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Abstract 

We conducted a broadband magnetotelluric (MT) survey along a north–south transect across Unzen graben, Japan. 
The MT survey line is located ~ 2 km west of the most recent lava dome and consisted of 27 stations along a 9-km 
profile. We estimated the 3-D resistivity structure and correlated it with the seismic reflection structure obtained by 
the same survey line as in the present study. The best-fit resistivity structure shows an upper resistive layer underlain 
by a moderately conductive layer. The resistive layer, which is interpreted as a cold groundwater zone, is cut by four 
faults marked by their relatively high conductivity. The underlying layer, which is interpreted as a hydrothermal-water-
rich layer, also shows relatively conductive values near the faults. By assuming that the faults are imaged as relatively 
conductive zones, we infer the dip and depth extent of fracture zones around the faults. Beneath the Chijiwa Fault, 
which is the longest and most active fault of Unzen graben, the dominant conductor (C1) has a width of 2 km and 
extends down to below 4 km depth. C1 corresponds to a zone of strong seismic reflection and is located close to one 
of the pressure sources causing surface deformation. In this study, we interpret C1 as a network of fractures generated 
by the Chijiwa Fault to which magmatic volatiles are supplied from a deeper pressure source. Given that C1 extends to 
a greater depth and its resistivity is lower than other conductive zones, it is possible that earthquakes have occurred 
repeatedly on the Chijiwa Fault. In the center of the study area, we identify a vertically oriented body of high resistivity 
(R1) that corresponds to a zone of low seismic reflectivity. We interpret R1 as a cooled dyke complex that may have 
acted as a volcanic conduit.
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Introduction
Unzen volcano, which is located on Shimabara Penin-
sula, Kyushu, Japan, is known for its remarkable 1991–
1995 eruptions that repeatedly generated pyroclastic 
flows via the collapse of gravitationally unstable, grow-
ing lava domes. Before these eruptions, the volcano 
had been dormant for 198 years (Hoshizumi et al. 1999; 
Nakada et al. 1999). Seismic and geodetic measurements 
detected signs of unrest and associated movement of 
magma (Nishi et  al. 1999; Umakoshi et  al. 2001; Kohno 
et  al. 2008). The hypocenters of tectonic earthquakes 
gradually shifted to shallower depths beneath Chijiwa 

Bay to beneath the summit (Umakoshi et  al. 2001) that 
was interpreted as magma migrating obliquely westward 
at an angle of ~ 45° to the horizontal plane from beneath 
Chijiwa Bay to the summit. Based on GPS and leveling 
measurements, Kohno et al. (2008) identified four pres-
sure sources, located just beneath the inclined zone of 
earthquake hypocenters (sources A–D in Fig. 1).

This magmatic pathway was investigated by conducting 
a seismic survey. A north–south seismic reflection survey 
across Unzen graben revealed strong reflectors at a depth 
of 3 km below sea level, which corresponds to 1 km above 
pressure source B (Fig.  1a and Fig.  8a; Matsumoto et  al. 
2012). The reflectors are interpreted as the top of the mag-
matic chamber. However, this interpretation is based solely 
on reflector geometry. To better understand and estimate 
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the physical properties of the subsurface structure, other 
types of geophysical analysis are required.

Electrical resistivity structure provides useful infor-
mation on volcanoes, because it is highly sensitive to 
magma, hydrothermal fluids, and hydrothermally altered 
clay minerals (e.g., Nurhasan et  al. 2006; Aizawa et  al. 
2009a, b; Bertrand et al. 2012; Hata et al. 2016; Seki et al. 
2016). The resistivity structure of Unzen volcano has 
been previously estimated using magnetotelluric (MT) 
analysis and time-domain electromagnetic (TDEM) 
methods (Kagiyama et al. 1999; Komori et al. 2013; Sri-
gutomo et al. 2008). Using 1-D analysis, Kagiyama et al. 
(1999) suggested the presence of shallow groundwater 
and deep magma and assessed magma–groundwater 
interaction during the 1990–1995 eruptions. Srigutomo 
et  al. (2008) used 1-D analysis to suggest that volcanic 
gases are being supplied to a water-rich layer through 
a system of faults. Using 2-D modeling, Komori et  al. 

(2013) imaged a relatively resistive region beneath the 
younger lava domes and surrounding conductive zones. 
By comparing the model with scientific drilling data, they 
concluded that the conductive hydrothermal zone played 
an important role in heat and mass transfer within the 
Unzen magmatic system. These previous studies high-
lighted the importance of the shallow conductive hydro-
thermal zone in terms of volcanic activity. However, data 
from these surveys were processed using 1-D and 2-D 
inversions and were not sensitive to deeper structure 
beneath the hydrothermal zone. Furthermore, the site 
distribution in these studies was too sparse to investigate 
finer structures such as faults and conduits. To address 
these shortcomings, we performed a broadband MT sur-
vey along the same line as the seismic reflection survey 
by Matsumoto et al. (2012). Although the MT data were 
obtained along a single profile, we performed 3-D inver-
sion and considered topography because of strong 3-D 

Fig. 1  a Map showing the location of the seismic reflection survey (solid black line) undertaken by Matsumoto et al. (2012). Thin black dashed lines 
represent faults in the graben, and gray circles indicate pressure sources inferred from leveling and GPS data (Kohno et al. 2008). Figure courtesy 
of Matsumoto et al. (2012). b Broadband magnetotelluric (MT) observation sites. Map area is indicated by the rectangle in a. Faults (after Tsutsumi 
2015) are represented by blue lines with teeth. CF is the Chijiwa Fault, KF is the Kusenbu Fault, and OF is the Oshidorino-Ike Fault. Other lines are 
minor or unnamed faults. Pressure sources are as in a. Younger lava domes (No Nodake, My Myokendake, Fg Fugendake; Hoshizumi et al. 1999) are 
indicated by yellow triangles
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features in the MT data and steep topography. Then, we 
compared the resistivity profile with the seismic reflec-
tion profile of Matsumoto et  al. (2012). Although MT 
and seismic reflections have been jointly interpreted in 
tectonically active or volcanic regions (e.g., Unsworth 
et al. 1997; Brasse et al. 2002; Comeau et al. 2016), cor-
relating resistivity structure with a seismic reflection pro-
file at fine spatial resolution is rare, especially at shallow 
levels beneath a volcano. We show how these two physi-
cal properties correlate with each other and discuss the 
relationships between magma, faults, and hydrothermal 
systems.

Geological setting
In Unzen graben, many east–west normal faults have 
developed under north–south tensile stress (Fig. 1). Our 
MT survey line intersects the Chijiwa Fault (CF), the 
Kusenbu Fault (KF), and the Oshidorino-Ike Fault (OF), 
as well as three minor unnamed faults (Matsuoka et  al. 
2005; Tsutsumi 1987, 2015). The CF, located near the 
northern boundary of the graben, is the longest (19 km at 
the surface) and the most active fault in this region. The 
average displacement rate at the surface is estimated to 
range from 2.8 m/ka in the east to 8.8 m/ka in the west, 
with total surface displacement ranging from 38 m (east) 
to 180 m (west). Two other major faults (KF and OF) are 
located in the graben, with respective surface lengths of 
5.0–8.5  km and average surface displacement rates of 
0.5–4.0  m/ka, respectively (Matsuoka et  al. 2005; Tsut-
sumi 1987). The graben is thought to extend to a depth 
of 1 km b.s.l. and is filled with volcanic products (Hoshi-
zumi et al. 1999). The basement of the graben is mainly 
high-density rock, interpreted as Paleogene sediments. 
Approximately 2 km to the east of the profile, lava domes 
associated with the younger stages of the Unzen complex 
(Nodake and Myokendake) and currently active regions 
(Fugendake and Heisei Shinzan) are exposed (Fig.  1b). 
The line of the MT profile spans relatively old (300–
150 ka) volcanic products.

Broadband MT survey
Magnetotellurics is a passive electromagnetic geophysi-
cal method that measures temporal variations in induced 
natural electromagnetic fields on the Earth’s surface to 
derive the subsurface resistivity structure. We conducted 
an MT survey along an approximately 9-km-long north–
south profile (Fig. 1b, Additional file 1: Figure S1). Meas-
urement sites were located along the same profile as the 
seismic reflection survey by Matsumoto et  al. (2012). 
To image detailed structures, our stations were closely 
spaced at 300–400-m intervals. The survey consisted of 
23 telluric sites recording only electric field variations 
and 4 MT sites recording both electric and magnetic field 

variations. At each MT site, a Metronix ADU07e logger 
was connected to three induction coils and five elec-
trodes (one of which was used as a common ground) to 
measure the magnetic and electric fields, respectively. 
At telluric sites, electric fields (Ex and Ey) were recorded 
using ELOG1  K loggers (NT System Design). Obser-
vations were conducted between April 25 and May 8, 
2018. The typical recording duration at a given site was 
7–10 days. The sampling frequencies were 32 Hz (00:00–
23:50 UT) and 1024 Hz (17:00–18:00 UT).

Data processing
After data collection, the binary time series data were 
converted to text format time series data with physical 
units (mV/km and nT) using the frequency responses of 
induction coils and data loggers, and the dipole length 
of the electric field. Because the time series data were 
affected by cultural noise from a 60  Hz power line, we 
performed notch filtering to eliminate 60  Hz noise and 
its associated odd-order overtones (Aizawa et  al. 2013). 
Next, we calculated the MT response function over a 
0.003–3276.8-s period range using a bounded influence 
remote reference code (Chave and Thomson 2004). At 
sites where only telluric measurements were undertaken, 
we used the magnetic data of the nearest MT site (e.g., 
Munoz and Ritter 2013; Comeau et al. 2018; Tsukamoto 
et al. 2018). We confirmed that the use of different mag-
netic sites did not cause significant differences in the 
response functions. To obtain unbiased impedance, 
remote reference processing was performed by cance-
ling incoherent noise between an observation site and a 
reference site (Gamble et al. 1979). As a reference mag-
netic site, we used data from the MT monitoring station 
at Iwo-Yama, located in the Kirishima Volcanic Complex 
(Aizawa et al. 2013). Although data quality over shorter 
periods was successfully improved, the data show sig-
nificant scatter at periods greater than 10  s. By visual 
inspection, we excluded outliers from the smoothed 
sounding curve. We also discarded a site located near 
a metal fence, as its impedance curves show unrealistic 
values. Phase tensor analysis (Caldwell et al. 2004) shows 
the variable orientations of the major axes of ellipses and 
large |β| (Fig. 2), and the diagonal components of imped-
ances dominate the off-diagonal components for longer 
periods (Additional file  2: Figure S2), all indicating 3-D 
structure in this region. 

2‑D and 3‑D inversions
Before 3-D inversion, we conducted 2-D inversion 
using the code of Ogawa and Uchida (1996), employ-
ing only the Zxy impedances. The regional strike of the 
area has roughly E–W orientation according to geologi-
cal evidence (i.e., graben and surface fault traces, such 
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as Chijiwa Fault) (i.e., Hoshizumi et  al. 1999). On the 
assumption that the 2-D strike is the same as the surface 
traces of faults, Zxy corresponds to the transverse mag-
netic (TM) mode (electric current crosses the strike), 
while Zyx corresponds to the transverse electric (TE) 
mode (electric current flows along the strike). In this 
study, we used TM mode data, which is sensitive to lat-
eral discontinuities of the structure and is relatively 
insensitive to the 3-D structure (e.g., Siripunvaraporn 
et al. 2005a).

We selected TM mode data of 20 periods (0.004–
204.8  s) and manually eliminated several outliers, par-
ticularly at periods  > 12.8 s. In the 2-D inversion, we 

take into account that the Zxy at telluric sites are calcu-
lated using magnetic fields at different sites. The appar-
ent resistivity of the initial model is 100 Ωm with an error 
floor of 10%. Then, the final model was arrived at after 17 
iterations. The RMS was 0.75. Figure 5a shows the best-fit 
2-D structure.

In the case of strong 3-D features, 3-D inversion usu-
ally produces more reliable resistivity structures than 2-D 
inversion. The merits of applying 3-D inversion to sin-
gle MT profile were first demonstrated by Siripunvara-
porn et  al. (2005a) using synthetic data. This procedure 
was consequently applied to real field data by Patro and 
Egbert (2011), Bertrand et al. (2013), Brasse et al. (2015), 

Fig. 2  Phase tensor ellipse (Caldwell et al. 2004) maps for different sounding periods (0.00125 s, 0.1 s, 1 s, 25.6 s, 51.2 s, 102.4 s). Color-filled ellipses 
represent the phase tensor ellipse with its orientation derived from azimuth α − β . The color indicates β skew angle. The sites having very large 
error bars (outliers) at the corresponding periods are removed. Site dependent of orientation strongly indicate 3-D behavior
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and Beka et  al. (2016), and artifact structure produced 
in 2-D inversion can be eliminated in 3-D scheme. We 
performed 3-D inversion using the WSINV3DMT code, 
which is based on the data-space variant of Occam’s 3-D 
inversion scheme (Siripunvaraporn et  al. 2005a, b; Siri-
punvaraporn and Egbert 2009).

We inverted both the impedance tensor (Zxx, Zxy, Zyx, 
and Zyy) and the geomagnetic transfer function (Tzx and 
Tzy). Initially, we picked data from a total of 16 periods 
between 0.004 and 3277  s at all stations. However, for 
several sites, considering data quality at the shortest 
and longest periods, we used the data from 0.0125 to 
1638.4 s. In the initial model, the horizontal mesh size 
was 150 m close to the profile, increasing logarithmically 
with increasing distance from the profile. Topographic 
effects can interrupt the MT transfer function, driven 
by charge accumulation on slopes, especially in the case 
of a mountainous survey region (e.g., Usui 2015; Käufl 
et  al. 2018). To reduce this effect, we included topogra-
phy in the inversion by adding 100-m vertical mesh data 
from sea level to the highest point at 1700 m above sea 
level. The model consisted of 47 layers in the z direction 
(including seven air layers), and 76 and 42 blocks in the 
x and y directions, respectively (Fig.  3). The half-space 
resistivity was initially set to 100 Ωm, and the resistivity 
of air and sea was fixed at 107 Ωm and 0.25 Ωm, respec-
tively. We tested a starting model with values of 1000 Ωm 
and 10  Ωm; however, the RMS of each iteration always 
exceeded the 100 Ωm resistivity.

Errors in impedance and geomagnetic transfer func-
tions were set to 10%. Initially, 10 iterations were per-
formed. After checking the RMS of each model, we 
re-inverted the data using the model with lowest RMS as 
the initial model for the second inversion. Previous MT 
3-D studies (e.g., Patro and Egbert 2011; Comeau et  al. 
2016; Azeez et  al. 2018) have also employed a similar 
approach to achieve better fitting result. As a result, RMS 
decreased significantly from 6.13 in the initial model of 
the first inversion to 1.60 in the final model of the second 
inversion. Figures  4 and 5 show horizontal and vertical 
slices of the final 3-D resistivity structure, respectively. 
Figure 6 shows the comparison of the observed data with 
the calculated data from the final resistivity structure.

The 2-D and 3-D models along the survey line are mod-
erately similar (Fig.  5a, b). Both models show the first 
resistive layer is on top of the conductive layer, and the 
third layer displays high resistivity. However, significant 
differences are found at a depth of the third layer. Two 
conductive bodies in the 2-D model (black dashed lines 
in Fig.  5a) are not apparent in the 3-D model. The dis-
crepancy between the models probably arose because of 
the 2-D modeling that was applied to a natural 3-D struc-
ture (Siripunvaraporn et  al. 2005a; Brasse et  al. 2015), 
especially for longer-period data. Thus, in this study, we 
focus on the 3-D structure.

The 3-D final resistivity structure essentially consists of 
three layers: a highly resistive layer (RL1) at the surface, 
a moderately conductive zone (CL1) beneath RL1 to a 

Fig. 3  Mesh configuration used in the inversion and its relative position to Shimabara Peninsula. a Mesh used in the inversion. The black circles and 
white squares indicate telluric sites and MT sites used in the inversion, respectively. Red triangle denotes Unzen’s highest peak, the Heisei Shinzan 
lava dome. White lines indicate faults in the survey region. b The black square over Shimabara Peninsula indicates the area shown in a 
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depth of ~ 1 km, and an underlying resistive zone. Within 
this structure, we noted two anomalies: a distinctive 
conductive body (C1) in the northern part of the survey 

area, below sea level; and a vertically oriented resistive 
body (R1) in the center of transect. Before interpreting 
these structures, we conducted sensitivity tests to assess 

Fig. 4  Horizontal slices of the final 3-D resistivity structure at various depths below sea level (b.s.l). Topographic contour interval is 200 m. Details 
are as in Fig. 2. The distinctive structures C1 and R1 are labeled. White lines show faults in the survey region (CF Chijiwa Fault, KF Kusenbu Fault, OF 
Oshidorino-Ike Fault), while red dots represent pressure sources identified by Kohno et al. (2008). The black line in the center of the top left panel 
marks the north–south cross section shown in Fig. 5b and 8b. The purple star and dashed black line indicate the USDP-4 drilling location and its 
subsurface trajectory. Note that the structure away from the profile is not constrained (for example, the sensitivity tests around pressure sources A 
and C show the small difference in RMS)
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the robustness of C1 and R1 within the model. Figure 7 
shows the sounding curves of selected sites after sensi-
tivity testing. After replacing C1 with a zone of 100 Ωm 
resistivity and performing a forward calculation, model 
RMS increased from 1.60 to 3.20. Replacing R1 with a 
10 Ωm resistivity zone resulted in an RMS increase from 
1.60 to 1.70. These RMS changes indicate that C1 is better 
constrained than R1. We did the replacement also in the 
southern extension of C1, the result of which is shown in 
Additional file 3: Figure S3. It raised the RMS to 1.67. The 
weaker constraint on R1 arose because the MT method 
is more sensitive to a conductive zone than a resistive 
zone. However, the small RMS increase observed in the 
sensitivity test of R1 suggests that this body is not a ghost 
structure.

Discussion
Upper resistive layer (RL1)
The upper resistive layer (RL1) extends from the surface 
to several hundred meters beneath sea level, correspond-
ing to the estimated depth of high-density and highly 
magnetized formations that fill the graben (Inoue 2013; 
Okubo et al. 2006). The present survey line is largely cov-
ered by older Unzen lava and pyroclastic products from 
eruptions during the period 300–150 ka, which appear to 
be highly resistive (Matsumoto et  al. 2012, after Hoshi-
zumi et al. 2003). We interpret RL1 as a cold groundwa-
ter zone (meteoric water). Although the sampling points 

are limited in the area east of the Unzen volcano, the 
resistivity of cold groundwater at the mid-flank shows 
the resistivity of approximately 50–100  Ωm (Shimano 
1999). The high resistivity of value RL1 is likely due to 
the water, considering the realistic porosity and Archie’s 
law. In particular, the shallowest part is interpreted as 
an unsaturated groundwater zone, beneath which a cold 
aquifer occurs. A dominant feature of RL1 is that this 
high-resistivity zone (several 1000  Ωm) is dissected by 
faults characterized by relatively conductive regions (sev-
eral 100 Ωm; Fig. 4b, 5b, 8b). Note that the faults might 
be inclined rather than vertical. Previous MT studies 
attributed the high conductivity of shallow fault-related 
zones to the presence of clay minerals, high fracture den-
sity, and well-developed fluid networks (e.g., Karas et al. 
2017; Unsworth and Bedrosian 2004; Yamaguchi et  al. 
2010). It should be noted that because faults are usually 
characterized by thin planes, they are difficult to image 
using MT. The previous studies suggested that instead of 
imaging the actual fault planes, the MT technique images 
the relatively thick fractured or altered zones surround-
ing the faults. We suggest that relatively conductive zone 
around faults in RL1 represents a dense fracture network 
in which cold meteoric groundwater accumulates before 
flowing downward.

Middle conductive layer (CL1)
Beneath RL1, at ~ 0–2  km beneath sea level, a conduc-
tive layer (< 50 Ωm CL1) is identified. We interpret CL1 
as a hot, groundwater-rich layer characterized by hydro-
thermal alteration, as also indicated by previous studies. 
Density and magnetization distributions show that CL1 
is correlated with hydrothermally altered Neogene rock 
characterized by low magnetization (1  A/m) and high 
density (Inoue 2013; Okubo et al. 2006).

CL1 contains a relatively low-resistivity zone; in par-
ticular, beneath the CF, a zone of low resistivity (< 10 Ωm) 
extends to greater depth. This conductor is separately 
referred to as C1 and discussed below. Conductive zones 
underlying faults have been reported previously and are 
interpreted as fractured regions that are rich in crustal 
fluids (Becken and Ritter 2012; Karas et  al. 2017; Kaya 
et al. 2013; Xiao et al. 2017; Azeez et al. 2018). Consid-
ering the relatively conductive zone found beneath the 
faults at the same depth as RL1, as well as identification 
of fault planes in the seismic reflection profile (Fig. 8b), 
we interpret this region as a deeper extension of the frac-
ture zone, given that fault zones are relatively conductive. 
In Figs.  5b and 8b, the white dashed line indicates the 
fractured zones associated with the fault inferred from 
the location of relatively conductive zones at the depth of 
RL1 and CL1.

Fig. 5  Vertical slices of resistivity structure. a 2-D model. Inverted 
black triangles indicate observation sites used in the inversions. 
White dashed ellipses mark the low-resistivity zones that are not 
produced in the 3-D inversion. b 3-D model. RL1 (resistive layer 1), 
CL1 (conductive layer 1), R1, and C1 are the features discussed in 
Sects. 2-D and 3-D inversions and Discussion
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Broad, highly conductive body (C1)
C1 is the dominant feature of the resistivity structure. 
The upper part of C1, approximately at the depth 500–
700 m below sea level, corresponds to CL1. Although we 
could not examine the off-profile extension of C1, it is 
located near the CF (Chijiwa Fault) and pressure source 
B by Kohno et  al. (2008). Some MT studies have sug-
gested that a dominant conductive body can be inter-
preted as a magmatic body (e.g., Diaz et  al. 2015; Hill 
et al. 2015; Hata et al. 2016; Brasse et al. 2015; Comeau 
et  al. 2016; Cordell et  al. 2018), but C1 is too large and 
shallow to represent a magma reservoir. C1 occupies a 

volume of ~ 10  km3, compared with 0.2  km3 of magma 
erupted during the period 1991–1995 (Nakada and 
Motomura 1999). The lack of geothermal activity above 
C1 is also inconsistent with the interpretation of C1 as a 
magma reservoir. According to Kohno et al. (2008), pres-
sure source B is located ~ 4  km beneath sea level. If C1 
represents a volume of interconnected melt, the pressure 
source would be observed at the top of C1, as a result of 
its buoyancy, rather than far beneath the top of C1. In 
this study, we interpret C1 as an interconnected fracture 
network around the CF, to which volatiles are supplied 
from pressure source B.

It is commonly thought that faults act as pathways for 
volatiles (e.g., Becken et al. 2011; Becken and Ritter 2012; 
Ichihara et  al. 2011; Aizawa et  al. 2016). The eruptions 
of Unzen volcano during 1991–1995 were effusive (i.e., 
mild) and were considered to have resulted from effective 
degassing during magma ascent. The degassing might 
have been maintained by volcanic gas discharge along 
many E–W trending faults (e.g., Komori et  al. 2014), 
especially along the Chijiwa Fault, which is the longest 
and most active fault in Unzen graben. Indeed, ground-
water gas analysis around Unzen volcano suggests that 
the CF provides a surface escape route for magmatic CO2 
(Ohsawa et al. 2002).

C1 extends to a greater depth than the conductive 
zones beneath other faults, and the resistivity of C1 is 
lower than that of the zones beneath other faults. Given 
that C1 is interpreted to have originated by fracturing 
related to fault activity, it is possible that earthquakes 
have occurred repeatedly on the Chijiwa Fault.

Vertical resistive body (R1)
A comparison of the seismic reflection profile and the 
resistivity structure reveals a correlation between the 
sub-vertical high-resistivity zone (R1) and a narrow 
vertical zone of low reflectivity in the center of the sur-
vey line (Fig.  8). We interpret R1 as a cooled conduit 
through which dykes intruded to approach the summit. 
This interpretation is consistent with that of Matsumoto 
et al. (2012). The scientific drilling at site USDP4 (1.5 km 
east of the MT profile) revealed relatively high resistivity 
(~ 100 Ωm), low porosity (< 0.25), and high density (2.5 g/
cm3) within the conduit due to the presence of solidified 
dykes related to eruptions of various ages (Ikeda et  al. 
2008; Sakuma et al. 2008). The presence of consolidated 
magma, low porosity, and/or high-density rocks are all 
plausible explanations of the high resistivity. Many MT 
studies have made similar interpretations of high-resis-
tivity zones (e.g., Aizawa et  al. 2008, 2009b, 2014 Diaz 
et al. 2015 Bedrosian et al. 2018). The result of the scien-
tific drilling supports our interpretation of R1.

Fig. 6  Comparison of observed data (obs) with calculated 
responses (cal). The maps show apparent resistivity derived from 
Ssq impedances (Rung-Arunwan et al. 2016) and correspond to 
periods of 0.0125 s, 0.125 s, and 100 s. White arrows indicate the real 
components of induction vectors (Parkinson criteria). Details are as 
in Fig. 4
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Although it is not confirmed that R1 is related to the 
latest (1990–1995) eruptions, the 500-m horizontal width 
of dykes confirmed by the drilling study is consistent with 
the horizontal extent of R1. The drilled conduit consists 
of multiple dykes and veins from various eruption stages, 
and the widths of individual dikes are up to 40  m. The 
dikes in the deepest part of the drill hole (~ 100 m below 
sea level) are believed to represent the most recent con-
duit, as inferred from petrological analysis, and these 
rocks cooled to < 200 °C within nine years after the erup-
tions (Nakada et al. 2005; Ikeda et al. 2008). Hydrother-
mal fluid circulation was determined to be the most likely 
cause of cooling (Fujimitsu et  al. 2008). The moderately 
conductive layer CL1 and highly conductive body C1 in 
this study, interpreted as hydrothermal-water-rich layers, 
may be responsible for cooling the conduit (R1).

Relationship between resistivity and seismic reflection
A comparison of the resistivity structure with the 
seismic reflection profile of Matsumoto et  al. (2012) 
revealed that RL1, CL1, and C1 correlate with areas 
of strong seismic reflectivity (Fig.  8). On the other 
hand, the resistive zone beneath CL1 is imaged as 
zones of weak reflectivity. On the basis of these spatial 

correlations and the interpretations in Sects.  Upper 
resistive layer (RL1)–Vertical resistive body (R1), we 
suggest that an interconnected pore network controls 
the relationship between electric resistivity and seis-
mic reflectivity. Several qualitative interpretations 
have been made. Joint interpretation of MT and seis-
mic data suggests that fluid-rich zones are indicative 
of high porosity with good connectivity and are elec-
trically conductive (Hyndman and Shearer 1989; Jones 
1987; Unsworth et  al. 1997; Yan et  al. 2016). Differ-
ences in porosity may create large contrasts in elastic 
properties, thus enhancing reflectivity in areas of high 
porosity. The multilayered structures characteristics of 
volcanic deposits may also contribute to high seismic 
reflectivity since it has high porosity, such as found in 
RL1. CL1 and C1 are also interpreted as hydrothermal-
water-rich zones marked by high porosity and main-
tained interconnectivity. Consequently, both of these 
areas show strong reflectivity. In contrast, the resis-
tive zone beneath CL1, which might correspond to the 
basement of Unzen volcano, is interpreted as a zone of 
low porosity and consequently shows weak reflectivity. 
Similar relationships between resistivity data and seis-
mic profiles, and comparable interpretations, have been 

Fig. 7  Sensitivity tests of two different anomalies: C1 and R1. The final model RMS is 1.60. a Altering the C1 anomaly using 100 Ωm blocks over 
2.1 km × 2.4 km × 4.7 km area (in N–S, E–W, and vertical directions) increasing RMS to be 3.20. b Altering the R1 anomaly using 10 Ωm blocks 
over approximately 2.2 km × 2.4 km × 4.5 km area (in N–S, E–W, and vertical directions) causing RMS to be 1.70. The upper panels show the 
corresponding sounding curves after sensitivity tests. In each sounding curve, the upper and lower sub-panels correspond to the apparent 
resistivity and phase, respectively. The symbols indicate observed data for each component. The green lines represent calculated data from the 
altered models. The bottom panels show the N–S profile after the blocks were modified
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reported for paleo-magmatism in Sweden (Hubert et al. 
2013; Yan et al. 2016).

The estimated dip, depth extent, and the number of 
faults detected in this study differ slightly from those 
estimated by Matsumoto et al. (2012). For example, the 
KF is imaged as sub-vertical in the seismic reflection 
profile, whereas the MT model suggests it dips toward 
the south. Seismic profiles show offsets in reflection 
patterns, allowing fault planes to be identified by their 
displacement (e.g., Matsumoto et al. 2012). In contrast, 
MT cannot image fault planes but can identify volu-
minous fracture zones (e.g., Unsworth and Bedrosian 
2004; Yamaguchi et  al. 2010; Karas et  al. 2017). It is 

possible that fault planes and their associated fractured 
zones have different dip angles.

Conclusion
The resistivity structure beneath our survey line basi-
cally shows three-layer structure. The first layer is near-
surface high-resistivity zone that corresponds to a zone 
of cold groundwater with old Unzen deposits. This layer 
is cut by four faults. The second layer is the mid-con-
ductive layer associated with hydrothermal zone which 
shows relatively conductive values near the faults. The 
third layer is a bottom resistive zone related to the 
basement of the Unzen graben. At the same depth as 
the third layer, we found two distinctive anomalies. 
One is a highly conductive zone (C1) beneath Chijiwa 
Fault. Another is highly resistive zone R1 in the center 
of profile. C1 is interpreted as zone of interconnected 
fracture network around Chijiwa Fault, to which vol-
canic fluids are supplied from deeper pressure source 
(B). Given that C1 extends to a greater depth than the 
conductive zones beneath other faults, and its resistiv-
ity is lower than that of other zones, it is possible that 
earthquakes have occurred repeatedly on the Chijiwa 
Fault. R1 is interpreted as the cooled conduit of Unzen 
volcanism and consists of lava dykes and veins related 
to eruptions of various ages. Based on the correlation 
between the resistivity and seismic reflection struc-
tures, we conclude that the interconnected pore net-
work controls the relationship between resistivity and 
reflections.

Additional files

Additional file 1. Figure S1. MT station and corresponding names. The 
subsequent sounding curves are shown in Additional file 2: Figure S2. MT 
station and Telluric station are denoted as white rectangle and black rec-
tangle respectively. The ‘SITE X’ is the site being excluded in the inversion. 
The red triangle shows Heisei Shinzan lava dome.

Additional file 2. Figure S2. Sounding curve of apparent resistivity 
(upper part, in Ωm) and phase (lower part, in degree) to the correspond-
ing periods (in second) from all stations used in the 3-D inversion. (a) Sites 
numbered 1 to 12 and (b) sites numbered 13 to 25. The location of each 
station is explained in Additional file 1: Figure S1. Symbols and lines are 
detailed in the legend.

Additional file 3. Figure S3. Sensitivity test of the southern extension of 
C1 anomaly by changing the resistivity of the area with 100 Ωm blocks. 
The altered zone extends to 2.4 km in E-W direction and 4.7 km in vertical 
direction. The RMS of modified model is 1.67 from initially 1.60. Small 
increase in the RMS indicates that the width of C1 is less constrained. The 
upper and bottom panel as well as symbols and legends are same as 
Fig. 7.

Fig. 8  a Cross section of the seismic reflection survey and 
interpretation (modified from Matsumoto et al. 2012). Red dashed 
ellipse in the center of the profile marks a possible conduit. b N–S 
vertical slice of the 3-D resistivity structure. (Location is shown in 
Fig. 4.) c The figures a, b are overlaid. Inverted triangles show MT 
measurement sites (large triangles: MT sites; small triangles: telluric 
sites). White dashed lines indicate the inferred deep extension of 
faults (CF Chijiwa Fault, KF Kusenbu Fault, OF Oshidorino-Ike Fault; 
shorter lines are minor or unnamed faults). Pressure source B is 
indicated by a red solid circle. Black dashed arrows represent the 
inferred movement of released volatiles. See text for details
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