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Long‑term slow slip event detected 
beneath the Shima Peninsula, central Japan, 
from GNSS data
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Abstract 

Long-term slow slip events (SSEs), the largest events among slow earthquakes, occur repeatedly along the Nankai 
Trough, southwest Japan. Their locations, near the locked zones of the plate interface responsible for great megath-
rust earthquakes in the Nankai Trough, suggest that these events influence conditions in this critical seismogenic 
region. Characterizing the spatiotemporal changes of long-term SSEs is important for understanding changes in the 
locked portions of the plate interface before major earthquakes. Two decades of observations by the global naviga-
tion satellite system along the Nankai Trough have detected no long-term SSEs in a large area beneath the Kii Penin-
sula. We report details of a long-term SSE detected in satellite navigation data from the Shima Peninsula, the eastern-
most part of the Kii Peninsula, from spring 2017 to autumn 2018. The estimated moment release from this event is 
equivalent to an earthquake of magnitude 6.4.
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Introduction
Slow earthquakes are typically observed in the transi-
tion zones between locked and creeping zones on plate 
boundaries (Obara and Kato 2016). The Nankai Trough 
plate interface, off the coast of and beneath southwest 
Japan (Fig.  1), is host to several types of slow earth-
quakes. Long-term slow slip events (SSEs), with dura-
tions of months or years, have been observed by using 
data from the global navigation satellite system (GNSS) 
in the Bungo Channel (Hirose et al. 1999), the Kii Chan-
nel (Kobayashi 2014), and the Tokai region (Ozawa et al. 
2002) (see Fig.  1 for locations). Short-term SSEs, with 
durations measured in days (Obara et  al. 2004), occur 
along with low-frequency tremor in a belt along the 
downdip side of the locked zone. Very low-frequency 
earthquakes, with predominant periods of tens of sec-
onds, have been documented on both downdip and 
updip sides of the locked zone (Ishihara 2003; Obara 
and Ito 2005). Low-frequency tremor also occurs on the 

updip side of the locked zone (Sakai et  al. 2007; Obana 
and Kodaira 2009). Among these slow earthquakes, long-
term SSEs are the largest events, and they are located 
near the locked zone along the Nankai Trough, where 
future great megathrust earthquakes are postulated. 
Therefore, long-term SSEs may have a large influence on 
physical conditions around the locked zone.

In addition to the long-term SSEs already mentioned, 
small long-term SSEs have also been observed in and 
near the Nankai Trough (Kobayashi 2010; Takagi et  al. 
2016; Ozawa 2017). Kobayashi (2017) used GNSS obser-
vations to objectively detect long-term SSEs along the 
Nankai Trough and reported that they are not distributed 
homogeneously along the strike direction. In particular, 
no long-term SSE was detected during the first two dec-
ades of GNSS observations on the Kii Peninsula, includ-
ing its easternmost tip, the Shima Peninsula (Fig.  1b). 
This paper reports a small long-term SSE that occurred 
beneath the Shima Peninsula during 2017 and 2018, the 
first detection of such an event from GNSS data.
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Data and methods
Detection of long‑term SSEs by GNSS
The GNSS Earth Observation Network System 
(GEONET) is operated in Japan by the Geospatial 
Information Authority of Japan (GSI). We used the 
GSI’s F3 daily coordinate datasets (Nakagawa et  al. 
2009) from March 1996 to February 2019 for this study. 
In the GEONET F3 strategy, global positioning sys-
tem (GPS) data are analyzed with Bernese GPS Soft-
ware version 5.0, and the final orbit and Earth rotation 
parameters of the International GNSS Service (IGS) are 
used to estimate static daily coordinates (Ozawa 2017). 
Details can be found in Nakagawa et  al. (2009) and 
Munekane (2010).

We applied the objective detection method described 
by Kobayashi (2017), extending the GNSS record 
in that paper from June 2017 to February 2019. The 
method is described briefly here. We first removed 

the steady-state or background surface displacement 
velocity, annual and semiannual variations, and offsets 
due to antenna/receiver replacement and earthquakes. 
Offsets due to antenna replacements were subtracted 
by using an offset dataset from GSI (http://mekir​a.gsi.
go.jp/JAPAN​ESE/corrf​3o.dat). Coseismic offsets of 
large earthquakes were removed by calculating the dif-
ference in the 10-day means of the daily coordinates 
before and after each earthquake; however, no earth-
quake occurred that required the removal of coseismic 
offsets from the added months of data after the record 
analyzed by Kobayashi (2017). We then subtracted 
the common mode error (Wdowinski et  al. 1997) of 
the fixed region (dashed rectangle in Fig. 1b) from the 
coordinates of all stations, in effect treating the entire 
rectangle region as fixed. The residual displacements 
are thus referred to as unsteady displacements. For 
each station, we calculated the component of motion in 
the direction S55°E, which is the direction of the upper 

Fig. 1  Map of the study area in southwest Japan. a Location and plate tectonic setting. Heavy curves here and on the main map indicate plate 
boundaries. b Locations in the Nankai Trough study area. The dashed rectangle encloses the fixed region. Large numbered dots indicate GNSS 
stations. Heavy lines connecting two stations represent baselines for measurement of length changes. Small dots numbered 1–60 show the 
approximate location of the 25 km depth contour on the Nankai Trough subduction interface. The oblique rectangle in western Shikoku indicates 
an example of 100 km × 50 km area centered on dot 10

http://mekira.gsi.go.jp/JAPANESE/corrf3o.dat
http://mekira.gsi.go.jp/JAPANESE/corrf3o.dat
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plate with respect to the subducting Philippine Sea 
plate (N55°W; Miyazaki and Heki 2001).

The long-term SSEs along the Nankai Trough are cen-
tered at 25–30 km depth, on the upper surface of the sub-
ducting plate (e.g., Ozawa et  al. 2002, 2013; Kobayashi 
2014). We determined the positions of 60 points above 
the 25  km depth contour of the subducting plate (plate 
configuration of Hirose et  al. 2008) at intervals of 0.1° 
from longitude 132.1°E to 138.0°E (numbered points in 
Figs. 1b and 2a) and centered a 100 km × 50 km rectangle 
on each point with its long axis oriented in the direction 
of plate subduction. For each rectangle, the component 
of motion in the direction S55°E was calculated from the 
mean of the horizontal components of GNSS stations 
within the rectangle.

Displacement components obtained by this procedure 
included the postseismic deformations associated with 
the March 11, 2011, Tohoku earthquake (M 9.0) and the 
September 5, 2004, off-Kii Peninsula earthquake (M 7.4). 
The postseismic component of the Tohoku earthquake 
was estimated by a logarithmic function using a mean 
time series of the stations, which had no unsteady dis-
placements other than the postseismic deformation of 

the Tohoku earthquake. Assuming that the same time 
constant can be applied to the time series of displace-
ment in the direction S55°E, the same logarithmic func-
tion was subtracted, fitting only the amplitude to the time 
series. The correction procedure was similar for the 2004 
event, but the postseismic deformation overlapped the 
2000–2005 long-term SSE in the Tokai region (Suito and 
Ozawa 2009). Therefore, assuming that the postseismic 
displacement was proportional to the coseismic displace-
ment, the amplitude coefficient was estimated from the 
coseismic displacement of the stations near the epicenter.

At this point in the procedure, we evaluated the cross-
correlation between the displacement time series and a 
3-year ramp function, which consisted of a linear slope 
over a 1-year period connecting flat slopes in the pre-
vious year and the following year. For more details, see 
Kobayashi (2017).

Estimation of slip distribution
The slip vector on the plate interface was estimated from 
the surface unsteady north–south and east–west hori-
zontal displacements using the inversion technique of 
Yabuki and Matsu’ura (1992), with some modifications 

Fig. 2  Detection of long-term SSEs. a Map showing locations (dots 1–60) at ~ 25 km depth on the Nankai Trough subduction interface. b 
Time-longitude (dot number) plot showing displacements during long-term SSEs within 100 km × 50 km rectangles centered on dots 1–60. 
Colored regions have correlation coefficients greater than 0.6 and 2-year displacements greater than 2 mm. See the text for details. T: Tokai 
long-term SSE (Ozawa et al. 2016), S: Shima Peninsula (this study), K: Kii Channel (Kobayashi 2017), WS: western Shikoku (Kobayashi 2010), B1, B2: 
Bungo Channel (Ozawa et al. 2007; Ozawa et al. 2013). Labels (1), (2) and (3) indicate migrations discussed in the text. The data record ends in 
February 2019; note that results for latest 1.5 years may change as later data are included
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based on the formulation of Okada (1992). This inversion 
technique represents the slip distribution as a superposi-
tion of B-spline functions. In this study, slip vectors were 
represented by linear combinations of boxcar functions, 
and the values of coefficients were estimated by using a 
Bayesian model with a smoothness constraint for regu-
larization. Scale factors were chosen for the covariance 
and smoothness parameters that minimized Akaike’s 
Bayesian information criterion (ABIC, Akaike 1980). Slip 
vectors were calculated for a 12 × 12 grid of rectangular 
sources on the plate interface, using the plate interface 
configuration of Hirose et  al. (2008). The grid intervals 
and rectangle dimensions were about 10.1 km along the 
strike of the Nankai Trough and about 9.8 km along the 
dip direction. The slip was set to zero outside the grid. 
Dip angles were derived from the plate configuration by 
using continuous curvature splines in tension (Smith and 
Wessel 1990). The slip direction was constrained within 
45° from the direction of plate subduction, using the 
nonnegative least squares method (Lawson and Hanson 
1974).

Results and discussion
The spatiotemporal distribution of the correlation 
between displacement in the S55°E direction and the 
ramp function from March 1996 to February 2019 is 
shown in Fig. 2b, which displays periods when the corre-
lation coefficient was greater than 0.6 and the 2-year dis-
placement was greater than 2 mm. Note that the results 

for latest 1.5 years may change as later data are included. 
After the Tokai long-term SSE (labeled T in Fig.  2b) 
subsided in 2016, displacement with high correlation 
migrated to the vicinity of the Shima Peninsula (labeled 
S) and continued there until July 2018. Note that the dis-
placement with high correlation shown in Fig. 2b are not 
directly related to slip on the plate boundary beneath 
there. For example, high correlation related to 2000 
Tokai long-term SSE extended to the Shima Peninsula. 
However, no slip was estimated in the Shima Peninsula 
(Ozawa et al. 2002). Displacements in the direction S55°E 
and correlation coefficients between the displacement 
and the ramp function at a point near the Shima Penin-
sula are shown in Additional file 1: Figure S1.

Figure 3a shows the horizontal unsteady displacement 
on the Shima Peninsula from April 2017 to October 2018 
with respect to the fixed region. In the procedure of the 
previous section, the postseismic deformation of the 
2011 Tohoku earthquake is subtracted from the mean 
displacement time series for each grid, but it is not sub-
tracted from the displacement of each station. To elimi-
nate the postseismic deformation from the earthquake, 
displacement of each station from January 2016 to April 
2017 was subtracted. According to the approximate 
function of postseismic deformation used by Kobayashi 
(2017), the postseismic displacement rates during these 
two periods differed by less than 1%. The unsteady dis-
placement consisted of southeastward horizontal move-
ments of 7–8 mm; there was no systematic displacement 

Fig. 3  Map of the Shima Peninsula showing horizontal unsteady displacement and estimated slip distribution. a Horizontal displacements for the 
period April 2017 to October 2018 used for estimating fault slip. Black arrows indicate observations, and white arrows indicate calculated values. 
Ellipses at the tips of the black arrows show standard deviations of the coordinates. b Estimated slip distribution on the plate interface. Arrows 
indicate the motion of the overriding plate with respect to the subducting Philippine Sea plate. Ellipses at the tips of the arrows indicate estimation 
errors. Solid squares are locations of GNSS stations. Dashed contours show the depth of the top of the subducting plate (Hirose et al. 2008)
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in the vertical component. Baseline lengths between two 
stations on the Shima Peninsula and two stations to the 
northwest showed slow extension of 7–8 mm from spring 
2017 to autumn 2018 (Fig. 4). Because the unsteady dis-
placement continued for more than a year and no other 
long-term slow slips occurred around this area during 
this period, it appears to correspond to a single long-
term SSE.

The slip distribution on the plate interface, estimated 
from the unsteady displacements using the inversion 
technique, is shown in Fig. 3b. The maximum slip, about 
3 cm, was located beneath the Shima Peninsula. The plate 
interface at that location is about 25–30 km deep, which 
is consistent with the depths of other long-term SSEs 
along the Nankai Trough. The estimated moment mag-
nitude corresponding to the total slip was 6.5, assuming a 
rigidity of 40 GPa.

Long-term rate of moment release of the short-term 
SSEs along the Nankai Trough is roughly constant 
(Nishimura et  al. 2013). However, recurrence inter-
val of the short-term SSEs decreased during the long-
term SSEs of the Bungo Channel and the Tokai region 
(Hirose and Obara 2005; Hiramatsu et al. 2008). Short-
term SSEs occurred around the Shima Peninsula, dur-
ing this long-term SSE period and the steady-state 
period. Therefore, we confirm whether the short-term 
SSE has been activated during the long-term SSE of the 
Shima Peninsula. Ochi et al. (2016a, b, 2017a, b, 2018a, 
b, 2019) estimated rectangle faults of short-term SSEs 
using the strain, tilt and groundwater level data. We 
calculated displacements by the formulation of Okada 
(1992) using these parameters of the rectangle faults. 
We adopted the same period length just before the 
long-term slow slip period as the steady-state period. 
Maximum horizontal displacements on the Shima Pen-
insula caused by the short-term SSEs for the period of 
the long-term SSE (from April 2017 to October 2018) 
and the steady-state period (from October 2015 to 

April 2017) were 7.0 mm and 4.5 mm, respectively. The 
fault parameters of the short-term SSEs for each period 
are shown in Additional file  2: Tables S1 and S2. The 
short-term SSEs around the Shima Peninsula became 
active during the period of the long-term SSE; there-
fore, we estimated the contribution of the short-term 
SSE activation included in the estimated slip of the 
long-term SSE. The displacement due to the short-term 
SSE activity of the steady-state period has already been 
subtracted as a part of displacement velocity. Then, 
the contribution of the activated short-term SSEs dur-
ing the long-term SSE period was 2.5  mm. Therefore, 
remaining unsteady displacement is considered to be 
due to the long-term SSE. The estimated moment mag-
nitude corresponding to the long-term SSE alone was 
6.4. Thus, we report the first documentation of a long-
term SSE on the Shima Peninsula.

This updated record of SSEs may have implications for 
the locked region of the plate interface. Figure 2b shows 
a smooth connection of grid cells with moderate correla-
tion (near 0.6) (labeled (1) in Fig. 2b) between the 2017–
2018 long-term SSE documented here (labeled S) and 
the Tokai long-term SSE from 2013 to 2016 (labeled T). 
There are some similar connections between SSEs in the 
figure. For example, it shows a connection (labeled (2)) 
between the 2003 long-term SSE in the Bungo Channel 
(labeled B1) and the 2005 western Shikoku long-term SSE 
(labeled WS) (Kobayashi 2010; Takagi et al. 2016). Similar 
connection (labeled (3)) is also seen between the 2010 
long-term SSE in the Bungo Channel (labeled B2) and 
the 2014–2016 long-term SSE in the Kii Channel (labeled 
K). Note that during the latter event, the area of high-
est correlation appears to have migrated through cen-
tral and eastern Shikoku, where no long-term SSE have 
been detected in GNSS. If the areas of moderate correla-
tion imply small amounts of slip on the plate interface, it 
may be that small slow slips are being transmitted. Sim-
ulations of the seismic cycles along the Nankai Trough 
based on a rate- and state-dependent friction law indi-
cate that locked regions become smaller with time during 
the interseismic period (Hirose and Maeda 2013; Nakata 
et  al. 2014). The weakening of coupling in the locked 
region may appear as new areas of slow slip as well as 
changes of the steady state. Ozawa et al. (2012) revealed 
a preceding aseismic slip of the 2011 Tohoku earthquake. 
Koulali et al. (2017) pointed out an increasing amplitude 
of the SSE toward the 2016 Te Araroa earthquake, New 
Zealand. The expansion of the long-term SSE slip area 
and the increase in slip amount may cause stress changes 
in the adjacent rocked zone and promote the occurrence 
of a large earthquake. To explore this issue further, it is 
important to characterize the spatiotemporal transitions 
of long-term SSEs.

Fig. 4  Baseline lengths (dots) between pairs of GNSS stations plotted 
in Fig. 1b. The upward direction indicates extension. The shaded 
period corresponds to the period of Fig. 3a
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Conclusion
We used GNSS daily coordinate data to detect unsteady 
displacement on the Shima Peninsula, central Japan. 
This displacement represents the first long-term SSE to 
be observed on the Shima Peninsula from spring 2017 
to autumn 2018. Horizontal unsteady displacement 
with respect to the fixed region showed southeast-
ward movements of 7–8 mm on the Shima Peninsula 
during this SSE. Baseline lengths between stations 
on the Shima Peninsula and stations to the northwest 
indicated slow extension starting in 2017. The slip dis-
tribution on the plate interface, estimated using the 
inversion technique, indicates moment release beneath 
the Shima Peninsula equivalent to an earthquake with a 
moment magnitude of 6.4.

Additional files

Additional file 1. Displacements in the direction S55 °E (top) and correla-
tion coefficients between the displacement and the ramp function at a 
point (bottom). Displacement is the mean of displacements of stations 
(red dots) within the 100 km × 50 km rectangle on the inset map.

Additional file 2. Fault parameters of the short-term slow slip events.
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