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drifting field
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Abstract 

The geomagnetic field is comprised of drifting and standing fields. The drifting field has two remarkable features. One 
is predominance of sectorial harmonics when the field is expressed in a spherical harmonic series, and the other is 
uniform drift rate irrespective of harmonics. We consider that the drifting field is a product of interaction of the core 
flow with the axial dipole field near the surface of the core. The key to the predominance of sectorial harmonics is in 
the boundary condition on the electric current at the core–mantle boundary. If we take the mantle to be an electri-
cal insulator, the electric current normal to the boundary must vanish. This strongly constrains the surface flow. The 
toroidal flow becomes the flow with the sectorial harmonics predominant. Then, the sectorial toroidal flow, interact-
ing with the axial dipole field, induces the poloidal field in which the sectorial harmonics are predominant. This is the 
observed type of drifting field. The uniform drift rate, the second nature of the drifting field, seems to suggest that the 
surface part of the core is rotating westwards as a whole. Subsequently, the sectorial type toroidal flow embedded in 
the westward-rotating surface layer is considered as the cause of the drifting field.
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Introduction
Geomagnetic secular variation and westward drift
It is well known that some specific features of the geo-
magnetic field are drifting westwards, while many other 
features are standing at the same place, changing their 
intensity. Take, for example, the intense focus of the ver-
tical component anomaly in the equatorial region near 
the western coast of African continent observed at the 
Earth’s surface. It has been moving westwards stead-
ily for the past several hundred years (e.g., Bullard et al. 
1950; Yukutake and Tachinaka 1968a). At the core sur-
face, a focus corresponding to the African focus was con-
firmed to exist near the equator and drifting westwards 
(Bloxham et  al. 1989; Jackson 2003; Finlay and Jackson 
2003). Besides, the drifting foci are distributed in a nar-
row equatorial region (Jackson 2003; Finlay and Jackson 
2003). These observations seem to suggest that the west-
ward drift in the low latitudes is a special feature charac-
teristic in the equatorial region.

From this, a question arises whether the drift might 
be a local phenomenon limited in the equatorial region. 
In the atmospheric and oceanic sciences, the equatori-
ally trapped wave is a well-known phenomenon (e.g., 
Bretherton 1964; Matsuno 1964; Longuet-Higgins 1968; 
Pedlosky 1987; Zhang 1993). However, it is not certain 
whether such confinement occurs when a magnetic 
field exists. Employing an equatorial β-plane approxi-
mation for the surface layer of the core, Bergman (1993) 
examined how the equator-trapped wave was modified 
in the presence of the dipole field. Although full induc-
tion equations were not incorporated in his formulation, 
he found that the magnetic field released the wave from 
confinement in the equatorial region, and that the wave 
extended its undulation to higher latitudes.

Investigations of the core flow that produces the 
observed magnetic field and its secular variation are 
now being conducted intensively. These are mainly 
based on the frozen flux approximation (Roberts and 
Scott 1965) that ignores magnetic diffusion and regards 
the observed secular variation is due to the advection of 
field at the surface of the core. The frozen flux approxi-
mation is widely applied to the several decade data that 
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include the satellite observation. Further assumptions 
are made such as tangentially geostrophy or quasi-geo-
strophy (see Bloxham and Jackson 1991; Holme 2015; 
Finlay et  al. 2010, for review). In the tangentially geos-
trophic assumption, core surface flow has been estimated 
by assuming that the Lorentz force is negligibly weak at 
the core surface and the geostrophic balance holds. In 
the quasi-geostrophic assumption, the flow is pursued 
that produces the observed type of magnetic field and its 
temporal variation at the core surface by assuming that 
the flow in the core consists of quasi-geostrophic colum-
nar flow (e.g., Pais and Jault 2008; Gillet et al. 2009; Amit 
and Pais 2013). On the other hand, the flow and field of 
numerical geodynamo models were examined whether 
they could generate the field compatible with the obser-
vation at the surface of the core. The model by Aubert 
et al. (2013), for example, which is based on the gravita-
tional coupling between the inner core and the mantle, 
is a successful one. Latitudinal and longitudinal distribu-
tions of the secular variation similar to the observations 
are obtained. Furthermore, endeavors are being made to 
assimilate the observed field to the flow model in the core 
to pursue the development of the magnetic field (Kuang 
et al. 2009, 2010; Tangborn and Kuang 2015; Barrois et al. 
2017, 2018). One of the issues common to these studies 
is azimuthal flow near the core surface, corresponding to 
the drifting of the African focus observed at the Earth’s 
surface. Strong westward flows are commonly obtained 
in the equatorial region of Atlantic hemisphere (e.g., Gil-
let et al. 2015; Finlay et al. 2016), although the existence 
of eastward drifting phase is also suggested, for example, 
in the higher latitudes (Finlay and Jackson 2003). How-
ever, detailed structure such as the equator- symmetric 
nature of the drifting field, which is one of the character-
istic features of the drifting field (Yukutake and Shimizu 
2015), is not well recovered yet.

Although the westward drift appears to be restricted 
to special features when the main field is examined, 
distribution of the temporal variation of the field, secu-
lar variation, is different. The westward drift is also rec-
ognized in the pattern of the secular variation as well. 
However, drifting features cover wider region, extending 
from equatorial region to higher latitudes (Yukutake and 
Tachinaka 1968b; Yukutake and Shinizu 2015). The secu-
lar variation seems to suggest that the westward drift is 
more like a global phenomenon.

Employing the Gauss coefficients of the geomagnetic 
potential expressed in spherical harmonic series, Yuku-
take and Tachinaka (1969) decomposed the geomag-
netic field into drifting and standing fields. The drifting 
field is the field drifting westwards for the past several 
hundred years, while the standing field is the field stay-
ing at the same location. In the drifting field, two features 

are remarkable (Yukutake 1981; Yukutake and Shimizu 
2015). One is the predominance of sectorial harmonics 
where the degree (n) and order (m) are equal. The vertical 
component (or magnetic potential) is symmetric about 
the equator with its maximum at the equator. The other 
remarkable feature is about the drift velocity. It is nearly 
uniform, about 0.3°/year, irrespective of harmonics. On 
the other hand, the standing field is largely anti-symmet-
ric about the equator and its intensity is stronger than the 
drifting field. Accordingly, when the drifting and standing 
fields are synthesized, in the total field the drifting field 
is mostly concealed by the standing field and observable 
only in a narrow equatorial region as the African mag-
netic anomaly (Yukutake and Shimizu 2016).

In this study, we attempt to clarify the nature of the 
drifting field based on the drifting and standing field 
model. Particularly, we concentrate on the characteris-
tic feature, predominance of sectorial harmonics in the 
drifting field.

Outline of the generating process
We consider that the westward drift is a manifestation 
of hydromagnetic process near the surface of the core, 
where the dipole field is dominant. From a nature of the 
drifting field, we assume that the surface layer of the core 
is rotating westwards as a whole. The uniform drift rate, 
one of the characteristic features of the drifting field, 
implies that the drift velocity is nondispersive. It has long 
been a matter of controversy whether the westward drift 
is due to a material flow or a hydromagnetic wave (Bul-
lard et  al. 1950; Hide 1966; Holme 2015). The uniform 
drift rate seems to favor the material flow, in which the 
field is generated and conveyed together. Because the 
hydromagnetic wave is a dispersive wave in general, the 
wave velocity is highly dependent on harmonics. We 
assume here that the surface layer is rotating westwards, 
in which the sectorial type field is produced by interac-
tion of fluid flow with the dipole field.

If we take the mantle to be electrically insulating, elec-
trical currents normal to the core–mantle boundary 
must vanish at the boundary. This leads to predominance 
of sectorial harmonics in the toroidal flow. This type of 
toroidal flow, interacting with the dipole field, induces 
the sectorial type of poloidal field (Yokoyama and Yuku-
take 1989; Yukutake and Yokoyama 1988). This is the 
type of the observed drifting field for the lower harmon-
ics up to n = m = 6 for the past 400 years (e.g., Yukutake 
and Shimizu 2015). When this process occurs in the layer 
rotating westwards, the induced sectorial poloidal field 
is observed as the drifting field that is characterized by 
the sectorial harmonics. In the poloidal flow system, on 
the other hand, the fluid motion is confined on a meridi-
onal plane in the surface layer aligned in the north–south 
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direction. The meridional flow induces the zonal poloidal 
field that is immune to rotation. Then, it is impossible 
to observe the field produced by the poloidal flow as the 
drifting field. Consequently, only the sectorial field gener-
ated by the toroidal flow is observed as the drifting field. 
This process will be confirmed with a simplistic model in 
the following sections.

Theory and methods
Model and equations
We consider a three-layer model shown in Fig. 1. Region 
I is the mantle, and Regions II and III form the core. The 
drifting field is generated in the surface layer of the core 
(Region II). No fluid flow is assumed in the innermost 
part (Region III). The core is rotating westward rela-
tive to the mantle. The mantle is taken to be electrically 
insulating.

The electrical conductivity ( σi ) is assigned to each 
region as follows.

where r′ = r/r0 and r0 is the radius of the core.
Assume that the whole Earth rotates at an angular 

velocity Ω with an axial dipole field B . They are written 
with spherical coordinates (r, θ ,ϕ) as

Region I (mantle) 1 < r′ σ1 = 0,
Region II (core) r′1 ≤ r′ ≤ 1 σ2 = ∞ or σ ,
Region III (core) r′ < r′1 σ3 = σ ,

(1)� = (cos θ ,− sin θ , 0)Ω0

(2)B = (2 cos θ , sin θ , 0)B0/r
′3

Region II and III rotate at an angular velocity of ω0 rela-
tive to the mantle (Region I).

Followings are the equations to be solved for respec-
tive regions. Since Region I is electrically insulating, the 
induced magnetic field b in the mantle becomes a poten-
tial field. Therefore,

In Region II, we assume that the magnetic field is gener-
ated by action of electrically conducting fluid flow. Then,

where v is velocity, ρ is density, ν is kinematic viscosity, 
κ is thermal diffusivity, η is magnetic diffusivity that is 
η = 1/(σµ) , µ is magnetic permeability, and g is gravita-
tional acceleration. In Region III, we assume that the fluid 
is stationary. Then, b must satisfy

(3)∇2
b = 0,

(4)b = − gradV ,

(5)divb = 0,

(6)

∂v

∂t
+ 2�× v = −

1

ρ
grad p+

1

ρµ
curlb× B

+
1

ρµ
curlB× b−

ρ′

ρ
gr̂ + ν∇2

v,

(7)
∂b

∂t
= curl(v × B)+ η∇2

b,

(8)divv = 0, divb = 0,

(9)
∂ρ′

∂t
= − βvr + κ∇2ρ′,

(10)β = dρs
dr

ρ = ρs + ρ

}

(11)ρs(r) = ρ0 −
β

2

(

r

r0

)2

,

(12)g(r) = g0

(

r

r0

)

,

(13)
∂b

∂t
= η∇2

b,

(14)divb = 0.
Fig. 1 Model of the core and mantle
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In Regions II and III, we employ toroidal and poloidal 
vector expression for velocity ( v ) and magnetic field ( b ) 
as

where suffix T indicates toroidal vector, and S poloidal 
vector. Also, ψ and Φ are scalar functions for the veloc-
ity potential, while T and S are scalar functions for the 
magnetic field. With these scalar functions, we rewrite 
the equations.

In Region II, taking curl and curl.curl of (6), (7), (9), we 
obtain their radial components as follows;

where

v = vT + vS ,

vT = curl(ψr), vS = curl[curl(Φr)],

b = bT + bS ,

bT = curl(Tr), bS = curl[curl(Sr)],

(15)

[

∂

∂t
− ν∇2

]

L
2ψ

r
− 2Ω0

1

r

∂ψ

∂ϕ
−

2Ω0

r2

[

DAΦ̂
′ − DBL

2Φ

]

=
B0

ρµ

r
3
0

r5

[

2DAT̂
′ + DBL

2
T

]

+
2B0

ρµ

r
3
0

r4

∂

∂ϕ
∇2

S,

(16)

[

∂

∂t
− ν∇2

]

L2∇2Φ

r
− 2Ω0

1

r

∂∇2Φ

∂ϕ
+

2Ω0

r2

[

DAψ̂
′ − DBL

2ψ

]

=
B0

ρµ

r3
0

r6
∂

∂ϕ

[

L2T̂ ′ + r4

{

2
∂

∂r

(

T̂ ′

r3

)

−
∂

∂r

(

L2T

r3

)

}]

−
B0

ρµ

r3
0

r2

[

2DA

(

∂

∂r
r
∇2S

r3

)

+ DB

(

∇2S

r3

)]

+
g0

ρsr0r
L2ρ′

(17)

[

∂

∂t
− η∇2

]

L
2
T

r
=

B0r
3
0

r2

[

2DA

∂

∂r

(

r
ψ

r3

)

+ DBL
2

(

ψ

r3

)]

−
2B0r

3
0

r2

∂

∂ϕ

[

∇2Φ −
3

r

{

∂Φ

∂r
−

[

L
2 − 1

]Φ

r

}]

(18)

[

∂

∂t
− η∇2

]

L
2
S

r
=

2B0r
3
0

r4

∂ψ

∂ϕ

+
B0r

3
0

r5

[

2DA

∂

∂r
(rΦ)+ DBL

2Φ

]

,

(19)
[

∂

∂t
− κ∇2

]

ρ′ = − β
L2Φ

r
,

L2F = −

[

1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

sin2 θ

∂2

∂ϕ2

]

F ,

Similarly, Eq. (13) in Region III is written as,

In the followings, we use r′ for r and η′ for η,

We assume that Regions II and III are rotating relative to 
Region I. However, for the moment, we adopt the coordi-
nate system that is fixed to the rotating Regions II and III.

For the velocity potential, we take the following form 
with spherical polar coordinates,

where jn
(

αnr
′
)

 and nn
(

αnr
′
)

 are spherical Bessel 
functions.

In this study, we take ν = 0 , κ = 0 . Regarding the elec-
trical conductivity, we study two cases. One is the case 
where the electrical conductivity in Region II is infinite, 
and the other is the case where it is finite.

Boundary conditions
Since ν = 0 , the surface of the top layer of the core and 
the boundary between Regions II and III are stress-free 
boundaries. Then, we have

∇2F =
1

r

∂2

∂r2
(rF)−

L2F

r2
,

F̂ ′ =
∂

∂r
(rF),

DAF =

[

cos θL2 + sin θ
∂

∂θ

]

F ,

DBF =

[

2 cos θL2 + sin θ
∂

∂θ

]

F

(20)
[

∂

∂t
− η∇2

]

L2T

r
,

[

∂

∂t
− η∇2

]

L2S

r
.

r′ =
r

r0
, η′ =

η

r20
.

(21)ψ =
∑

n

∑

m

amn Gn

(

αnr
′
)

Pm
n (cos θ)eimϕeiωt

Gn

(

αnr
′
)

= Anjn
(

αnr
′
)

+ Bnnn
(

αnr
′
)

(22)Φ =
∑

n

∑

m

bmn En
(

αnr
′
)

Pm
n (cos θ)eimϕeiωt

En
(

αnr
′
)

= Cnr
′jn
(

αnr
′
)

+ Dnr
′nn

(

αnr
′
)

(23)
∂

∂r′

(

ψ

r′

)

= 0 at r′ = 1 and r′ = r′1,
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In order to satisfy the condition (23), αn in ψ must be the 
roots of

where

Note that there is infinite number of roots for 
αn

(

αn,i, i = 1, 2, 3 . . .
)

.

In order to satisfy (24), βn must be the roots of the fol-
lowing equation,

Then, we have

The magnetic field produced in Region II diffuses out into 
Region I (mantle) and Region III. Magnetic flux density 
should be continuous at r′ = 1 and r′ = r′1 . The electric 
current normal to the boundary should be zero at r′ = 1 , 
and continuous at r′ = r′1.

Since the normal component of the electric current is 
given by

the boundary condition on the electric current at the 
core–mantle boundary is

Results
Infinite conductivity in Region II
Predominance of sectorial harmonics in the toroidal flow
The flow structure in the surface layer is greatly affected 
by the boundary condition on the electric current at 
the core–mantle boundary. Stress-free flow is further 
restricted by the boundary condition on the electric 
currents. If we take the case where the electric current 
induced by the toroidal flow and the current by the poloi-
dal flow respectively satisfy the boundary condition, sec-
torial harmonics dominate in the velocity potential of 

(24)Φ = 0,
∂2Φ

∂r′2
= 0 at r′ = 1 and r′ = r′1.

ηn(αn)ζn
(

αnr
′
1

)

− ζn(αn)ηn
(

αnr
′
1

)

= 0

ηn(αnr
′) = 1

2n+1

αn
r′

{

(n− 1)jn−1

(

αnr
′
)

− (n+ 2)jn+1

(

αnr
′
)}

ζn
(

αnr
′
1

)

= 1
2n+1

αn
r′

{

(n− 1)nn−1

(

αnr
′
)

− (n+ 2)nn+1

(

αnr
′
)}

}

jn(βn)nn(βnr
′
1)− nn(βn)jn

(

βnr
′
1

)

= 0.

En(βnr
′) = Cnr

′jn(βn)

[

jn
(

βnr
′
)

jn(βn)
−

nn
(

βnr
′
)

nn(βn)

]

.

jr =
L2T ′

r′
,

(25)L2T ′

r′
= 0 at r′ = 1.

toroidal flow, and the velocity potential of poloidal flow is 
restricted to zonal harmonics.

When the electrical conductivity of the generating layer 
is infinite, the boundary condition on the electric current 
(25) due to the poloidal potential Φ becomes

from the induction Eq. (17).
Under the free surface condition (24), this leads to

Namely, we obtain

Then, Φ is expressed only by zonal harmonics,

On the other hand, the condition on the current by toroi-
dal flow ψ leads to

By using the free surface condition on ψ , this becomes

and we can rewrite this as

where

After some manipulation, we obtain

when (n−m) is odd. This implies that the velocity poten-
tial function ψ does not include the terms that are anti-
symmetric about the equator.

2

iω

B0

r′4r
2
0

∂

∂ϕ

[

∇′2Φ −
3

r′

{

∂Φ

∂r′
−

[

L
2 − 1

]Φ

r′

}]

= 0

at r
′ = 1

(26)
∂Φ

∂ϕ
= 0 at r′ = 1.

m = 0.

(27)Φ =
∑

n

b0nEn
(

βnr
′
)

P0
n(cos θ)e

iωt .

1

iω

B0

r′2r0

[

2DA
∂

∂r′

(

r′
ψ

r′3

)

+ DBL
2

(

ψ

r′3

)]

= 0 at r′ = 1.

(28)

1

ω

1

2n+ 1
a
m

n Gn(αn)
[

(n− 1)(n+ 1)(n+ 2)(n+m)Pm

n−1(θ)

− (n− 1)n(n+ 2)(n−m+ 1)Pm

n+1(θ)
]

= 0,

(29)

1

ω

[

amn+1u
m
n Gn+1(αn+1)− amn−1v

m
n Gn−1(αn−1)

]

Pm
n (θ) = 0,

u
m

n =
n(n+ 2)(n+ 3)(n+m+ 1)

2n+ 3
,

v
m

n =
(n− 2)(n− 1)(n+ 1)(n−m)

2n− 1
.

(30)amm+2j+1 = 0
(

j = 0, 1, 2, 3, . . .
)
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On the other hand, when (n−m) is even, we have

where

This indicates that all amm+2j are determined uniquely by 
amm . Accordingly, except for the case of amm = 0 , taking 
(30) into consideration, we obtain

for j = 0, 1, 2, 3, …. This makes it clear that ψ is a function 
symmetric about the equator.

Table  1 shows amm+2j calculated using Eq.  (31) in case 
where r′ = 0.9 and amm = 1 . It is remarkable that amm is 
predominant among amm+2j . This means function ψ is well 
approximated by the sectorial terms.

Magnetic field in the generating layer
Let’s consider the magnetic potential induced by the fluid 
motion that is constrained by the boundary condition 
on the electric current. Let Sψ be the poloidal magnetic 
potential produced by toroidal flow ψ , and SΦ by poloidal 
flow Φ . Then solving induction equation, we obtain

With amm+2j in Table  1, we find that the sectorial term 
dominates in Sψ(see the equation with numerical coeffi-
cients given in “Appendix: Explicit expression of Sψ”).

(31)

amm+2jmax

amm
=

jmax
∏

j=1

rmm+2j−1

Gm(αm)

Gm+2jmax

(

αm+2jmax

)

(

j = 1, 2, 3, . . .
)

rmm+2j−1 =
vmm+2j−1

umm+2j−1

.

(32)

ψ =
∑

m

∑

j

amm+2jGm+2j

(

αm+2jr
′
)

Pm
m+2j(cos θ)e

imϕeiωt

(33)

Sψ = 2B0

∑

m

∑

j

amm+2j

1

ω

m
(

m+ 2j
)(

m+ 2j + 1
)

×
1

r′3
Gm+2j

(

αm+2jr
′
)

Pm
m+2j(cos θ)e

imϕeiωt .

This is due to predominance of the sectorial term amm in 
ψ . The obtained Sψ is exactly the observed type of field as 
the drifting field. Therefore, it can be said that the pre-
dominance of the sectorial term in the drifting field is a 
product of the boundary condition on the electric cur-
rent at the core–mantle boundary.

For the potential SΦ , poloidal flow ( Φm
n  ) induces two 

types of poloidal magnetic field SmΦ ,n−1 , S
m
Φ ,n+1 . Since only 

the terms with m = 0 are nonzero by the boundary condi-
tion for Φ , SΦ is also represented only by zonal harmonics 
as

This result suggests that the field produced by the poloi-
dal flow cannot be observed as the drifting field because 
the field is zonal. Therefore, only the sectorial field gener-
ated by the sectorial toroidal flow is observed as the drift-
ing field.

Let Tψ be the toroidal magnetic field induced by toroi-
dal flow ψ , and TΦ be by poloidal flow Φ . For the toroi-
dal flow ψ constrained by the boundary condition, Tψ 
becomes

Since the sectorial terms predominate, Tψ can be approx-
imated by

(34)

SΦ iB0

∑

n

b
0
n

1

ω

1

r′4r0

1

2n+ 1

[

(n+ 1)
{

(n− 2)En
(

βnr
′
)

− 2βnr
′
E
′
n

(

βnr
′
)}

P
0
n−1(cos θ)− n

{

(n+ 3)En
(

βnr
′
)

+ 2βnr
′
E
′
n

(

βnr
′
)}

P
0
n+1(cos θ)

]

e
iωt

.

(35)

Tψ = iB0

∑

m

∑

j

amm+2j

1

ω

1

r′4r0

1

2
(

m+ 2j
)

+ 1
· eimϕeiωt ·

[

2
(

m+ 2j + 1
)(

m+ j
)

m+ 2j

{(

m+ 2j + 4
)

Gm+2j

(

αm+2jr
′
)

−2αm+2jr
′G′

m+2j

(

αm+2jr
′
)

}

Pm
m+2j−1(cos θ)

−

(

m+ 2j
)(

2j + 1
)

m+ 2j + 1

{(

m+ 2j − 3
)

Gm+2j

(

αm+2jr
′
)

+2αm+2jr
′G′

m+2j

(

αm+2jr
′
)

}

Pm
m+2j+1(cos θ)

]

.

(36)

Tψ = iB0

∑

j

amm
1

ω

1

r′4r0

1

2m+ 1
· eimϕeiωt ·

[

2(m+ 1){(m+ 4})Gm(αmr
′)

−2αmr
′G′

m

(

αmr
′
)

}Pm
m−1(cos θ)

−
m

m+ 1

{

(m− 3)Gm

(

αmr
′
)

+2αmr
′G′

m

(

αmr
′
)}

Pm
m+1(cos θ)

]

.

Table 1 Relative amplitude of amn  for r′
1
= 0.9 and i = 1

Infinite conductivity model

a
m
m a

m

m+2
a
m

m+4
a
m

m+6

m = 2 1 3.3× 10
−2

1.5× 10
−3 6.3× 10

−5

m = 3 1 4.4× 10
−2

1.9× 10
−3 7.6× 10

−5

m = 4 1 4.5× 10
−2

1.9× 10
−3 7.1× 10

−5

m = 5 1 4.4× 10
−2

1.8× 10
−3 6.1× 10

−5

m = 6 1 4.2× 10
−2

1.6× 10
−3 5.2× 10

−5
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On the other hand, TΦ becomes zero. It is because, as dis-
cussed in a previous section, ∂Φ

∂ϕ
= 0 due to the boundary 

condition on the electric current. The induction equation 
becomes

Accordingly, we obtain

This is notable. Toroidal magnetic field is induced solely 
by the toroidal flow ψ , and the poloidal flow Φ has no 
effect on generating the toroidal magnetic field.

Characteristic frequency
In order to obtain the intensity of magnetic field, it is 
necessary to estimate the frequency of the system, as is 
clear in (33) and (34). The model in this study is an oscil-
lating system caused by imbalance between Coriolis and 
Lorentz forces. In the following, we estimate the charac-
teristic frequency of the system.

Eliminating magnetic field in momentum equations, 
we obtain characteristic equations for the frequency. 
For the toroidal flow, they produce two separate classes 
of frequency. One is the inertial frequency ( ωi ), and the 
other is the magnetostrophic frequency ( ωm ). If we take 
Ω0 to be the rotational frequency of the Earth, and ΩB as

we have Ω2
B ≪ Ω2

0 in our model. An order-of-magnitude 
estimate by a dimensional analysis gives

For the poloidal flow, the inertia-gravitational frequency 
( ωg ) that is a kind of inertial frequency modified by gravi-
tational and Lorentz forces is obtained as

in case Ω2
g ≈ Ω2

0 , where

∂

∂t

L2TΦ

r′
= 0.

TΦ = 0.

Ω2
B =

B2
0

ρµ

1

r20
,

ωi ≈ Ω0 = O(10−4) 1/s

ωm ≈
Ω2

B
Ω0

= O(10−14) 1/s

}

ωg ≈ −Ω0 ±
√

Ω2
0 +Ω2

g

[

1+
1

2

Ω2
B

Ω2
0 +Ω2

B

]

= O(10−4) 1/s

Ω2
g = −

β

ρ
g .

Since the drifting field is the field induced by the toroidal 
flow, we here concentrate on the magnetostrophic mode, 
whose frequency is as low as 10−14 1/s.

Eliminating T and S in momentum Eqs. (15) and (16) by 
means of induction Eqs. (17) and (18), we multiply them 
by Gn

(

αn,jr
)

Pm′

n′ (cos θ)e
im′ϕr2 sin θdrdθdϕ , and integrate 

over interior of the spherical shell. Then, we obtain

where

For the expressions of coefficients 
{

p̃mo,n, p̃
m
a,n+2, p̃

m
b,n−2, . . .

}

 
see “Appendix: Coefficients in Eqs. (37) and (40).”

Since this is intractable, we here adopt a very crude 
approximation. We solve the following equation,

and regard the obtained frequency as the representa-
tive frequency of this system. Explicit expression of (39) 
becomes

(For {ctn1, ctn2, ctn3, ggm, gn, dgm, d2gn} , see “Appendix: 
Coefficients in Eqs. (37) and (40).”)

In {ctn1, ctn2, ctn3, . . .} of the above equation, n should be 
taken to be m (n = m). The obtained frequency is sepa-
rated into two classes, a relatively high frequency of the 
order of O

(

10−4
)

  1/s and a low frequency lower than 
O
(

10−10
)

 1/s. The higher frequency is inertial frequency, 
and the low frequency is magnetostrophic frequency. 
Approximate solution and numerical values when m = 2 
are shown as the following.

Inertial frequency

(37)

�

n

�

m

�

amn

�

K̃m
n + p̃mo,n

�

+ amn+2p̃
m
a,n+2 + amn−2p̃

m
b,n−2

�

= 0

�

n

�

m

�

amn+1p̃
m
c,n+1 + amn−1p̃

m
d,n−1

�

= 0











(38)K̃m
n = {ωn(n+ 1)− 2mΩ0}ggn

(39)K̃m
m + p̃mo,m = 0,

(40)

{ωm(m+ 1)− 2mΩ0}ggm +
Ω2

B

ω

{(

ctn1 +
4m

m+ 1

)

gn

+

(

ctn2 +
16m

m+ 1

)

dgm +

(

ctn3 −
4m

m+ 1

)

d2gn

}

= 0.

ωm =
2

m+ 1
Ω0,

ω2 =
2

3
Ω0 = 0.486× 10−41/s.
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Magnetostropic frequency

This is a very low frequency as initially guessed.
Numerical solutions for magnetostrophic frequency 

are listed in Table 2 for r′1 = 0.9 and i = 1.

Magnetic field in the mantle
The magnetic field generated in Region II diffuses out 
into the mantle. The diffused field is derived by continua-
tion of the normal component of magnetic flux density at 
the boundary.

Until here, the magnetic potentials Sψ and SΦ have been 
obtained based on the coordinate system fixed in Region 
II that is rotating westwards. When the westward veloc-
ity v is constant, Sψ in (33) and SΦ in (34) are expressed 
in the coordinate system fixed to the mantle Region I as 
follows.

Since the sectorial terms predominate, (41) is 
approximately

It is noted that (42) is the same as (34), which means that 
the zonal field is not affected by transformation of the 
coordinate system from rotating to static system.

ωm =
1

2m

Ω2
B

Ω0

{(

ctn1 +
4m

m+ 1

)

gm

ggm

+

(

ctn2 +
16m

m+ 1

)

dgm

ggm
+

(

ctn3 −
4m

m+ 1

)

d2gm

ggm

}

,

ω2 = − 8.79× 10−141/s.

(41)

Sψ = 2B0

∑

m

∑

j

amm+2j

1

ω

m
(

m+ 2j
)(

m+ 2j + 1
)

×
1

r′3
Gm+2j

(

αm+2jr
′
)

Pm
m+2j(cos θ)e

im(vt+ϕ)eiωt ,

(42)

SΦ = iB0

∑

n

b
0
n

1

ω

1

r′4r0

1

2n+ 1

[

(n+ 1)
{

(n− 2)En
(

βnr
′
)

− 2βnr
′
E
′
n

(

βnr
′
)}

P
0
n−1(cos θ)− n

{

(n+ 3)En
(

βnr
′
)

+2βnr
′
E
′
n

(

βnr
′
)}

P
0
n+1(cos θ)

]

e
iωt

.

(43)

Sψ = 2B0
∑

m
amm

1
ω

1
(m+1)

1
r′3
Gm

(

αmr
′
)

Pm
m(cos θ)eim(vt+ϕ)eiωt

In the mantle (Region I), the magnetic field consists of 
the fields originated from Sψ and SΦ . Let Vψ and VΦ be

where Vψ is the potential of Sψ origin, and VΦ of SΦ ori-
gin. Then, the boundary condition at r′ = 1 leads to

Here, we note that the rigidly rotating core satisfies the 
boundary conditions both on the free surface flow and on 
the electric current at the core–mantle boundary despite 
the surface velocity being only in the westward direction.

Toroidal velocity
We make an order-of-magnitude estimate of the toroi-
dal velocity. By making use of (45), we can estimate 
the velocity that induces the observed drifting field to 
find that very slow velocity is capable of producing the 
observed field. Figure 2 shows the observed drifting field 

(44)
Vψ =

�

n

�

m
Vm
ψ ,nP

m
n (cos θ)eimϕeiω

′t

VΦ =
�

n

�

m
Vm
Φ ,nP

m
n (cos θ)eimϕeiω

′t







,

(45)

Vψ = 2B0

∑

m

∑

j

amm+2j

1

ω

m

m+ 2j + 1
Gm+2j

(

αm+2j

)

×

(

1

r′

)m+2j+1

Pm
m+2j(cos θ)e

im(vt+ϕ)eiωt ,

(46)

VΦ = iB0

∑

n

b
0
n

1

ω

1

r0

n+ 1

2n+ 1

[

(n− 1){(n− 2)En(βn)

−2βnE
′
n(βn)

}

(

1

r′

)n

P
0
n−1(cos θ)− n{(n+ 3)En(βn)

+2βnE
′
n(βn)

}

(

1

r′

)n+2

P
0
n+1(cos θ)

]

e
iωt

.

Table 2 Characteristic magnetostrophic frequency ωm 
for r′

1
= 0.9 and i = 1

Infinite conductivity model

m = 2 m = 3 m = 4 m = 5

ωm  (s−1) − 8.8× 10
−14 − 7.3× 10

−13 − 1.9× 10
−12 − 3.6× 10

−12

0˚ 60˚E 120˚E 180˚ 120˚W 60˚W 0˚
80˚S 80˚S

60˚S 60˚S

40˚S 40˚S

20˚S 20˚S
0˚ 0˚

20˚N 20˚N

40˚N 40˚N

60˚N 60˚N

80˚N 80˚N
2000 Z

0

0

10000

Fig. 2 Drifting field at the Earth’s surface at year 2000. Unit is nT. 
Non-axisymmetric part and the drifting part of the equatorial dipole 
field are included
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for 2000AD. The toroidal velocity that produces secto-
rial parts of the drifting field in Fig.  2 is calculated and 
depicted in Fig.  3. Solid line indicates anti-clockwise 
motion, while dotted line clockwise. It is noticeable that 
small-scale flows as expressed by sectorial harmon-
ics n = m = 6 are predominant. In Fig.  4, the maximum 
northward velocity for each harmonic order at the equa-
tor is plotted. The maximum velocity increases with the 
harmonic order. For m = 2, for example, the velocity is 
2.1× 10−6  cm/s, while for m = 6, it is 4.7× 10−5  cm/s. 
This increasing trend means that, in order to gener-
ate the observable field, the higher velocities are nec-
essary for the smaller scale fields. It should be noted, 
however, that the drifting-standing field in the present 

model is terminated with n = m = 6. When the analysis 
is extended to higher harmonics, the flow pattern is sup-
posed to be more small-scale predominant.  

It is surprising that such slow velocity is capable of pro-
ducing the observed drifting field. It is supposed to be 
caused by such extreme conductivity as infinite conduc-
tivity assigned to the generating layer Region II. Much 
higher velocity is expected for the finite conductivity.

Finite electrical conductivity in Region II
Following the procedures of the infinite conductivity 
case, we have extended our study to a finite conductivity 
model. In this section, we summarize the results. Since 
the observed type of sectorial poloidal field is produced 
only by toroidal flow ψ and the whole process is essen-
tially the same as that of the infinite conductivity case, we 
describe the results for toroidal flow ψ.

Magnetic potential
For finite conductivity, η′ �= 0 . Then, the induction 
Eqs.  (17) and (18) become impossible to solve analyti-
cally. Therefore, we were obliged to resort to a crude 
approximation. Let ε be

We solve the following equations for toroidal and poloi-
dal magnetic potentials induced by toroidal flow;

Then, we obtain

(47)ε =
1

r0

r0 + r1

2
.

(48)

[

∂
∂t − η′∇2

]

L2T
r′ = B0

ε5r0

[

2DA
∂
∂r′

(

r′ ψ
r
′3

)

+ DBL
2
(

ψ

r′3

)]

,

(49)
[

∂
∂t − η′∇2

]

L2S
r′ = 2B0

ε4
∂ψ
∂ϕ

.

(50)

T =
∑

n

∑

m

[

iB0

ε5r0

{

1

ω − iωη,n+1

amn+1t
m
u,nr

′G̃u,n+1

(

αn+1r
′
)

−
1

ω − iωη,n−1

amn−1t
m
v,nr

′G̃v,n−1

(

αn−1r
′
)

}

+
r′

n(n+ 1)

{

Am
t,njn

(

k ′r′
)

+ Bm
t,nnn

(

k ′r′
)}

]

Pm
n (cos θ)eimϕeiωt

(51)

S =
∑

n

∑

m

[

2B0

ε4

1

ω − iωη,n
amn s

m
n r

′Gn

(

αnr
′
)

+
r′

n(n+ 1)

{

Am
s,njn

(

k ′r′
)

+ Bm
s,nnn

(

k ′r′
)}

]

Pm
n (cos θ)eimϕeiωt

0˚ 60˚E 120˚E 180˚ 120˚W 60˚W 0˚
80˚S 80˚S

60˚S 60˚S

40˚S 40˚S

20˚S 20˚S
0˚ 0˚

20˚N 20˚N

40˚N 40˚N

60˚N 60˚N

80˚N 80˚N
Toroidal flow

0

0

0

0

0

0

10

10

-10

-10

Fig. 3 Velocity potential ψ at the core surface estimated from the 
drifting field at year 2000AD. Unit is 10−6 cm/s. Infinite conductivity is 
assumed in Region II

0

10

20

30

40

50

2 3 4 5 6
m

10
-6
cm/sec

v
e

lo
c

it
y

Fig. 4 Maximum velocity at the equator on the core surface. In the 
unit of 10−6 cm/s. In case with σ = ∞
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where

For Am
t,n , Bm

t,n , Am
s,n , and Bm

s,n , see “Appendix: Coefficients in 
Eqs. (50), (51).”

Since the normal component of the electric cur-
rent must vanish at the core–mantle boundary, T must 
be zero at the boundary. As the normal component of 
the current, here we take that of the current due to the 
induction before the current diffuses, which means that 
we take the current produced by the first term of (50) 
with the second term set aside. Then, we obtain,

It follows that

This means that the toroidal velocity potential ψ is a func-
tion symmetric about the equator. Then, amm+2j is derived 
from amm by the equation

k ′2 = −
iω

η′

t
m

u,n =
(n+ 2)(n+m+ 1)

(n+ 1)(2n+ 3)
, t

m

v,n =
(n− 1)(n−m)

n(2n− 1)
,

s
m

n =
m

n(n+ 1)
,

G̃u,n+1

(

αn+1r
′
)

= 3(n+ 3)Gn+1

(

αn+1r
′
)

− 2αn+1εGn

(

αn+1r
′
)

G̃v,n−1

(

αn−1r
′
)

= 3(n− 2)Gn−1

(

αn−1r
′
)

− 2αn−1εGn

(

αn−1r
′
)

}

(52.1)amn+1 = amn−1r
m
n ,

(52.2)rmn = r̃mn
ω − iωη,n+1

ω − iωη,n−1
,

(52.3)
r̃mn =

gv
(

r′0
)

gu
(

r′0
)

(52.4)
gu

(

r′0
)

= n(n+ 1)tmu,nG̃u,n+1

(

αn+1r
′
)

gv
(

r′0
)

= n(n+ 1)tmv,nG̃u,n−1

(

αn−1r
′
)

}

.

(53.1)amm+2j−1 = 0,

(53.2)

a
m

m+2j

a
m

m+2j−2

= r
m

m+2j−1 = r̃
m

m+2j−1

ω − iωη,m+2j

ω − iωη,m+2j−2

(

j = 1, 2, 3, . . .
)

.

At this stage, ω is unknown. Approximating ωη,m+2j and 
ωη,m+2j−2 by ωη,m+2j−1 , we have

Then, similarly to the infinite conductivity case, it has 
become clear that the sectorial term ( amm ) is by far larger 
than any other terms ( amm+2j ) as shown in Table  3. The 
results are essentially the same as those for the infinite 
conductivity. The difference between the results is due 
to the approximation in the finite conductivity case as in 
(48) and (49).

Since the odd coefficients of the velocity potential 
are zero [ amm+2j−1 = 0 in (53.1)], the poloidal magnetic 
potential S becomes symmetric about the equator, while 
the toroidal potential T is anti-symmetric. This is clearly 
seen in the following equations.

amm+2jmax

amm
=

jmax
∏

j=1

rmm+2j−1 =
ω − iωη,m+2jmax

ω − iωη,m

jmax
∏

j=1

r̃mm+2j−1.

(54)
amm+2jmax

amm
=

jmax
∏

j=1

r̃mm+2j−1.

(55)

S =
2B0

ε4

∑

m

∑

j=0

∑

i

1

ω − iωη,m+2j,i
amm+2j,is

m
m+2j

×
[

r′Gm+2j

(

αm+2j,ir
′
)

+ r′
{

Ām
s,m+2j,i j̄m+2j

(

k ′r′
)

+ B̄m
s,m+2j,in̄m+2j

(

k ′r′
)

}]

Pm
m+2j(cos θ)e

imϕeiωt

smm+2j =
m

(

m+ 2j
)(

m+ 2j + 1
) ,

(56)

T =
iB0

ε5r0

∑

m

∑

j=0

∑

i

[

amm+2j,i

1

ω − iωη,m+2j,i

{

tmu,m+2j−1r
′G̃u,m+2j

(

αm+2jr
′
)

Pm
m+2j−1(cos θ)

− tmu,m+2j+1r
′G̃u,m+2j

(

αm+2jr
′
)

Pm
m+2j+1(cos θ)

}

+ amm+2j,i

r′
(

m+ 2j + 1
)(

m+ 2j + 2
)

{

Ām
t,m+2j+1 j̄m+2j+1

(

k ′r′
)

+ B̄m
t,m+2j+1n̄m+2j+1

(

k ′r′
)

}

Pm
m+2j+1(cos θ)

]

eimϕeiωt

Table 3 Relative amplitude amn  for r′
1
= 0.9 and i = 1

Finite conductivity model

a
m
m a

m

m+2
a
m

m+4
a
m

m+6

m = 2 1 3.3× 10
−2

5.3× 10
−3

1.4× 10
−3

m = 3 1 4.3× 10
−2

6.2× 10
−3

1.4× 10
−3

m = 4 1 4.3× 10
−2

5.6× 10
−3

1.1× 10
−3

m = 5 1 4.0× 10
−2

4.7× 10
−3 8.3× 10

−4

m = 6 1 3.7× 10
−2

3.9× 10
−3 6.2× 10

−4
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In the case of infinite conductivity, predominance of the 
sectorial terms of velocity amm has led to the predomi-
nance of sectorial terms in S, as in the observed drift-
ing field. In order to confirm whether this is also true in 
the finite conductivity case, we need to estimate the fre-
quency ω.

Characteristic frequency
Following the procedure as in the case for the infinite 
conductivity case, we calculate representative frequen-
cies. Corresponding to Eq. (40), we obtain

Unfortunately, this is intractable, because Vm
n  and Wm

n  
contain ω . (For Um

n  , Vm
n  , and Wm

n  , see “Appendix: Coef-
ficients in Eqs.  (57), (58).”) However, if we assign an 
approximate value to ω in Vm

n  and Wm
n  , we can solve the 

equation. Then, we obtain the frequencies,

where ωi
m+2j is the inertial frequency and ωm+2j is the 

magnetostrophic frequency. For ggm+2j and qw,m+2j , see 
also “Appendix: Coefficients in Eqs.  (57), (58).” Here, we 
employ an iterative procedure. Giving an initial guess 
ω0 to ω in Vm

n  and Wm
n  , we calculate ωm . Adopting the 

obtained ωm as the initial guess in the next step, we repeat 
the process. ωm obtained in this way is shown in Table 4. 
Although the convergence is not necessarily good, here 
we adopt the Step 3. Then, the frequencies are obtained 
as in Table 5. They are higher than in the case of infinite 
conductivity.

tmu,m+2j−1 =
2
(

m+ 2j + 1
)(

m+ j
)

(

m+ 2j
)(

2m+ 4j + 1
) ,

tmv,m+2j+2 =

(

m+ 2j
)(

2j + 1
)

(

m+ 2j + 1
)(

2m+ 4j + 1
) ,

G̃u,m+2j

�

αm+2jr
′
�

= 3
�

m+ 2j + 2
�

Gm+2j

�

αm+2jr
′
�

−2αm+2j−1εGm+2j−1

�

αm+2jr
′
�

G̃v,m+2j

�

αm+2jr
′
�

= 3
�

m+ 2j − 1
�

Gm+2j

�

αm+2jr
′
�

−2αm+2j−1εGm+2j+1

�

αm+2jr
′
�



















.

(57)

{n(n+ 1)ωm− 2mΩ0}

1
∫

r
′
1

[

Gn

(

αnr
′
)]2

r
′2
dr

′

+
Ω2

B

ω − iωη,n

1
∫

r
′
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Predominance of sectorial terms in the toroidal flow 
and the poloidal field
Now, the frequency has been obtained, and we can calcu-
late the magnetic potential S and T. We rewrite (55) and 
(56) as follows.

where

(59)
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(
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(
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(
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(
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Table 4 Characteristic magnetostrophic frequency ωm 
 (s−1) for m = 2 , r′

1
= 0.9 and i = 1

Finite conductivity model

Initial guess ω
2
  (s−1) Obtained ω

2
  (s−1)

Step 1 2.83× 10
−12 + 1.31× 10

−13
i 6.41× 10

−13 + 1.02× 10
−12

i

Step 2 6.41× 10
−12 + 1.02× 10

−12
i 3.67× 10

−13 + 7.26× 10
−12

i

Step 3 3.67× 10
−13 + 7.26× 10

−12
i 4.18× 10

−13 + 6.55× 10
−12

i

Table 5 Characteristic magnetostrophic frequency ωm 
 (s−1) for r′

1
= 0.9 and i = 1

Finite conductivity model

ω
m
m  (s−1)

m = 2 4.18× 10
−13 + 6.55× 10

−12
i

m = 3 1.25× 10
−12 + 1.62× 10

−12
i

m = 4 2.48× 10
−12 + 2.82× 10

−12
i

m = 5 4.09× 10
−12 + 4.17× 10

−12
i

m = 6 6.06× 10
−12 + 5.69× 10

−12
i
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Then, we obtain Smg ,n , SmA,n and SmB,n . Taking amn  = 1 their 
absolute values are plotted in Fig. 5a for m = 2. The figure 
indicates that the sectorial harmonics n = m dominate 
over other harmonics n = m + 2, m + 4,…. This means 
that the observable field becomes sectorial term predom-
inant. (In “Appendix: Explicit expression of S in (59) for 
m = 2”, S for m = 2 is given with numerical coefficients.)

Absolute values of 
{

Tm
gu,n,T

m
gv,n,T

m
A,n,T

m
B,n

}

 are plotted 

in Fig. 5b for m = 2. In this case, the term for n = m + 1 is 
predominant. The field is anti-symmetric about the 
equator.

Toroidal velocity
Similarly to the infinite conductivity case, we can esti-
mate the toroidal velocity that induces the observed drift-
ing field. The flow pattern compatible with the observed 
drifting field is shown in Fig.  6. In the figure, shown is 
the flow responsible only for inducing the sectorial part 
of the drifting field. When compared with that for the 
infinite conductivity model in Fig.  3, it is clear that the 
pattern is dominated by lower harmonics such as m = 2, 
while in the infinite conductivity model, higher harmonic 
flow is outstanding.

The maximum velocity at the equator at the core sur-
face is plotted against order m in Fig. 7. A difference from 
the case of infinite conductivity is that the velocity for 

m = 2 is faster than any other harmonics. For m = 2, the 
velocity is 1.7× 10−4 cm/s, while it is 1.4 × 10−4 cm/s for 
m = 6. A further difference is that the velocity is 10–102 
times faster than that of the infinite conductivity case. 
This is reasonable because, in the finite conductivity case, 
greater energy is required for the liquid flow against Joule 
dissipation to generate the observed field.
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Summary of the results
It has been presumed that the observed drifting field is 
produced by interaction of core surface flow with the 
axial dipole field. In order to understand the essential 
process, we have examined an extreme case. The mantle 
is electrically insulating, and the field-generating layer 
is of infinite conductivity. Fluid viscosity and thermal 
diffusivity are zero. Then, the top surface is stress free. 
Although the observed field is not a simple dipole field 
but the nondipole field also exists near the core–mantle 
boundary, we approximated the field by an axial dipole 
field only. Then, we examined the field generated by fluid 
flows in a thin shell at the core surface.

We have found that the boundary condition on the 
electric current at the core–mantle boundary exerts the 
vital effect on generating the observed type of drifting 
field. The normal component of the current must vanish 
at the core–mantle boundary. This strongly constrains 
the flow pattern at the surface. When the current induced 
by the toroidal flow satisfies the boundary condition, the 
flow becomes the type of sectorial harmonics predomi-
nant. Interacting with the dipole field, this flow induces 
the poloidal magnetic field with the sectorial harmonics 
predominant, which is exactly the same type of field as 
the observed drifting field. On the other hand, the poloi-
dal flow becomes the flow confined on the meridional 
plane. It induces the zonal poloidal field that cannot be 
observed as the drifting field.

Figure  8 shows an example of the predominance of 
the sectorial term in the toroidal velocity potential ψ , 
which is a2n/a22 for the infinite conductivity case. Even if 
the conductivity of the generating layer is finite such as 

5× 105 S/m, predominance of the sectorial harmonics 
still holds. It is noted that the coefficients amn  are uniquely 
determined by the sectorial coefficient amm , but amm is left 
undetermined. In order to fix amm , some more additional 
conditions are needed.

The characteristic frequency is different between 
the two models. For the infinite conductivity, the fre-
quency is lower than for the finite conductivity. It is 
ωm = −8.8× 10−14 1/s for m = 2 for the infinite conduc-
tivity, whereas it is ωm = 4.2× 10−13 + 6.6× 10−13i  1/s 
for m = 2 for the finite conductivity model. Since the 
toroidal velocity is proportional to frequency, the veloc-
ity to induce the observed magnitude of the drifting 
field is slower for the infinite conductivity than for the 
finite conductivity. It is about 10−6 − 10−5  cm/s for the 
infinite conductivity, while it is about 10−4  cm/s for the 
finite conductivity. It is reasonable that the slower veloc-
ity is sufficient for the higher conductivity to induce the 
observed field. It is also noted that the velocity obtained 
here is much slower than the velocity inferred from the 
westward drift of the magnetic field, 10−2 cm/s.

It is unknown how thick the surface flow is that effec-
tively contributes to the generation of the drifting field. 
Changing the thickness of the surface layer, we have 
examined the change of frequency for the infinite con-
ductivity model. Table  6 shows the characteristic fre-
quency for the thickness (D) of 175  km, 350  km and 
700  km in case of infinite conductivity. The frequency 
increases with the thickness. This may sound some-
what strange, because the magnetostrophic frequency 
decreases with thickness as D−2 , provided the magnetic 
field is constant. In the present case, however, the dipole 
field increases its intensity with depth as r−3 . This inten-
sity change is supposed to affect the frequency increase 
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with thickness. As discussed before, the increase in 
frequency leads to increase in the fluid velocity that 
is needed to produce the observed drifting field. How-
ever, the frequency change is not so large as in the case 
of changing conductivity. Therefore, the change in the 
velocity due to the change of the thickness is rather lim-
ited. This suggests that participation of the deeper part 
of the surface flow is not very sensitive in generating the 
drifting field.

Inviscid fluid with zero viscosity is another extreme 
approximation. This allows the free surface condition at 
the core–mantle boundary. However, this is not an actual 
case. Since the fluid core is viscous liquid, the core–man-
tle boundary must be taken as the rigid surface. Surpris-
ingly if the rigid boundary condition is applied, the radial 
component of the field induced by fluid flow becomes 
zero at the core–mantle boundary, so that the induced 
field cannot be observed at the Earth’s surface. This prob-
lem will be surmounted by attaching a thin viscous layer 
with finite electrical conductivity to the mantle. Then, the 
boundary between this thin layer and the field-generating 
layer is stress-free surface. The thin top layer works only 
to attenuate the field from inside.

Discussion
In this study, we have pursued a generation process of the 
drifting field, considering that the drifting and standing 
fields are of different origin. This is a different approach 
to the core dynamics from that of many current inves-
tigations that attempt to derive the flow structure from 
the total field without discriminating the different type 
of fields. Such remarkable features as westward drift-
ing flux patches in the equatorial region of the Atlantic 
hemisphere or low secular variation in the Pacific area 
are common issues to these investigations. They were 
attempted to explain by specific numerical dynamo simu-
lations by ascribing inhomogeneous boundary conditions 
at the inner-outer core or core–mantle boundary (e.g., 
Amit and Choblet 2012; Aubert et al. 2013).

In our model, however, these features are a natural 
consequence of coexistence of two types of fields, drift-
ing and standing fields (Yukutake and Shimizu 2015, 
2016). Westward drift becomes remarkable at the equa-
tor by superposition of the standing field, whose vertical 

component is anti-symmetric about the equator, on the 
sectorial type of equator-symmetric drifting field. Time 
variation is also different between the two types of fields. 
Some of the standing fields are growing rapidly, and the 
other decaying. Low secular variation in the Pacific is 
supposed to be caused by the drifting field’s passing over 
the changing standing fields. The problem is, therefore, 
to find the flow structure of the drifting and the standing 
fields separately.

One of the attractive ideas about the westward drift is 
wave propagation. Magnetostrophic wave (often called 
magnetic Rossby wave) generated by combined effect of 
Coriolis, Lorentz and/or gravitational forces has been 
considered to be a cause of the westward drift of the 
magnetic field (see, e.g., Finlay et  al. 2010 for review). 
Yoshida and Hamano (1993), Hori et al. (2018), for exam-
ple, examined the magnetostrophic waves in the frame-
work of quasi-geostrophic approximation. Yoshida and 
Hamano (1993) obtained the westward drifting field with 
phase velocity similar to the observed, which was excited 
by the oscillation of the mantle with respect to the core 
with heterogeneous topographic bottom boundary. To be 
noted is that they obtained the wave that was symmetric 
about the equator as expressed by sectorial harmonics. 
That is exactly the type of the observed field. This stems 
from the type of the toroidal field they assumed as the 
background. It was equatorially symmetric field. Interac-
tion of the columnar flow, which is essentially symmet-
ric type in the quasi-geostrophic approximation, with the 
symmetric toroidal field induces equatorially symmetric 
poloidal field. Accordingly, the problem in their study is 
whether the toroidal field is equatorially symmetric or 
not. Hori et  al. (2018) conducted geodynamo simula-
tions and found the magnetostrophic waves that were 
compatible with those derived from quasi-geostrophic 
approximation. Unfortunately, however, their waves were 
of equatorially anti-symmetric type. This is due to the 
toroidal field in their simulation, which was anti-sym-
metric about the equator, although it is very usual in the 
geodynamo simulations (see, e.g., Christensen and Wicht 
2009). Through interaction with anti-symmetric toroidal 
field, columnar flow induces anti-symmetric field.

Common to these wave theories there is a serious 
problem. It is a dispersive nature of the wave velocity. The 
phase velocity highly depends on the harmonics, while 
there is no significant dispersive relationship between 
harmonics in the observed field (Yukutake and Shimizu 
2015). Considering the nondispersive drift velocity, we 
considered in this study that the field is buried in the 
zonal flow near the core  surface and carried westwards 
as a whole. The zonal flow has been approximated by a 
rotating spherical shell. This is similar to the classical 
Bullard et  al.’s model (1950). Since this is a very crude 

Table 6 Characteristic frequency ωm  (s−1) for i = 1

Infinite conductivity model

D = 175 (km) D = 350 (km) D = 700 (km)

m = 2 − 7.1× 10
−14 − 8.8× 10

−14 − 1.4× 10
−13

m = 3 − 5.9× 10
−13 − 7.3× 10

−13 − 1.1× 10
−12

m = 4 − 1.5× 10
−12 − 1.9× 10

−12 − 2.9× 10
−12



Page 15 of 20Yukutake and Shimizu  Earth, Planets and Space  (2018) 70:145 

approximation and the change of the layer thickness does 
not have serious effect on the results, it does not neces-
sarily rule out the possibility of the flow structure gradu-
ally changing with depth. However, the approximation 
by the surface layer is in harmony with the stratification 
model near the core surface (e.g., Braginsky 1998, 1999; 
Buffet 2014). And it seems to favor the stratification 
model.

Regarding the sectorial nature of the drifting field, 
we have considered interaction of sectorial toroidal 
flow with the dipole field. This interaction induces the 
observed type of sectorial poloidal field. The problem is 
why the surface toroidal flow is sectorial. This has been 
solved by the boundary condition on the electric current. 
Into the insulating mantle, no electric current is allowed 
to penetrate. This condition strongly constrains the sur-
face flow. Then, it has been found that only the sectorial 
type flows are possible to exist.

Regarding the standing field, we have not deepened 
the examination. We simply guess, as in many of dynamo 
simulations, that it is produced by columnar rolls in the 
deeper part of the core under the surface layer. Interact-
ing with the anti-symmetric toroidal field, the columnar 
flow induces anti-symmetric poloidal field. For example, 
the intense anomaly rapidly growing over the Eurasian 
continent is supposed to be one of those products.

Conclusions
The drifting field is comprised mostly of sectorial har-
monics. This is one of the characteristic features of the 
drifting field. We pursued the cause of this characteristic 
feature. A simple model was employed.

The field is generated by fluid flow within the surface 
layer of thickness D (e.g., D = 350 km). The geomagnetic 
field near the core–mantle boundary is approximated by 
an axial dipole field. The core fluid is inviscid. The mantle 
is electrically insulating. Regarding the electrical conduc-
tivity of the generating layer, we examined two cases, infi-
nite conductivity and finite conductivity ( 5× 105 S/m).

The normal component of the electric current must 
vanish at the core–mantle boundary. This boundary con-
dition imposes a strong constraint on the fluid motion in 
the layer. The toroidal flow that produces the current with 
no normal component at the boundary becomes sectorial 
type flow that consists of harmonics Pm

m+2j(cos θ) (j = 0, 1, 
2, 3,…) with sectorial harmonics Pm

m(cos θ) predominant. 
The poloidal flow becomes meridional type flow that is 

expressed only by zonal harmonics P0
n(cos θ) . The flow is 

confined on the meridional plane.
Interaction of the sectorial type toroidal flow with the 

axial dipole field induces the sectorial type poloidal field. 
Since the sectorial harmonics dominates in the toroidal 
flow, the sectorial harmonics is also predominant in the 
poloidal field. As the generating layer rotates westward, 
the sectorial field rotates together. This is observed as the 
drifting field with sectorial harmonics predominant. On 
the other hand, the meridional type flow, interacting with 
the axial dipole field, induces the poloidal field of zonal 
harmonics. Rotation of the zonal field induces zero secu-
lar variation. Therefore, the zonal field is not observed as 
the drifting field. Consequently, the sectorial type field 
produced by the sectorial type toroidal flow is the only 
field that is observed as the drifting field.
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Appendix: Explicit expression of Sψ
With amm+2j in Table 1 Eq. (33) Sψ can be expressed as
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Appendix: Coefficients in Eqs. (37) and (40)
Coefficients in Eq. (37)

Coefficients in Eq. (40)

p̃mo,n =
Ω2

B

ω

{(

ctn1 +
4m2

n(n+ 1)

)

gn +
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+
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d2gn
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B

ω
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Appendix: Coefficients in Eqs. (50) and (51)
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Appendix: Coefficients in Eqs. (57) and (58)
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