant changes in the DE3 asymmetric mode at 
various altitudes (Oberheide and Forbes 2008) can also 
disturb the DE3 QBO. The agreement between the QBO 
period transitions at the various altitudes reveals that 
ENSO controls the QBO periods in both the stratosphere 
and MLT.

The right panels in Fig. 5 show the correlation between 
the periods of the GAIA tidal/zonal wind QBO and the 
QBO-scale component in ONI. The correlation coeffi-
cients have the highest value (correlation coefficient ~ 0.8) 
when a 1–2 years lead on the ONI corresponding to the 
QBO is taken into account. They highly correlate (> 0.7) 
with each other within 3 years after the ENSO occurred. 
The relationship reveals that the QBO periods take more 
than 1 year to fully respond to the ENSO. Note that the 
correlation between two time series with a few periods 
can be high  even while they are uncorrelated. Longer 
observations collected by ground-based radars or future 
satellite missions are required to comprehensively exam-
ine the period variation of QBOs in the MLT tides.

Discussion and conclusion
The QBO period transition as shown in Figs. 2, 3, 4 and 
5 agree with the statistical results presented by Taguchi 
(2010), wherein the stratospheric QBO period changes 
from a grand mean of approximately 28  months to 32 
and 25 months for the La Niña and El Niño conditions, 
respectively. Christiansen et  al. (2016) also utilized the 
EC-Earth climate model with sea surface temperature to 
simulate the stratospheric QBO propagating downward 
faster during warm ENSOs than during cold ENSOs. A 
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causal relationship between the ENSO-induced broad-
band atmospheric waves, such as Rossby, Kelvin, and 
gravity waves (Dunkerton 1997; Baldwin et al. 2001), and 
interaction between the waves and background mean 
fields has been proposed (e.g., Lindzen and Holton 1968; 
Das and Pan 2016; Newman et al. 2016). The equatorial 
tropopause takes 1 to 2  months to respond to El Niño 
through the convection process (Sun et al. 2014 and ref-
erences therein). The correlation analysis for the QBO 
periods (right panels in Fig.  5) reveals that the effect of 
an ENSO event on the QBOs in the stratosphere and 
MLT can last more than 1 year through the wave-mean 
flow interaction. Diurnal tides can be affected by the 
ENSO when they vertically propagate through the middle 

atmosphere (e.g., Oberheide et  al. 2009; Miyoshi et  al. 
2017). The cause of the ENSO signal in the zonal wind 
QBO near 100 km as due to dissipation or breaking of the 
DW1 (Miyahara 1978) can be further studied.

The intense DW1 and DE3 QBOs from GAIA between 
1997 and 1999 correspond to a strong ENSO warm phase 
in 1997/1998 (top two panels of Fig. 3). Gurubaran et al. 
(2005) examined MLT radar observations of the diurnal 
tide at 86 km over Jakarta (6.4°S, 106.7°E) and Tirunelveli 
(8.7°N, 77.8°E). They found that the annual cycle is rela-
tively weaker between 1996 and 1998, clearly indicating 
an interannual variability in the diurnal tide. The diur-
nal tide anomalies over the two stations are correlated 
with the outgoing longwave radiation anomalies over 
the western Pacific region (120°E). The interannual vari-
ability in the diurnal tide observed by the MLT radars 
confirms intense QBOs of DW1 and DE3 from GAIA 
between 1997 and 1999. In comparison, the wavelet spec-
tra for both the GAIA and SABER DW1 (top two panels 
of Fig. 2) show an enhancement of tidal amplitudes, with 
a period ranging from 1 to 1.5  years between 2014 and 
2016. This period is clearly shorter than the QBO period 
(18 to 34  months) employed in this study. The wave-
let spectra of the GAIA zonal wind, and the U30 index 
(Fig.  4) also display an enhancement of signals with a 
period near 1.5 years between 2014 and 2016. The Fourier 
spectra (in the Additional file 1: Figs. S6–9) show that the 
zonal wind and DW1 amplitude with period near 1.5 year 
is significant in the stratosphere and MLT between 2014 
and 2016. The agreement suggests responses of the strat-
osphere, mesosphere and lower thermosphere to the 
ENSO warm phase of 2014/2016.

A physical-based model can simulate regular phenom-
ena (e.g., QBO) but usually cannot reproduce extreme 
anomalies (e.g., the enhancement with a period from 1 to 
1.5 years between 2014 and 2016). GAIA is a data assimi-
lation system (Jin et al. 2012), where the data assimilation 
analysis is a compromise between a model simulation 
and observations (Sun et al. 2015). Therefore, GAIA suc-
cessfully simulates a shortening of the DW1 QBO during 
the 2014/2016 ENSO warm phase.

Fig. 3  Period of the a DW1 and b DE3 QBOs. Black and gray slashes 
indicate the cone of influence zone for GAIA and SABER, respectively

(See figure on previous page.) 
Fig. 2  Wavelet power spectra of a, b the DW1 amplitude averaged within 10°S–10°N, c, d the DE3 amplitude averaged within 0°–20°N, e, f the 
DE3 amplitude averaged within 0°–20°S, and g ONI. The division of DE3 into the two latitudinal regions is due to its equatorial asymmetry natural. 
The powers are shown on the log2 scale. Black dots indicate the QBO period as a function of time. The QBO period is defined as the location of 
maximum values, the period ranging from 1.5 to 3.5 years. Black curves indicate the cone of influence zone of the wavelet analysis
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Fig. 4  Wavelet power spectra of the GAIA zonal mean zonal wind averaged within 10°S to 10°N at a 100 km and b 60 km altitudes. c Spectrum of 
the U30 index. The U30 index is the zonally averaged winds at 30 mb over the equator from the CDAS Reanalysis data. It represents the strato‑
spheric QBO at 30 mb altitude. d Periods of the U30 index and QBOs in the GAIA zonal mean zonal wind at altitudes of 60 and 100 km

In conclusion, the GAIA simulations and SABER 
observations show that the ENSO controls not only the 
stratospheric QBO, but also the QBO components in the 
tidal amplitude and zonal mean zonal wind in the meso-
sphere and lower thermosphere. The QBO process is one 
of the ways by which the ENSO signal can pass through 
and reach the lower thermosphere. The QBO periods 

are close to 2 years and 2.5 years during the ENSO warm 
phases and neutral/ENSO cold phases, respectively. The 
ENSO effect on QBO periods can last more than one 
year. The ionospheric electrodynamics and structure 
driven by DE3 at the lower thermosphere may also con-
tain the effect from the ENSO. However, it is a challenge 
to extract it in observations under strong solar influences.
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Fig. 5  (Left) Time series of the period of the QBOs in a the GAIA zonal mean zonal wind, c DW1, and e DE3 within the cone of influence zone (from 
July 1999 to June 2013). The periods are obtained from the wavelet spectra of the zonal wind and tidal amplitude (in the Additional file 1: Figs. 
S1–3). (Right) Correlation between the periods of the QBO-scale component in ONI and the QBOs from GAIA b zonal mean zonal wind, d DW1, and 
f DE3 with 99% confidence limit
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cts/analy​sis_monit​oring​/ensos​tuff/ensoy​ears.shtml​. The U30 index is down‑
loaded from http://www.cpc.ncep.noaa.gov/data/indic​es/qbo.u30.index​.
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