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Abstract 

P-wave first-motion polarity is the most useful information in determining the focal mechanisms of earthquakes, 
particularly for smaller earthquakes. Algorithms have been developed to automatically determine P-wave first-motion 
polarity, but the performance level of the conventional algorithms remains lower than that of human experts. In this 
study, we develop a model of the convolutional neural networks (CNNs) to determine the P-wave first-motion polar-
ity of observed seismic waveforms under the condition that P-wave arrival times determined by human experts are 
known in advance. In training and testing the CNN model, we use about 130 thousand 250 Hz and about 40 thou-
sand 100 Hz waveform data observed in the San-in and the northern Kinki regions, western Japan, where three to four 
times larger number of waveform data were obtained in the former region than in the latter. First, we train the CNN 
models using 250 Hz and 100 Hz waveform data, respectively, from both regions. The accuracies of the CNN models 
are 97.9% for the 250 Hz data and 95.4% for the 100 Hz data. Next, to examine the regional dependence, we divide 
the waveform data sets according to the observation region, and then we train new CNN models with the data from 
one region and test them using the data from the other region. We find that the accuracy is generally high ( � 95%) 
and the regional dependence is within about 2%. This suggests that there is almost no need to retrain the CNN model 
by regions. We also find that the accuracy is significantly lower when the number of training data is less than 10 
thousand, and that the performance of the CNN models is a few percentage points higher when using 250 Hz data 
compared to 100 Hz data. Distribution maps, on which polarities determined by human experts and the CNN models 
are plotted, suggest that the performance of the CNN models is better than that of human experts.
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Introduction
First-motion polarities of P-waves are indispensable 
information in determining focal mechanisms, particu-
larly for smaller earthquakes (Reasenberg and Oppen-
heimer 1985; Hardebeck and Shearer 2002; Stein and 
Wysession 2003). Traditionally, human experts have 
accomplished the task of determining the P-wave first-
motion polarity manually. In recent years, however, 
research on automatic determination algorithms, which 
includes searching for a local maximum just after the 

P-wave arrival time (Chen and Holland 2016) and using 
a Bayesian approach (Pugh et al. 2016), have been devel-
oped to cope with the increasing number of observed 
data. In Japan, the WIN system (Urabe and Tsukada 1991; 
Urabe 1994; Uehira 2001), a useful software package 
for data acquisition and storage to deal with multichan-
nel seismic waveform data, has been widely used; with a 
WIN system software, the P-wave first-motion polarity 
can be determined automatically. Horiuchi et  al. (2009) 
also developed an algorithm for the automatic determi-
nation of P-wave first-motion polarity, which has worked 
quite well and hugely helped to determine first-motion 
polarities in many studies (e.g., Matsumoto et  al. 2018; 
Katoh et  al. 2018; Okada et  al. 2019). However, there is 
still need for human experts to check the obtained results 
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for accuracy even for the algorithm developed by Hori-
uchi et  al. (2009). In addition, when the algorithm of 
Horiuchi et al. (2009) optimized for a data set from one 
region is applied to a data set from another region, elabo-
rate techniques of human experts are required to adjust 
parameters. Therefore, there is a strong demand for an 
automatic determination algorithm that does not require 
such adjustment.

In recent years, machine learning has been success-
fully applied even in fields considered unconducive to 
the creation of mathematical formulations, such as natu-
ral language processing (e.g., Sutskever et  al. 2014) and 
image recognition (e.g., Krizhevsky et  al. 2012). In con-
ventional studies using machine learning, the features of 
data targeted for extraction must be given beforehand by 
human experts, but the development of deep learning 
has changed this situation. Deep learning can find more 
appropriate features to extract for itself, through the 
analysis of data. This innovative technology has had a sig-
nificant impact not only on research but also on people’s 
daily lives such as language translation and automatic 
driving. Applications of deep learning to seismology are 
also proceeding rapidly, including the detection of P- and 
S-wave arrival times (Zhu and Beroza 2018), determina-
tion of P-wave arrival times and first-motion polarities 
(Ross et  al. 2018), detection and location determination 
of earthquakes (Perol et  al. 2018), prediction of after-
shock distributions (DeVries et  al. 2018), and discrimi-
nation of seismic signals from earthquakes and tectonic 
tremors (Nakano et al. 2019).

In this study, we use the convolutional neural net-
work (CNN) model introduced by Fukushima (1980) 
and LeCun et  al. (1998) to automatically determine the 
P-wave first-motion polarity of observed seismic wave-
forms. Historically, the accuracy of deep learning has 
been improved by deepening fully connected neural 
network layers, in which one node is connected to all 
the nodes of the previous layer. In contrast, CNNs use 
convolution layers, in which one node is only connected 
to a part of the nodes of the previous layer to efficiently 
extract local features included in a data profile. CNNs 
have been used as a powerful technique in the field of 
image recognition (Krizhevsky et al. 2012). We consider 
that human experts determining P-wave first-motion 
polarity recognize a waveform profile in the manner of 
images, and thus CNNs would be an appropriate model 
of deep learning to approximate human judgments in this 
task.

Ross et  al. (2018) have already constructed a CNN 
model to determine the P-wave first-motion polarity as 
well as arrival time, using more than 2.5 million seis-
mic waveform data observed in the Southern California 
region, and they achieved a high precision of 95% in the 

determination of the P-wave first-motion polarity. This 
represents great progress. As mentioned above, however, 
the trained CNN model may not be applicable to wave-
form data of other regions. In addition, outside of South-
ern California, it would be difficult to obtain 2.5 million 
data with P-wave first-motion polarity determined by 
human experts.

In this study, we first examine whether a CNN algo-
rithm similar to that of Ross et al. (2018) can achieve high 
accuracy in P-wave first-motion polarity determination 
of waveform data observed in western Japan, where we 
can use a much smaller number of data sets with P-wave 
first-motion polarity determined by human experts. The 
study area, in western Japan, comprises the San-in and 
the northern Kinki regions, which are about 200 km apart 
(Fig. 1). Thereafter, we check the regional dependence by 
alternately using the data sets from either of these regions 
as the training and test data sets; that is to say, we train 
the CNN models using the data from one region (San-
in or northern Kinki) and test the models with the data 
from the other region (northern Kinki or San-in). Both 
regions have waveform data with sampling frequencies of 
250 Hz (temporary stations) and 100 Hz (permanent sta-
tions); we thus also examine the frequency dependence 
of the CNN models.

Data
We use seismic waveform data with sampling frequen-
cies of 250 or 100 Hz observed in western Japan (Fig. 1). 
The waveforms with a frequency of 250 Hz were obtained 
from temporary stations known as the “Manten system” 
(Miura et  al. 2010, Iio 2011, Iio et  al. 2017), and those 
with a frequency of 100 Hz were obtained from perma-
nent stations operated by the National Research Institute 
for Earth Science and Disaster Prevention (NIED), the 
National Institute of Advanced Industrial Science and 
Technology (AIST), the Japan Meteorological Agency 
(JMA), and Kyoto University.

We use waveform data observed in the San-in region 
from October 2014 to March 2016, and in the northern 
Kinki region from April to September 2016. The number 
of earthquakes observed in these periods is 6770 events 
with magnitude ranging from − 1.3 to 6.2, and 1374 
events with magnitude ranging from 0.0 to 4.2 in San-in 
and northern Kinki regions, respectively. For these earth-
quakes, the number of waveforms recorded at 250 Hz is 
103,823 in San-in and 23,377 in northern Kinki (127,200 
in total), while the number of those recorded at 100 Hz 
is 30,231 in San-in and 9938 in northern Kinki (40,169 
in total) (Table 1). For all the waveforms, the arrival time 
and the first-motion polarity of the P-wave were deter-
mined beforehand by human experts.
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Methods
We construct CNN models for 250 Hz and 100 Hz wave-
form data separately. To train and test the CNN models, 
we take 75 data points before and 75 data points after the 
P-wave arrival time for each waveform (0.6 s for 250 Hz 
data and 1.5  s for 100  Hz data in total). CNN models 
using more data points show almost the same perfor-
mance while the models using less data points exhibit 
significantly lower performance. For each waveform, 
the P-wave arrival time determined by human experts 
is given beforehand. Because conventional automatic 
algorithms, such as STA/LTA (Allen 1978; Withers et al. 
1998) and the algorithm developed by Horiuchi et  al. 
(2009), can already determine the P-wave arrival time 
quite well, we do not intend to develop a CNN model to 
determine the P-wave arrival time. In this study, we focus 
on the automatic determination of P-wave first-motion 
polarity.

Since the amplitude, A(t) , of each waveform varies sig-
nificantly, the z-score normalization defined by

is applied to each waveform to create the input data 
(Fig.  2) for the CNN models, where µ and σ are the 

(1)Azscore(t) =
A(t)− µ

σ

average and standard deviation of each waveform, 
respectively.

Figure  2 shows the CNN model used in this study, in 
which seven convolution layers are followed by two fully 
connected layers. In the fully connected layers, the j-th 
sample (or component) of the ℓ-th layer, z(ℓ)n,j  , is related 
to all the samples of the previous layer by the following 
equation, which is basically the same as the historic “per-
ceptron” (Rosenblatt 1958):

where N is the number of waveforms used in the train-
ing, and I and J are the number of samples of the ( ℓ− 1

)-th and the ℓ-th layers, respectively, and w(ℓ)
ji  and b(ℓ)j  are 

the parameters to be optimized through the training of 
the CNN model. f (ℓ)act  is an activation function for the ℓ
-th layer and its explicit expression is given later in this 
section.

The shape of a fully connected layer is one-dimen-
sional, while it is generally two-dimensional in a convo-
lution layer (Fig. 2). Because the input layer of this study 
is one-dimensional, this type of CNN models is called 
1D CNNs, in contrast to usual 2D CNNs. The 1D CNNs 
were developed by Kiranyaz et al. (2015). In the convolu-
tion layers, the value of the j-th sample of the q-th chan-
nel at the ℓ-th layer, z(ℓ)n,jq , is related to a part of the values 
of the previous layer by the following equation:

(2)x
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I
∑
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w
(ℓ)
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Fig. 1  Location map of the seismic stations used in this study. The left and right diagrams show the San-in region and the northern Kinki region, 
respectively. Cross marks are temporary stations (250 Hz) and open circles are permanent stations (100 Hz). In the San-in and northern Kinki regions, 
the numbers of temporary stations are 131 and 42, respectively, and those of permanent stations are 90 and 78, respectively. Small blue and pink 
dots are epicenters determined by the San-in and northern Kinki seismic networks, respectively, for the period from October 2014 to March 2016 
in San-in and from April 2016 to September 2016 in northern Kinki. In the determination of the epicenters, both the permanent and temporary 
stations are used

Table 1  Number of data used in this study

N. Kinki represents northern Kinki

San-in N. Kinki Total

250 Hz 103,823 23,377 127,200

100 Hz 30,231 9938 40,169
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where K is the filter size from the ( ℓ− 1)-th to ℓ-th layers, 
and h(ℓ)kpq and b(l)jq  are the parameters to be optimized. K is 
smaller than the number of the samples of the ( ℓ− 1)-th 
layer I, and the sizes of the ( ℓ− 1)-th and ℓ-th layers are 
I × P and J × Q , respectively. Here, the relation, 
J = I − K + 1 , must be satisfied. For example, for the 
relation from the first to the second layers ( ℓ = 2 in 
Eq. 4), we assign I = 125 , P = 30 , J = 100 , Q = 70 , and 
K = I − J + 1 = 26 (see Fig. 2). Because k moves only by 
the filter size K, which is smaller than I , z(ℓ)n,jq is related to 
only a portion of the previous layer. In other words, the 
convolution using the filter ( K  ) is carried out for the 
samples ( I or J  ), while the convolution is not carried out 
for the channels ( P or Q ). In this sense, Eq. (4) represents 
a 1D CNN, and Q can be interpreted as the number of fil-
ters from the ( ℓ− 1)-th to the ℓ-th layers.

To connect the values of a convolution layer to those 
of a fully connected layer, it is necessary to flatten the 
convolution layer to a one-dimensional array, as shown 
in Fig. 2. In this study, the last convolution layer, which 
has the size of 20× 200 , is flattened to have the size of 
1× 4000 , by rearranging the order of samples.

As for the activation function f (ℓ)act  , we use Rectified 
Linear Unit (ReLU) (Nair and Hinton 2010),

(4)x
(ℓ)
n,jq =

P
∑

p=1

K
∑

k=1

h
(ℓ)

kpqz
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jq
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z
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(

n = 1, . . . ,N ; j = 1, . . . , J ; q = 1, . . . ,Q
) for hidden layers ( ℓ = 1, . . . , L− 1 ), and the softmax 

function (normalized exponential function),

for the output layer ( ℓ = L ) to obtain a probability value, 
where j and j′ represent two kinds of output values (U: 
Up; D: Down) to express the polarity.

To optimize the parameters, we use the cross-entropy 
function,

as the cost function to be minimized, where N is the 
waveform number for training and w collectively repre-
sents the parameters, w(ℓ)

ji  , b(ℓ)j  , h(ℓ)kpq , and b(ℓ)jq  , to be opti-
mized. In Eq. (8), tn,j is the result determined by human 
experts; when the polarity of the n-th waveform deter-
mined by human experts is Up (Down), tn,U = 1 and 
tn,D = 0 ( tn,U = 0 and tn,D = 1 ). Meanwhile, z(L)n,j  is the 
CNN model output, which is a function of w; for exam-
ple, z(L)n,U = 0.8 means that the CNN model determines 
the polarity of the n-th waveform to be Up with a proba-
bility of 80%. To find the optimal parameter w that 
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Fig. 2  The CNN models used in this study. The input data has the size of 150× 1 . The output has two probability values, Up and Down. Input data 
are processed by seven convolution layers shown by rectangles and two fully connected layers. The numbers attached to each layer (e.g. 125× 30 
in the first layer) denote the sizes of samples and channels. For example, we assign I = 125 , P = 30 , J = 100 , Q = 70 , and K = I − J + 1 = 26 for the 
relation from the first layer to the second layer ( ℓ = 2 in Eq. 3). “ReLU” and “Softmax” represent the activation functions used for respective layers
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minimizes the cost function (Eq. 8), we use the stochastic 
gradient descent (SGD) developed by Robbins and 
Monro (1951).

When we apply a CNN model, the observed data are 
commonly divided into 3 parts: data for training, valida-
tion, and test. Most data are usually used for training, the 
process by which the optimal values of parameters are 
determined. The filter size and the number of channels 
are chosen to provide sufficient performance for valida-
tion data. To avoid over-fitting to the training data, we 
adopted a method called “early stopping” (Prechelt 1998), 
in which learning of the CNN model is stopped when 
the value of the cost function for validation data starts 
to deteriorate. We do not use the techniques of pooling, 
padding, stride or batch normalization in hidden layers, 
because they did not change the performance of the CNN 
model for validation data. In the computation, we use a 
usual desktop PC with 12 Intel Core i7-7800X CPUs at 
3.50 GHz and 64.0 GB RAM rather than GPUs which are 
often used for faster computation in deep learning, and 
we finish training the CNN model within several hours. 
The CNN model is then applied to test data to assess its 
performance. It takes about 10 s to apply the CNN model 
for 10,000 waveforms.

Results and discussion
Results for all data
First, we examine the performance of the CNN models 
using the observed data from both regions. We use 80% 
of the data from both regions for training of the CNN 
models, and 10% each for validation and test. The results 
are shown in Table 2. Each component of Table 2 shows 
the ratio of the results determined by the CNN models 
and human experts to the total number of test data. For 
example, the number of 250  Hz waveform data deter-
mined to have an upward, “Up”, first motion polarity 
by both the CNN models and human experts is 7034, 
which constitutes 56.3% of the total 250 Hz test data set 
(12,720).

To evaluate the CNN performance, there are some 
measures that distinguish the CNN decisions (Up and 
Down), such as precision and recall, but from a geophysi-
cal point of view, it would be unnecessary to distinguish 
Up and Down. Therefore, as a measure to evaluate the 
performance of the trained CNN models, we use accu-
racy, AC, defined by the following equation:

where TU (TD) is the number of waveforms determined 
by both the CNN models and human experts as Up 
(Down), and FD (FU) is the number of waveforms deter-
mined by the CNN as Down (Up) but by human experts 
as Up (Down). As shown in Table 2, the accuracies of the 
CNN models are 97.9% for the 250 Hz data and 95.4% for 
the 100 Hz data.

Regional dependence
We then examine regional dependence, which is a serious 
problem in the conventional automatic algorithm widely 
used in Japan (Horiuchi et  al. 2009). If such a regional 
dependence is also significant for a CNN model, it would 
be necessary to prepare a large amount of P-wave first-
motion polarity data for each region, and to train the 
CNN model using the data.

To examine regional dependence, we divide the wave-
form data according to the observed regions: San-in and 
northern Kinki (Fig.  1). We then newly train the CNN 
models using the data set of only one region (San-in or 
Kinki), and test it using the data set of the other region 
(Kinki or San-in). Specifically, we use 90% of the data 
from one region for training and the remaining 10% for 
validation. Here, we use a CNN model with the same 
structure as that shown in Fig. 2.

The results are shown in the two leftmost columns of 
Table  3. For example, when we use the San-in data for 
training and validation, and the northern Kinki data for 
test, the CNN models have the accuracies of 98.8% and 

(9)AC =
TU+ TD

TU+ TD+ FU+ FD

Table 2  Performance of the CNN models for all data

“U” and “D” indicate Up and Down, respectively, of the P-wave first-motion 
polarity determined by the CNN models or human experts (e.g., UCNN means the 
CNN models determine the polarity to be Up). The number of test data is 12,720 
for 250 Hz and 4017 for 100 Hz

250 Hz 100 Hz

UCNN DCNN UCNN DCNN

Uhuman 56.3% 1.1% 56.2% 2.4%

Dhuman 1.0% 41.7% 2.2% 39.3%

Accuracy 97.9% 95.4%

Table 3  Regional dependence of the CNN models

The accuracy of each case is shown. “Training set” means the data set used for 
training and validation. The result in the far right column is the same as that of 
Table 2. The CNN models used for the second and third columns from the right is 
the same as that used for the far right column; the result in the far right column 
is the weighted mean by the number of test data. N. Kinki represents northern 
Kinki

Training 
set

San-in N. Kinki 90% data of both regions

Test set N. Kinki San-in 10% N. 
Kinki

10% 
San-in

10% both

250 Hz 98.8% 96.2% 98.9% 97.7% 97.9%

100 Hz 95.4% 92.3% 97.0% 94.8% 95.4%



Page 6 of 11Hara et al. Earth, Planets and Space          (2019) 71:127 

95.4% for the 250 Hz and 100 Hz data, respectively. The 
performance of the CNN models for these cases is gener-
ally high, more than 90%. The results of Table 3 show that 
regional dependence is insignificant, at least in this case; 
the CNN models, trained for a data set of one region and 
applied to the dataset of the other region, show similar 
performance irrespective of the regions. These results 
suggest that the CNN models trained by a data set of 
one region are likely to be applicable to waveform data of 
other regions.

When we examine the results in the two leftmost col-
umns of Table  3 in more detail, however, we notice a 
systematic difference: the accuracies of the CNN models 
trained with the northern Kinki data and tested with the 
San-in data are lower (the second left column of Table 3) 
compared to when the data of both regions are used 
(Table 2), or when the data of San-in and northern Kinki 
are used for training and test, respectively (the leftmost 
column of Table 3). The systematic difference in accuracy 
could be due to regional dependence, that is, the San-in 
data are more appropriate than the northern Kinki data 
for training and/or northern Kinki data are more appro-
priate than the San-in data for testing, because of some 
difference in the waveform features. To clarify this prob-
lem, the CNN models used for Table 2, in which the data 
of both regions are used for training and validation, give 
useful information, because the test data can be sepa-
rated by region, and accuracy can be obtained for each 
separate data set. As shown in the second and third col-
umns from the right (Table 3), the accuracies of the CNN 
models of Table 2 for the test data of the northern Kinki 
and San-in regions are 98.9% and 97.7%, respectively, for 
the 250  Hz data, and 97.0% and 94.8%, respectively, for 
the 100 Hz data. These results indicate that it is easier for 
the CNN models to make the same decision as human 
experts using the northern Kinki data for test.

However, the accuracies of the CNN models trained 
with the northern Kinki data and tested with the San-
in data using the 100 Hz data set are significantly lower 
(92.3%) than in the other cases. Another factor affect-
ing the performance of the CNN models is the number 
of data, which is much smaller in northern Kinki than in 
San-in. To examine the effect of the number of data on 
the performance of the CNN models, we again newly 
train the CNN models by randomly reducing the num-
ber of training data from the San-in region to match 
the number from the northern Kinki region and test 
the trained CNN models using the northern Kinki data 
set. Specifically, the number of training data is reduced 
from 103,823 to 23,377 for 250 Hz data and from 30,231 
to 9938 for 100 Hz data. The result is shown in Table 4. 
Although the number of training data is reduced to about 
one-fourth, the decrease in accuracy is only 0.3% for the 

250  Hz data. This means that the accuracy difference 
shown in Table 3 is likely due to regional dependence in 
the case of the 250 Hz data. On the other hand, the accu-
racy for the 100 Hz data is decreased by as much as about 
3%; the 92.6% accuracy is similar to the case of using 
northern Kinki data for training and San-in data for test 
(the second left column of Table 3). These results suggest 
that about 10 thousand 100  Hz waveform data are not 
enough to train the CNN model to determine the P-wave 
first-motion polarity, but we can probably train the CNN 
model well if we have more than 20–30 thousand wave-
form data.

Frequency dependence and causes of mismatch
The results of Tables 2 and 3 also show that the accura-
cies of the CNN models are consistently higher for the 
250  Hz data than for the 100  Hz data by a difference 
of about 3%, which is larger than the difference due to 
regional dependence. Since seismic waves typically have 
much lower frequencies than 100  Hz, we may consider 
100 Hz data to be sufficient for machine learning. How-
ever, the results of Tables  2 and 3 indicate that using 
250 Hz data, it is easier for the CNN model to make the 
same decisions as human experts.

As shown in Tables 2, 3, and 4, the CNN models gen-
erally exhibit a very good performance in determining 
the P-wave first-motion polarity except when the num-
ber of training data is limited. However, it is worth not-
ing that the CNN model determination of polarity still 
varies from the human expert determination with the 
probability of a few percentage (250  Hz data) to about 
5% (100 Hz data). Table 4 shows that a reduction in the 
number of training data results in a decrease in accuracy, 
which means that the CNN models make erroneous deci-
sions under certain conditions. Human experts are not 
perfect either as they often make mistakes due to various 
reasons.

In Figs. 3 and 4, we show some of the match (TU and 
TD) and mismatch (FU and FD) examples, respectively, 
determined by the CNN models and human experts. 
These examples are taken from the cases in Table  2. 
Although the same numbers of match and mismatch 
examples are shown, it should be noted that the actual 

Table 4  Effect of  the  number of  training data 
on the performance

The CNN models are trained and validated with all of or a reduced number of 
data from the San-in region and tested for all the data from the northern Kinki 
region. The results of the first and third columns from the left are the same as 
the results of the far left column shown in Table 3

250 Hz 100 Hz

Number of data 103,823 23,377 30,231 9938

Accuracy 98.8% 98.5% 95.4% 92.6%



Page 7 of 11Hara et al. Earth, Planets and Space          (2019) 71:127 

Fig. 3  Match examples. Waveform examples, for which the polarities determined by the CNN models and human experts coincides, are shown. 
The top two rows present examples of the San-in data, and the bottom two rows examples of the northern Kinki data. The vertical dashed line in 
each diagram represents the P-wave arrival time determined by human experts. “M” and “d” on the top of each diagram represent the magnitude of 
the earthquake and the distance from the hypocenter, respectively. The output of the final “softmax function”, which represents the probability (or 
reliability) of the estimated polarity in percentage, is also shown together with the CNN polarity determination for each trace

Fig. 4  Mismatch examples. Waveform examples, for which the polarities determined by the CNN models and human experts do not coincide, are 
shown. For further explanations, see the caption of Fig. 3
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number of mismatch examples is only a few percentage 
of the total. From Fig.  3, we see that the CNN models 
make the same decision as human experts in most cases, 
even with waveforms that are relatively noisy. In the mis-
match examples in Fig. 4, it appears that the CNN models 
make mistakes in the bottom left diagram; the polarity of 
this example is considered to be Up. On the other hand, 
human experts may be to blame for the polarity determi-
nation in the top left diagram, although it is not easy to 
decide with definite confidence the true polarity (Up or 
Down).

To elucidate this problem, we plot the polarities deter-
mined by the CNN models and human experts on a map 
in Fig.  5, where an earthquake with the most polarities 
read by human experts is selected for each region (San-in 

and northern Kinki) and sampling frequency (250  Hz 
and 100  Hz). We also show earthquakes with the sec-
ond to fourth most polarities read by human experts in 
Additional file 1: Figs. S1–S3. In these figures, the black 
(white) circles represent Up (Down) determined by both 
human experts and the CNN models. Dark blue (light 
blue) circles are mismatch examples that are determined 
as Up (Down) by human experts, but as Down (Up) by 
the CNN models. The red cross denotes the epicenter. 
These figures show that most dark blue and light blue 
circles are located in boundary zones between the areas 
of black (Up) and white (Down) circles. In other words, 
most mismatch examples locate near nodal planes. At 
the same time, we also notice that some dark blue cir-
cles are surrounded by white circles (e.g., the top right 

Fig. 5  Polarity plots on maps. Polarities determined by the CNN models and human experts are plotted on a map. Black and white circles represent 
match examples, which denote Up and Down, respectively. Dark blue and light blue circles represent mismatch examples. Dark (Light) blue 
means that the decision by human experts is Up (Down), while that by the CNN model is Down (Up). The red cross denotes the epicenter. We plot 
the polarities for the earthquake with the most polarities read by human experts for each region (San-in or northern Kinki) and each sampling 
frequency (250 Hz or 100 Hz). The results for the earthquakes with the second to fourth most polarities are shown in Additional file 1: Figs. S1–S3
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panel of Fig.  5 and the top left and bottom left panels 
of Additional file  1: Fig. S1) and some light blue circles 
are surrounded by black circles (e.g., the top left panel of 
Additional file  1: Fig. S2). These examples strongly sug-
gest that the performance of the CNN models is better 
than that of human experts, although we could see oppo-
site cases rarely.

In training the CNN models, it is assumed that the 
determination of P-wave first-motion polarity by human 
experts is always correct, but in fact, as mentioned above, 
human experts make mistakes with a low probability. 
For example, for a data set gathered in southern Califor-
nia from 1981 to 1998, Hardebeck and Shearer (2002) 
reported that about 10–20% of the determination results 
by human experts were inconsistent. This ratio of mis-
takes seems to be surprisingly high. In western Japan, 
Yukutake et al. (2007) allowed mistakes by human experts 
up to a few percentage points in estimating the focal 
mechanisms of aftershocks of the 2000 Western Tot-
tori earthquakes, which happened in the San-in region. 
Iwata (2018) estimated the stress field in the same region 
from P-wave first-motion polarity data determined by 
human experts; in the study, he obtained the probability 
of human mistakes to be about 1% as a by-product. How-
ever, actual probability of human mistakes is considered 
to be higher, because the probability of mistakes is cal-
culated from the number of polarities inconsistent with 
the estimated focal mechanism. Here, it should be noted 
that the focal mechanism is estimated to fit the polarities 
determined by human experts. Therefore, it is often pos-
sible to obtain a focal mechanism that fits the polarities 

determined by human experts, even though some of the 
determined polarities near the nodal planes were actually 
incorrect.

The probability of human mistakes, which affects the 
performance of the CNN model, seems to depend on 
various factors, such as observation locations, obser-
vation periods including the change of seismometers, 
the skills of human experts, and so on. As already men-
tioned, the accuracies of the CNN models clearly depend 
on the sampling rate. It can be seen from the observed 
waveforms (Figs.  3, 4) that the 250  Hz waveform data 
have more detailed information than the 100  Hz data. 
Hence, it would be easier for human experts to determine 
the P-wave first-motion polarity for higher sampling 
rate data, because the separation of signals from noise is 
easier.

As previously stated in Method section, the output 
of the CNN model is the probability value. In each dia-
gram of Figs. 3 and 4, the probability value is also shown 
together with its decision (Up or Down). In the case of 
Table 2, we show the relation of accuracy to the proba-
bility estimated by the CNN models in Fig. 6, where we 
can see a clear positive correlation between the prob-
ability and accuracy. This means that we can obtain 
more reliable results by setting a threshold of the prob-
ability. In other words, the probability estimated by the 
CNN model may be used as a measure of reliability of 
the judgement, and the polarities with low probability 
may be classified as “Unknown” or “Unidentified”. Fig-
ure 6 also shows the relation between the probability esti-
mated by the CNN models and the number of estimated 

250 Hz 100 Hz
Fig. 6  Relation of the polarity probability estimated by the CNN models to the accuracy and the number of estimated polarities. The left and 
right diagrams show the result for the 250 Hz sampling and 100 Hz sampling data, respectively. In each diagram, the horizontal axis represents 
the probability (or reliability) of the polarity estimated by the CNN models; the vertical axis represents the number of the estimated polarities 
(histogram) and the accuracy of the estimates (solid line) defined by Eq. (7) for each probability bin. The probability bin is taken from 50 to 100% in 
5% increments. Additional file 1: Fig. S4 shows the case for the probability bin, which is taken from 90 to 100% in 1% increments. Note that the scale 
of the histogram is logarithmic
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polarities. From Fig. 6, we can see that most decisions by 
the CNN models are made with the probability of 95% or 
more (note that the scale of “Number of estimated polari-
ties” is logarithmic). The accuracies of the CNN models 
with the probability of 95% or more are 99.3% (250 Hz) 
and 98.5% (100 Hz), respectively.

Conclusions
In this study, we developed an algorithm for the auto-
matic determination of P-wave first-motion polarity 
using CNN models (Fig. 2). To train the CNN models, we 
used waveform data observed in the San-in and northern 
Kinki regions, western Japan (Fig. 1 and Table 1), in which 
the P-wave first-motion polarity and P-wave arrival time 
were determined by human experts beforehand. When 
we trained the CNN models using 250  Hz and 100  Hz 
waveform data, respectively, from both regions, the accu-
racies of the CNN models were 97.9% for the 250  Hz 
data and 95.4% for the 100 Hz data (Table  2). By divid-
ing the data set by regions, we then examined regional 
dependence, which is a serious problem in the conven-
tional automatic determination algorithm. We found that 
the accuracies of the CNN models were generally high 
( � 95%) and that regional dependence was insignificant, 
although there were slight but systematic differences 
(1–3%) in accuracy (Table  3). We also found that the 
accuracies of the CNN models were significantly reduced 
when the number of training data was less than 10 thou-
sand (Table 4). The effect of sampling rate on the perfor-
mance of the CNN models was more important than that 
of regional dependence in the case studied (Tables 2, 3); 
The 250 Hz data showed better accuracy than the 100 Hz 
data by a few percent. Additionally, we found that most 
mismatch examples were located near the nodal planes 
of focal mechanisms (Figs.  5 and Additional file  1: S1–
S3). Some of the mismatch polarities, however, were not 
located close to the nodal planes; the polarities estimated 
by the CNN models were usually consistent with the 
polarities surrounding them. These results suggest that 
the CNN models give a better performance than human 
experts. The probability values estimated by the CNN 
models showed a clear positive correlation with accu-
racy; higher accuracy was achieved for higher probability 
(Fig. 6).

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s4062​3-019-1111-x.

Additional file 1: Fig. S1. Polarity plots on maps. Polarities determined 
by the CNN models and human experts are plotted on a map. Black 
and white circles represent match examples, which denote Up and 
Down, respectively. Dark blue and light blue circles represent mismatch 

examples. Dark (Light) blue means that the decision by human experts 
is Up (Down), while that by the CNN model is Down (Up). The red cross 
denotes the epicenter. We plot the polarities for the earthquake with the 
second most polarities read by human experts for each region (San-in 
or northern Kinki) and each sampling frequency (250 Hz or 100 Hz) Fig. 
S2. Polarity plots on maps. This figure is the same as for Fig. S1, except 
that the polarities of the earthquake with the third most polarities read 
by human experts are plotted for each region (San-in and northern Kinki) 
and sampling frequency (250 Hz and 100 Hz) Fig. S3. Polarity plots on 
maps. This figure is the same as for Fig. S1, except that the polarities of 
the earthquake with the fourth most polarities read by human experts 
are plotted for each region (San-in and northern Kinki) and sampling 
frequency (250 Hz and 100 Hz) Fig. S4. Relation of the polarity prob-
ability estimated by the CNN models to the accuracy and the number of 
estimated polarities. The left and right diagrams show the result for the 
250 Hz sampling and 100 Hz sampling data, respectively. In each diagram, 
the horizontal axis represents the probability (or reliability) of the polarity 
estimated by the CNN models; the vertical axis represents the number 
of the estimated polarities (histogram) and the accuracy of the estimates 
(solid line) defined by Eq. (9) for each probability bin. The probability bin 
is taken from 90% to 100% in 1% increments. Note that the scale of the 
histogram is logarithmic.
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