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Kinetic effect of heating rate 
on the thermal maturity of carbonaceous 
material as an indicator of frictional heat 
during earthquakes
Shunya Kaneki*   and Tetsuro Hirono

Abstract 

Because the maximum temperature reached in the slip zone is significant information for understanding slip behav-
iors during an earthquake, the maturity of carbonaceous material (CM) is widely used as a proxy for detecting 
frictional heat recorded by fault rocks. The degree of maturation of CM is controlled not only by maximum tempera-
ture but also by the heating rate. Nevertheless, maximum slip zone temperature has been estimated previously by 
comparing the maturity of CM in natural fault rocks with that of synthetic products heated at rates of about 1 °C s−1, 
even though this rate is much lower than the actual heating rate during an earthquake. In this study, we investigated 
the kinetic effect of the heating rate on the CM maturation process by performing organochemical analyses of CM 
heated at slow (1 °C s−1) and fast (100 °C s−1) rates. The results clearly showed that a higher heating rate can inhibit 
the maturation reactions of CM; for example, extinction of aliphatic hydrocarbon chains occurred at 600 °C at a heat-
ing rate of 1 °C s−1 and at 900 °C at a heating rate of 100 °C s−1. However, shear-enhanced mechanochemical effects 
can also promote CM maturation reactions and may offset the effect of a high heating rate. We should thus consider 
simultaneously the effects of both heating rate and mechanochemistry on CM maturation to establish CM as a more 
rigorous proxy for frictional heat recorded by fault rocks and for estimating slip behaviors during earthquake.
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Introduction
Frictional heat generated in fault zones constitutes the 
largest part of the total seismic energy budget during 
an earthquake (e.g., Chester et  al. 2005), and it triggers 
several kinds of fault-weakening mechanisms, including 
thermal pressurization (Sibson 1973) and melt lubrica-
tion (Hirose and Shimamoto 2005), which can strongly 
affect earthquake energetics and fault slip behaviors. 
Because the progression of such mechanisms is closely 
dependent on the amount of heat produced by slip, to 
understand fault slip behaviors during earthquakes it is 
crucial to estimate the maximum temperature recorded 
by the fault rocks.

Several temperature proxies have been proposed as 
indicators of frictional heat recorded by fault rocks 
(Rowe and Griffith 2015). These include pseudotachylyte 
formation (e.g., Cowan 1999; Di Toro et  al. 2005), min-
eral transformations (e.g., Hirono et  al. 2007; Mishima 
et al. 2009; Kameda et al. 2011; Evans et al. 2014), ther-
mal decomposition of carbonate minerals (e.g., Han et al. 
2007; Oohashi et al. 2014), dehydration and dehydroxyla-
tion of clay minerals (e.g., Hirono et al. 2008; Schleicher 
et  al. 2015), and anomalies in fluid-mobile trace ele-
ment concentrations and strontium isotope ratios (e.g., 
Ishikawa et  al. 2008; Honda et  al. 2011). In particular, 
the thermal maturity of carbonaceous material (CM) 
has received considerable attention as a new tempera-
ture proxy (e.g., Savage et  al. 2014; Hirono et  al. 2015; 
Kaneki et  al. 2016; Rabinowitz et  al. 2017) because the 
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organochemical characteristics of CM, including its ele-
mental compositions and molecular structures, change 
irreversibly with increasing temperature (e.g., Beyssac 
et al. 2002). The frictional heat recorded by CM in both 
natural and experimental fault rocks has been inves-
tigated by spectroscopic analyses (e.g., Furuichi et  al. 
2015; Hirono et  al. 2015; Kaneki et  al. 2016, 2018; Ito 
et al. 2017; Kouketsu et al. 2017; Kuo et al. 2017) and by 
determining elemental compositions (Kaneki et al. 2016), 
biomarker indexes (Polissar et al. 2011; Savage et al. 2014; 
Sheppard et al. 2015; Rabinowitz et al. 2017), and vitrin-
ite reflectance (e.g., O’Hara 2004; Sakaguchi et  al. 2011; 
Kitamura et al. 2012; Maekawa et al. 2014; Hamada et al. 
2015). Several studies have succeeded in inferring slip 
behaviors on natural faults during past earthquakes from 
estimations of maximum temperatures recorded by CM 
(Savage et al. 2014; Hirono et al. 2015; Kaneki et al. 2016; 
Mukoyoshi et al. 2018).

Maturation of CM is accompanied by the release of 
various volatile organic components (e.g., aliphatics, 
aromatics), resulting in the formation of a solid residue 
with extremely high carbon content (e.g., Spokas 2010). 
This devolatilization process can be strongly affected not 
only by maximum temperature but also by other fac-
tors such as a change in reactivity due to shear damage 
(mechanochemical effect) and the kinetic effect of the 
heating rate (e.g., Alexander et  al. 1986; Kitamura et  al. 
2012). Recently, Kaneki et al. (2018) experimentally dem-
onstrated that shear-enhanced mechanochemical effects 
can promote various organochemical reactions of CM at 
relatively low temperature and suggested that maximum 
temperatures estimated in the previous studies might be 
overestimated. Although it is known that higher heating 
rates generally lead to higher pyrolytic temperatures of 
CM (e.g., Alexander et al. 1986; Schenk et al. 1990; Huang 
and Otten 1998; Burnham and Braun 1999; Lievens et al. 
2013), however, quantitative evaluation of the kinetic 
effect of heating rate on the CM maturation process dur-
ing earthquakes remains unknown. Furthermore, several 
recent estimates of maximum temperatures are based on 
heating experiments conducted only at slow heating rates 
of about 1 °C s−1 (Hirono et al. 2015; Kaneki et al. 2016; 
Mukoyoshi et al. 2018). For example, Kaneki et al. (2016) 
inferred maximum temperatures and fault slip distances 
in the CM-bearing slip zone of an ancient plate-subduc-
tion fault developed in Kure Mélange, Shikoku, Japan 
(Fig. 1), to be 500–600 °C and 2–9 m, respectively, from 
the results of heating experiments on host-rock CM con-
ducted using a heating rate of 50 °C min−1 (approximately 
1  °C  s−1). This rate is much lower than typical heat-
ing rates during earthquake slip (several tens to several 
hundreds of degrees per second); thus, these estimated 

temperatures and fault slip behaviors may include uncer-
tainties due to the kinetic effect of heating rate.

In this study, we quantitatively investigated the kinetic 
effect of heating rate on the thermal maturation of CM by 
using infrared (IR) and Raman spectrometry and pyroly-
sis–gas chromatography–mass spectrometry (py–GC/
MS) in conjunction with slow- and fast-heating experi-
ments. On the basis of our results, we show that the effect 
of heating rate on thermal maturation of CM has implica-
tions for the use of CM maturity as a proxy for frictional 
heat. We consider information about this effect to be cru-
cial for establishing a more rigorous fault geothermome-
ter and for estimating slip behaviors of past earthquakes.

Materials and methods
Heating experiments
To investigate the kinetic effect of heating rate on CM 
maturation, we collected CM-bearing bulk-rock samples 
from non-deformed shale in the Cretaceous Nonokawa 
Formation, in the Shimanto accretionary complex, 
which crops out along the coast at Kure, Tosa Town, 
Japan (Mukoyoshi et  al. 2006) (Fig.  1). After extracting 
pure CM from the bulk samples by chemical treatment 
(HCl–HF method; see Kaneki et al. 2016 for details), we 
used a thermogravimetry–differential scanning calorim-
eter apparatus (STA 449 C Jupiter balance, Netzsch) for 
our slow-heating experiments. About 30  mg of the CM 
was placed in a covered Pt90Rh10 crucible and heated 
under Ar gas flow at a rate of 50 °C min−1 (approximately 
1  °C  s−1) from an initial temperature of 50  °C to target 
temperatures from 100 to 1000 °C at 100 °C intervals.

For the fast-heating experiments, we used a tube fur-
nace to heat each CM sample. About 10 mg of sample was 
enclosed in a quartz tube (outer diameter, 8 mm; thickness, 
1 mm; length, 25 cm) under vacuum (≤ 10 Pa), and then, 
the tube was inserted into the tube furnace apparatus, 
which had been preheated to the target temperature (100–
1000 °C at 100 °C intervals), for 10 s. We numerically simu-
lated the heating rates during the experiments by adopting 
a CM particle diameter of 100 µm (determined from scan-
ning electron microscope observations) and thermal dif-
fusivities of 1.6 × 10−7 and 8.7 × 10−7 m2 s−1 for CM and 
silica glass, respectively (Gustafsson et  al. 1979; Turian 
et  al. 1991). Then, we simulated the time–temperature 
and time–heating rate relationships for a CM particle with 
these thermophysical properties during the fast-heating 
experiments (Additional file 1). The simulated temperature 
profiles indicate that the heating rate increases as the tar-
get temperature increases, and the maximum heating rate 
that can be achieved is ≥ 100 °C s−1 for all target tempera-
tures except 100 °C (for which 50 °C s−1 is the maximum 
rate) (Additional file  1). Hereafter, therefore, we refer to 
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the slow- and fast-heating rates during the heating experi-
ments as 1 and 100  °C  s−1, respectively. We stopped the 
heating as soon as the targeted temperature was achieved.

Spectroscopic analyses
To investigate the chemical structures of CM, we con-
ducted IR and Raman spectrometry on powdered CM 
samples. IR spectra of CM exhibit various peaks that 
correspond to organic and inorganic chemical bonds 
(e.g., Stuart 2004). These include an O–H stretching 
band at around 3400 cm−1; a sharp aromatic C–H band 
at 3050 cm−1; aliphatic hydrocarbon bands at 2960 cm−1 
(asymmetrical CH3 stretching), 2930  cm−1 (asymmetri-
cal CH2 stretching), and 2860  cm−1 (symmetrical CH2 
stretching); a C=O stretching band at 1680  cm−1; an 
aromatic ring C=C stretching band at 1600  cm−1; and 
weak aliphatic hydrocarbon bending bands at 1455 cm−1 
(asymmetrical CH3 bending) and 1375  cm−1 (sym-
metrical CH2 bending). We followed the methods of 
Kaneki et al. (2016) to obtain our IR spectra. We used a 
Fourier transform IR spectrometer (FT/IR-4700, Jasco 
Inc.) equipped with an IR microscope (IRT-5200, Jasco 

Inc.) to obtain IR absorbance spectra of CM retrieved 
from the shale and from the products of heating at 1 or 
100 °C s−1. The samples were placed on a CaF2 plate and 
then hand-pressed to prevent saturation of the IR spec-
tra. Before the measurements, plates and samples were 
dried in an oven at 50  °C for several hours. To acquire 
one IR spectrum, 100 spectra were accumulated with a 
wavenumber resolution of 4 cm−1, a wavenumber range 
of 4000–1000 cm−1, and an aperture size of 50 × 50 µm2. 
Background intensities of the IR spectra were eliminated 
by measuring a blank CaF2 plate.

Raman spectra of CM show significant peaks at 1355–
1380 and 1575–1620  cm−1, which are known as disor-
dered (D) and graphite (G) bands, respectively (Tuinstra 
and Koenig 1970). Several spectral parameters have been 
used to evaluate the maturity of CM in metamorphic 
rocks (e.g., Beyssac et  al. 2002; Aoya et  al. 2010; Kouk-
etsu et  al. 2014; Nakamura et  al. 2015) and fault rocks 
(e.g., Hirono et  al. 2015; Kaneki et  al. 2016; Kouketsu 
et  al. 2017; Kuo et  al. 2017). We followed the methods 
of Kaneki et al. (2016) to acquire our Raman spectra and 
spectral parameters. We used a Raman microspectrom-
eter (XploRA, Horiba Jobin–Yvon Inc.) equipped with a 
laser (532  nm) to obtain Raman spectra of CM powder 
derived from the shale and from the samples heated at 1 
and 100 °C s−1. Before the measurements, samples were 
dried in an oven at 50 °C for several hours. Although the 
graphitic structure of CM has a crystallographic orienta-
tion (c-axis orientation), we did not control sample ori-
entation during our spectral measurements because the 
orientation is unlikely to affect the Raman spectral fea-
tures (Aoya et  al. 2010). We used an exposure time of 
10 s and a laser power of 0.09–0.11 mW to obtain spec-
tra from the targeted surfaces to avoid thermal damage 
to the powder samples. Because Raman spectra obtained 
from the grain boundaries of CM particles might dif-
fer from those obtained from the body of CM particles 
(Tuinstra and Koenig 1970), we adopted a laser spot size 
of 5 µm as sufficiently smaller than the average CM par-
ticle size (approximately 100  µm). We then used Peak-
Fit 3.0 software (Systat Software Inc.) to fit the D and G 
bands to the acquired spectra after a linear baseline cor-
rection of 1000–1800 cm−1 (Additional file 2). We deter-
mined the intensities of both bands. To compare the 
spectral features among the acquired Raman spectra, we 
normalized the spectra so that the height of the strongest 
peak of each spectrum was the same among the spectra 
being compared. Ten spectra were obtained from each 
sample (one spectrum per CM particle), and the mean 
values and standard deviations of the intensity ratios 
of the D and G bands (ID/IG) were calculated. All of the 
calculated ID/IG ratios with their standard deviations are 
summarized in Additional file 3.
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Fig. 1  Example of a CM-bearing fault. Location (upper) and photo-
graph (lower) of an ancient plate-subduction fault developed in the 
Kure Mélange, Shikoku, Japan. The sampling point of CM-bearing 
non-deformed shale is shown by the black circle on the photograph 
of the outcrop. EUR Eurasia plate, NAM North American plate, PHS 
Philippine Sea plate
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py–GC/MS
To analyze the composition of gases released from the 
starting samples and from the samples that had been 
heated at 1 and 100  °C  s−1, we followed the methods 
of Kaneki et  al. (2016). We used a py–GC/MS system 
consisting of a model EGA/PY-3030D pyrolyzer (Fron-
tier Lab) and a model GCMS-QP2010 SE GC/MS (Shi-
madzu) with an UltraALLOY-5 column. About 1  mg of 
sample was pyrolyzed at 1000 °C for 1 min under vacuum 
(≤ 2  Pa), and chromatographs and chemical composi-
tions of the released gas were then analyzed. First, the 
intensities of the chromatographs were normalized by 
the weight of the analyzed samples, and then, the inten-
sity ratios of toluene to benzene (Itoluene/Ibenzene) were 
determined. All of the calculated Itoluene/Ibenzene ratios are 
summarized in Additional file 3.

Results
Spectroscopic characteristics
The IR spectra of CM from the shale (starting material) 
showed sharp absorbance peaks for the aliphatic C–H 
(2960, 2930, 2860, 1455, and 1375 cm−1), aromatic C–H 
(3050  cm−1), and C=C bonds (1600  cm−1) (Fig.  2). In 
the spectra of samples heated at 1  °C  s−1, the absorb-
ance peaks of the aliphatic C–H bonds and the aromatic 

C–H bond became weak at 600  °C and disappeared at 
700  °C, and the absorbance peaks of the aromatic C=C 
bond became weak at 700 °C and disappeared at 800 °C 
(Fig. 2a). In the spectra of samples heated at 100 °C s−1, 
the absorbance peaks of the aliphatic C–H bonds and the 
aromatic C–H bond became weak at 800  °C and disap-
peared at 900 and 1000 °C, respectively, and the absorb-
ance peaks of the aromatic C=C bond became weak at 
900 °C and disappeared at 1000 °C (Fig. 2b).

The Raman spectra of all of the analyzed samples 
showed distinct D and G band peaks, and the intensity 
of the D band relative to that of the G band increased as 
the target temperature increased (Fig. 3). The ID/IG ratios 
of the samples heated at 1  °C s−1 increased markedly at 
≥ 600 °C, whereas those of samples heated at 100 °C s−1 
started to increase at ≥ 900 °C (Fig. 4).

py–GC/MS
Chromatographs for the CM sample from shale and for 
the products of the heating experiments included clear 
peaks of various aromatic compounds, and the samples 
were especially rich in benzene and toluene (Fig. 5). The 
chromatographs for the products of the heating experi-
ments showed a systematic decrease in peak intensi-
ties as the target temperature increased. Intensities of 
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Fig. 2  Representative IR spectra of the analyzed CM. IR spectra of CM from shale and from products heated at a rate of a 1 °C s−1 or b 100 °C s−1. 
exp. experiment
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the benzene and toluene peaks of CM sample heated at 
1  °C  s−1 decreased markedly at 500  °C and approached 
zero at 700  °C (benzene) and 600  °C (toluene). In con-
trast, for the CM sample heated at 100  °C  s−1, chroma-
tograph peak intensities started to decrease at 800  °C 

and approached zero at 1000  °C. The Itoluene/Ibenzene 
ratios of the CM sample heated at 1  °C  s−1 started to 
decrease at 500 °C, whereas the ratios of samples heated 
at 100  °C  s−1 showed a sudden decrease above 800  °C. 
The Itoluene/Ibenzene ratios in samples heated at 1  °C  s−1 
to ≥ 700 °C and in those heated at 100 °C s−1 to 1000 °C 
could not be determined because of the extinction of the 
toluene and benzene peaks on those chromatographs.

Discussion and conclusions
The py–GC/MS chromatographs revealed that the domi-
nant components of the analyzed CM samples were 
benzene and toluene, and the amounts of these com-
pounds decreased as the target temperature increased 
(Fig.  5). The presence of toluene or phenol, which have 
aliphatic C–H or O–H bonds in their molecular struc-
tures, clearly indicates that the CM from shale was not 
derived from C–H–O-rich fluid at high temperature 
(≥ 500 °C) because such depositional CM is almost fully 
graphitized (e.g., Luque et  al. 2009). In samples heated 
at 1 and 100  °C  s−1, the chromatographic peak of tolu-
ene disappeared (Fig.  5), and extinction of the aliphatic 
C–H absorbance peaks was observed on the IR spectra 
(Fig. 2), at 600 and 900 °C, respectively. This result clearly 

a b

Fig. 3  Representative Raman spectra of the analyzed CM. Raman spectra of CM from shale and from products heated at a rate of a 1 °C s−1 or b 
100 °C s−1. exp. experiment
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indicates that toluene dominantly controlled the amount 
of aliphatic C–H chain in the samples. Furthermore, 
the almost simultaneous disappearance of the chroma-
tographic peak for benzene and the absorbance peak of 
the aromatic C=C bond at 700–800 and 1000  °C in the 
samples heated at 1 and 100 °C s−1, respectively (Figs. 2, 
5), suggests that benzene was the main contributor to 
the aromatic C=C absorbance peaks on the IR spectra. 
The ID/IG ratios of the Raman spectra for the products 
heated at 1 and 100 °C s−1 began to increase at ≥ 600 and 

≥ 900 °C, respectively (Fig. 4). This result is well consist-
ent with the findings of several prior studies that showed 
ID/IG ratios increased when intact CM was exposed to 
high temperatures of several hundreds of degrees Cel-
sius by heating or friction experiments (e.g., Furuichi 
et al. 2015; Hirono et al. 2015; Kaneki et al. 2016, 2018; 
Ito et  al. 2017). In these temperature ranges, no sig-
nificant change in the molecular compounds in gases 
released from the heating products was observed except 
for a small decrease in the chromatographic peak of 

Fig. 5  Gas chromatographs of the analyzed CM. The two chromatographs at the top of each column show the composition of gas released from 
the starting CM. The lower 20 chromatographs show the compositions of gas released from the products heated at 1 °C s−1 (left column) and 
100 °C s−1 (right column). exp. experiment
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benzene (Fig. 5). This result suggests that the changes in 
the ID/IG ratios are possibly attributable to pyrolysis of 
residual benzene with relatively strong bonds within the 
graphitic sheets accompanied by the formation of a dis-
ordered structure as a result of pyrolytic rearrangement. 
The abrupt decreases in the Itoluene/Ibenzene ratios at ≥ 500 
and ≥ 800 °C in the products heated at 1 and 100 °C s−1, 
respectively, might be due to the difference in the pyro-
lytic temperatures of benzene and toluene (Fig. 6).

On the basis of these results, we inferred that the domi-
nant maturation process controlling the changes in the 
organochemical characteristics of the starting CM during 
the heating experiments was the thermal decomposition 
of benzene and toluene, which resulted in the extinction 
of absorbance peaks in the IR spectra at higher tempera-
tures, and the subsequent rearrangement of residual aro-
matic nuclei, which in turn increased the ID/IG ratios of the 
Raman spectra. Although Kaneki et  al. (2016) attributed 
changes in the characteristics of IR and Raman spectra of 
heated CM to the thermal decomposition of toluene and 
the growth of aromatic rings, our series of organochemi-
cal analyses, including py–GC/MS analyses, revealed that 
thermal decomposition not only of toluene but also of ben-
zene, along with subsequent structural rearrangement that 
increased the ID/IG ratios, may have played a significant 
role in maturation process of our CM at high temperature.

Although our CM heating experiments were conducted 
under dry conditions, the in situ environment of natural 
fault rocks is usually water-saturated. Water saturation 
may affect the CM maturation process by providing an 
exogenous source of hydrogen (e.g., Lewan 1997). How-
ever, this hydrothermal effect is reported to appear only 
after a long reaction time of ≥ 70  h at temperatures of 
≥ 330 °C (Lewan 1997). Because our heating experiments 

were completed within 20 min, we can ignore the effect 
of water saturation.

The ID/IG ratio of Raman spectra has long been believed 
to decrease with increasing CM maturity (e.g., Beyssac 
et al. 2002; Kuo et al. 2017), whereas we observed a com-
pletely opposite trend in our results (Fig.  4). However, 
recent friction and heating experiments conducted with 
pure CM or CM-bearing samples have demonstrated 
increases in the ID/IG ratios of CM with increasing tem-
perature (e.g., Furuichi et  al. 2015; Hirono et  al. 2015; 
Kaneki et  al. 2016, 2018; Ito et  al. 2017). Furthermore, 
Mukoyoshi et al. (2018) reported an increase in the ID/IG 
ratios of CM in a natural pseudotachylyte-bearing slip 
zone relative to the ratios in host-rock samples. These 
contradictory results might be explained by heterogeneity 
of the initial condition of the CMs among these studies. 
For example, Kuo et al. (2017) obtained lower ID/IG ratios 
for anthracite samples in a high-velocity friction experi-
ment, whereas Furuichi et al. (2015) reported an increase 
in the ID/IG ratios of brown coal in a similar friction exper-
iment. If it is assumed that the direction of change in the 
ID/IG ratios of Raman spectra with increasing temperature 
depends on the initial maturity of the starting CM (e.g., 
Kouketsu et al. 2014, 2017; Schito et al. 2017), the increas-
ing ID/IG ratios of the Raman spectra of CM with increas-
ing temperature in our study might be attributable to the 
relatively low maturity of the starting CM (bituminous 
coal). Thus, to characterize fully the temperature–matu-
rity relationship, further friction and heating experiments 
and organochemical analyses should be performed using 
CM samples with various initial maturities.

We obtained experimental evidence for the first time that 
a kinetic effect of heating rate is involved in various organo-
chemical reactions of CM. The results of our organochemi-
cal analyses clearly indicate that a higher heating rate can 
inhibit various CM maturation reactions, including the 
thermal decomposition of several aromatic compounds and 
structural rearrangement, thus causing extinction of some 
IR spectral absorbance peaks, increases in the ID/IG ratios 
of Raman spectra, and decreases in the Itoluene/Ibenzene ratios 
on py–GC/MS chromatographs (Fig. 7). These results sug-
gest that the maximum temperatures reported previously 
(Hirono et  al. 2015; Kaneki et  al. 2016; Mukoyoshi et  al. 
2018) might be too low. On the other hand, Kaneki et al. 
(2018) demonstrated that shear-induced mechanochemi-
cal effects can increase a reactivity of various organochemi-
cal reactions, thus lowering the temperatures necessary for 
the occurrence of CM maturation reactions by approxi-
mately 100  °C under a normal stress of 3 MPa and a slip 
distance of 10 m (Fig. 7). Although this study focused only 
on the kinetic effect of heating rate, to understand the CM 
maturation process during earthquake slip and to estab-
lish a more rigorous fault geothermometer based on CM 
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maturity, these two, possibly opposite, effects should be 
considered simultaneously. 

In this study, we focused on how the heating rate might 
affect the maturation of CM during earthquake slip, and 
demonstrated experimentally that a high heating rate can 
inhibit various organochemical reactions of CM. Our results 
suggest that the maximum slip zone temperatures estimated 
previously by slow-rate CM heating experiments (Hirono 
et al. 2015; Kaneki et al. 2016; Mukoyoshi et al. 2018) might 
be underestimated. Furthermore, mechanochemical effects 
during earthquake slip can also strongly affect the matura-
tion of CM (Kaneki et al. 2018). Therefore, comprehensive 
consideration of the effects on CM maturation of both 
heating rate and mechanochemistry, as well as of the initial 
maturity of the starting CM, is needed to establish a more 
rigorous proxy of frictional heat recorded in fault rocks and 
to infer fault slip behaviors during earthquakes.

Additional files

Additional file 1. Numerical simulation results for the heating experi-
ments. Description of data: Simulated experimental relationships between 
a temperature and b heating rate and time for a 100-µm-diameter 
particle of CM.

Additional file 2. Peak decomposition method for Raman spectra. 
Description of data: Representative Raman spectrum (800 °C, fast-rate 
heating experiment) with peaks decomposed for calculation of the ID/IG 
ratio. Our ID/IG ratios roughly correspond to ID1/ID2 ratios calculated by 
several prior studies (e.g., Furuichi et al. 2015; Ito et al. 2017).

Additional file 3. Estimated Raman spectral parameters and gas 
composition ratios. Description of data: Average ID/IG ratios with standard 
deviations and Itoluene/Ibenzene ratios, for the starting CM and the products 
of heating experiments.
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