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Predictions of the geomagnetic secular 
variation based on the ensemble sequential 
assimilation of geomagnetic field models 
by dynamo simulations
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Abstract 

The IGRF offers an important incentive for testing algorithms predicting the Earth’s magnetic field changes, known 
as secular variation (SV), in a 5-year range. Here, we present a SV candidate model for the 13th IGRF that stems from 
a sequential ensemble data assimilation approach (EnKF). The ensemble consists of a number of parallel-running 
3D-dynamo simulations. The assimilated data are geomagnetic field snapshots covering the years 1840 to 2000 from 
the COV-OBS.x1 model and for 2001 to 2020 from the Kalmag model. A spectral covariance localization method, 
considering the couplings between spherical harmonics of the same equatorial symmetry and same azimuthal wave 
number, allows decreasing the ensemble size to about a 100 while maintaining the stability of the assimilation. The 
quality of 5-year predictions is tested for the past two decades. These tests show that the assimilation scheme is able 
to reconstruct the overall SV evolution. They also suggest that a better 5-year forecast is obtained keeping the SV 
constant compared to the dynamically evolving SV. However, the quality of the dynamical forecast steadily improves 
over the full assimilation window (180 years). We therefore propose the instantaneous SV estimate for 2020 from our 
assimilation as a candidate model for the IGRF-13. The ensemble approach provides uncertainty estimates, which 
closely match the residual differences with respect to the IGRF-13. Longer term predictions for the evolution of the 
main magnetic field features over a 50-year range are also presented. We observe the further decrease of the axial 
dipole at a mean rate of 8 nT/year as well as a deepening and broadening of the South Atlantic Anomaly. The mag-
netic dip poles are seen to approach an eccentric dipole configuration.
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Introduction
Over the past century, the geomagnetic field has under-
gone significant changes reflecting the vigorous dynam-
ics of Earth’s liquid iron core. The focal point of the 
South Atlantic Anomaly (SAA), a region of low magnetic 
field intensity at the Earth’s surface, has moved from 
the shores of Southeast Brazil to its current location in 
Northern Argentina, while its intensity has decreased by 

about 26nT/year (Finlay et al. 2010). The north and south 
magnetic dip poles, locations where the field is vertical 
to Earth’s surface, have both moved northwestwards, the 
north dip pole accelerating to a speed five times higher 
than that of the south dip pole during the past 20 years 
(Thébault et al. 2015). The most intriguing change, how-
ever, is the decrease of the geomagnetic field dipole by 
about 15nT/year over the past century (Finlay 2008). 
These are only three particularly prominent examples of 
the geomagnetic secular variation (SV).

Understanding and predicting these variations is very 
important for modeling our space weather environment. 
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For instance, in the vicinity of the SAA, the radiation belts 
reach to much lower altitudes and can harm the electron-
ics aboard satellites (Schaefer et al. 2016; Bourdarie et al. 
2019). Predicting the evolution of the SAA is therefore 
important for planning satellite operations. Short-term 
predictions are also needed for surface exploration stud-
ies and regional magnetic anomaly surveys that depend 
on accurate maps of the main magnetic field. Further-
more, many commonly used electronic devices use maps 
of the main magnetic field as directional information.

The International Geomagnetic Reference Field 
(IGRF) offers a community-based model of the main 
magnetic field and a SV estimate. There is a new IGRF 
every 5 years; the newest, IGRF-13, covers the year 
2020 (Alken et  al. 2020a). The IGRF is a synthesis of a 
number of model candidates constructed using differ-
ent modeling strategies. In addition to the main field 
(B) up to spherical harmonic degree 13, the IGRF also 
provides a SV ( Ḃ ) estimate that allows predicting the 
field 5 years later with a simple linear extrapolation: 
B(t0 + 5 years) = B(t0)+ Ḃ× (5 years) . Though this 
definition calls for the mean SV over the 5-year interval, 
most contributions provide the SV at the year t0 . Pre-
dicting the evolution 5 years beyond the available data 
requires some kind of dynamical model, which goes 
beyond typical field modeling studies. However, more 
and more candidates have started incorporating at least 
some key physical aspects of the core field dynamics, 
which could potentially improve the magnetic field fore-
casts. Some derive SV estimates from the interaction 
of the magnetic field and the inverted flow just under-
neath the core–mantle boundary (CMB, e.g., Hamilton 
et  al. 2015). Others rely on full 3D-dynamo simulations 
within a data assimilation framework (e.g., Kuang et  al. 
2010; Fournier et  al. 2015). Our contribution to IGRF-
13 is a SV that falls into the latter category. In this paper, 
we explain the details of the model and discuss different 
approaches for estimating the SV.

Geomagnetic data assimilation and inversion schemes 
based on 3D-dynamo simulations have greatly improved 
over the past years (see the review by Fournier et  al. 
2010). They have evolved from early validation tests (e.g., 
Kuang et  al. 2008; Aubert and Fournier 2011) to recent 
applications, mainly involving reanalyses of the core flow 
(Aubert 2014; Barrois et al. 2018) and long-term forecasts 
(Aubert 2015). A central component for the success of 
any sequential data assimilation scheme is the choice of a 
sufficiently realistic background dynamical model and the 
representation of its covariance. The model covariance 
is particularly important due to its role in propagating 
information from the observed to the unobserved parts 
of the system. The covariance can be approximated via 
an ensemble, such as a collection of snapshots of a given 

numerical model. The ensemble Kalman filter (EnKF, 
Evensen 1994) proposes a generalization of this concept 
to the time-dependent estimation problem, sequentially 
iterating between forecast and analysis steps. In the anal-
ysis step, the ensemble is used to infer the model covari-
ance and to estimate the state of the model in light of the 
available observations. In the forecast step, the ensemble 
is integrated forward in time with the use of the numeri-
cal model and diverges due to its nonlinear nature. The 
divergence is often characterized by the e-folding time, 
which is related to the predictability of the system (Hulot 
et al. 2010).

A first EnKF application to geomagnetism by Fournier 
et  al. (2013) suggested that an ensemble of about 
Ne ≈ 500 numerical dynamo simulations is required 
for the assimilation to converge. Since dynamo simula-
tions at more realistic parameters are extremely costly, 
it would be beneficial to decrease this number. This 
is problematic, however, since the covariance matrix 
quickly degrades with decreasing ensemble size, likely 
causing the assimilation scheme to diverge or ’blow up’. 
The reason is the growing impact of spurious correla-
tions, which can become particularly problematic when 
observation uncertainties are low (Gottwald and Majda 
2013). Sanchez et  al. (2019) demonstrated that the geo-
magnetic EnKF can be stabilized by keeping only the 
most prominent elements in the covariance matrix while 
setting all others to zero. Using a spectral representation, 
they showed that the correlations within the same spheri-
cal harmonic order clearly dominate the covariances of 
numerical dynamo simulations.

In this study, we show that the ensemble size can be 
further reduced by an additional covariance localiza-
tion which exploits the dominant equatorial symmetries 
observed in dynamo simulations. The new scheme is 
used for the EnKF assimilation of geomagnetic field mod-
els covering the past two centuries, namely the COV-
OBS.x1 geomagnetic field model (Gillet et al. 2015) from 
1840 to 2000 and the Kalmag model (Baerenzung et  al. 
2020) from 2001 to 2020. We propose the resulting SV in 
2020 as a candidate model for the IGRF-13 (Alken et al. 
2020b) and also attempt to predict the evolution of the 
main field until 2070.

This paper is organized as follows: we first describe the 
methods comprising the setup of the background model, 
the data assimilation scheme and the proposed covari-
ance localization. Next, we introduce the sequence of 
observations used for the assimilation as well as a cor-
rection of the observational uncertainties. We further 
describe the results from the assimilation with addi-
tional localization, introduce the candidate SV model for 
the year 2020 and provide long-term predictions of the 
magnetic field for the next five decades. Finally, the last 
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sections offer a discussion on the results and draw the 
conclusions of our study.

Methods
Background dynamo model
The dynamo model solves for disturbances in flow �U , 
magnetic field �B and density around an adiabatic sta-
tionary ground state. The differential equations are for-
mulated in a frame of reference that co-rotates with the 
outer boundary, which represents the Earth’s mantle. 
Five equations are solved, the Navier–Stokes equation

the induction equation

the codensity equation

the simplified continuity equation

and the magnetic continuity equation

 The non-dimensional control parameters that rule 
the system are the Ekman number E = ν

/(

�D2
)

 , the 
modified Rayleigh number Ra = g0F/4πρ�

3D4 , the 
Prandtl number Pr = ν/κ , the magnetic Prandtl number 
Pm = ν/� , and the aspect ratio a = ri/ro . Here, go is the 
outer boundary reference gravity, α the thermal expan-
sivity, F the mass anomaly flux, ν the kinematic viscosity, 
κ the thermal diffusivity and � the magnetic diffusivity. 
More details of the model are given in Christensen and 
Wicht (2015) or Wicht and Sanchez (2019). We used the 
numerical code Parody (Dormy 1997; Aubert et al. 2008) 
with the additional implementation of the assimilation 
scheme PDAF (Fournier et al. 2013).

The background model in our assimilation closely 
resembles the one used in our previous article Sanchez 
et al. (2019). We will refer to the article as S2019 here. All 
parameters are the same, except for the Rayleigh num-
ber, which we have increased by a factor two. The modi-
fied Rayleigh number is Ra = 10−5 , the Ekman number 
is E = 10−4 , the Prandtl number Pr = 1 and the mag-
netic Prandtl number is Pm = 10 . It seems reasonable to 

(1)

∂ �U

∂t
+ �U ·∇ �U + 2ẑ × �U = −∇p+ Ra (�r/ro)C

+ (∇ × �B)× �B+ E ∇2 �U ,

(2)∂ �B

∂t
= ∇ × ( �U × �B)+

E

Pm
∇2�B,

(3)
∂C

∂t
+ �U ·∇C =

E

Pr
∇2C + S,

(4)∇· �U = 0,

(5)∇·�B = 0.

assume that the tests and methods discussed in S2019, in 
particular the spectral covariance localization, still apply. 
The model contains an electrically conducting inner core 
and uses no-slip mechanical and homogeneous heat flow 
boundary conditions. It uses a decomposition of flow and 
magnetic fields in poloidal and toroidal contributions 
and an expansion in spherical surface harmonics (SH). 
The spectral representation required for our assimilation 
scheme is thus readily available.

Recent high-end dynamo models run at Ekman num-
bers as low as E = 10−7 (Schaeffer et al. 2017a). They may 
yield more Earth-like results, but also require extremely 
high spatial resolution and very short time steps. Since 
we run an ensemble of models in parallel, we chose a 
significantly larger Ekman number. We can think of the 
dimension-less model parameters as ratios of time scales. 
Particularly important for the dynamo mechanism are 
the magnetic diffusion time τ� , the flow advection time 
τU , and the rotation time τ� . The ratio of magnetic diffu-
sion to advection time is the magnetic Reynolds number 
Rm = τ�/τu . The ratio of rotation to magnetic diffusion 
time is the magnetic Ekman number E� =E/Pm= τ�/τ� . 
Christensen et  al. (2010) have shown that Earth-like 
dynamos occupy a wedge in the Rm/E� parameter space 
that is accessible by numerical simulations. However, 
this does not mean that both parameters are Earth-like. 
Earth-like magnetic Reynolds number values of about 
103 can actually be reached by the simulations, but E� 
remains much too small even for the most extreme mod-
els where it reaches 10−6 compared to 10−9 for Earth. 
The milder parameters used here yield Rm=430 and 
E� = 10−6 , which is not ideal but still reasonable. The 
simulation lies in the Earth-like wedge defined by Chris-
tensen et  al. (2010), but the simulated magnetic field is 
slightly less dipolar than the geomagnetic field and is too 
strongly concentrated in patches at the CMB.

In order to compare the non-dimensional simulations 
to observations, we have to choose a time scale. Being 
interested in the magnetic field dynamic, the secular vari-
ation time scale seems a natural choice. While the dipole 
varies very slowly, the typical time scale of higher order 
harmonics roughly decreases like τSV /ℓ , where  ℓ  is the 
spherical harmonic degree and τSV  is known as the SV 
time scale. Fitting this behavior to SV observations for 
degrees ℓ = 2 to 14 allows estimating τSV  for the Earth 
and for the simulations. The secular variation time scale 
seems to be directly coupled to the advection time scale 
τu (Christensen and Tilgner 2004). Fixing τSV  to the 
observed value thus means that we also fix the advective 
time scale. Because the parameters are not those of Earth, 
however, other time scales remain unrealistic. For exam-
ple, the fact that the magnetic Reynolds number is about 
a factor two too low means that the magnetic diffusion 
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time τ� is about a factor two too short. Compromises are 
required here and other studies interested in different 
aspects could require a different time rescaling.

While the analysis of Lhuillier et  al. (2011b) suggests 
τSV = 415years, we find that rescaling the assimilation 
output with τSV = 485year yields better hindcast results. 
We have therefore adopted this somewhat slower refer-
ence time scale. The sensitivity of the assimilation to the 
rescaling will be explored in forthcoming studies. The 
magnetic field was rescaled so that the mean axial dipole 
of the initial ensemble matches the average value of the 
observations over the period 1840 to 2020. Lastly, the 
flow is rescaled by a factor D/τSV .

Data assimilation scheme
The geomagnetic data assimilation framework employed 
here has been described in detail in S2019. It uses an 
EnKF based on 3D-dynamo simulations with the Parody-
PDAF code (Fournier et  al. 2013). An ensemble of Ne 
dynamo simulations defines the background model. At a 
given epoch ti , each of the ensemble members e is char-
acterized by its state vector

where P and V are the poloidal magnetic field and flow 
potentials, T  and U the toroidal field and flow potentials. 
The index k refers to radial levels in the spherical shell, ℓ 
and m are, respectively, the degree and order of the SH 
expansion and the superscript T refers to the transpose. 
As in S2019, given the chosen model dimensions, the 
state vector has a dimension of Nx ∼ 2.6× 106.

From the ensemble of simulations one can evaluate the 
mean dynamo solution

and the covariance

where the † represents the complex conjugate. In our 
EnKF approach the ensemble of dynamo simulations 
defines the background (prior) model statistics, which 
is combined with geomagnetic field models through a 
sequence of forecast and analysis cycles. The forecast is 
the propagation of each dynamo ensemble member from 
time ti−1 to time ti by the model’s numerical integration. 
When describing the dynamo state with the vector x and 
its time propagation with the operator M , the forecast 
can formally be written as

(6)
xi,e =

(

...,Pm
ℓ,k , ...,T

m
ℓ,k , ...,V

m
ℓ,k , ...,U

m
ℓ,k , ...,C

m
ℓ,k , ...

)T
,

(7)�xi� =
1

Ne

Ne
∑

e=1

xi,e

(8)Pi =
1

Ne − 1

Ne
∑

e=1

(xi,e − �xi�)(xi,e − �xi�)
†,

where indexes i and e correspond to time and ensemble 
member, respectively. The starting condition xai−1,e results 
from the previous analysis step. Whenever observations 
y are available, the analysis step is performed

where yi,e is a random realization of the observation from 
its distribution N (〈yi〉,Ri) , where Ri is the observation 
error covariance. It provides a correction of the fore-
cast state based on the differences to the observations, 
where Hi is the observation operator that screens out the 
observed variable from the state vector x . The Kalman 
Gain matrix is given by

where Pf
i  is the model forecast error covariance. The 

Kalman Gain matrix is essential for propagating infor-
mation from observed to unobserved parts of the model 
state.

The diagonal elements of the model covariance matrix 
P
f /a
i  provide information about the variances of the 

model variables, while the off-diagonal elements quan-
tify the covariances. The variances determine the spread 
of the ensemble and also serve as a proxy for the model 
uncertainties; the covariances show the linear depend-
encies of the model state entries. The model covariance 
matrix is typically huge with N 2

x  elements. Fortunately, 
however, in the EnKF scheme we only have to consider 
the elements describing the couplings of the model with 
the observables, that is, the low degree Gauss coefficients 
at the CMB. A subset of the initial model covariance Pf

0 
for the observable poloidal magnetic field potential at 
the top of the core Pm

ℓ (ro) is shown in Fig. 1a. The Fig-
ure demonstrates that small ensembles (for instance with 
Ne = 64 ) result in spurious correlations that tend to 
populate otherwise sparse regions of the covariance. As 
described in S2019, these spurious correlations can have 
a large impact on the performance and stability of the 
EnKF, but may be remedied by covariance localization.

Covariance localization
The term ’localization’ originates from atmospheric 
data assimilation where a covariance mask is used to fil-
ter out likely spurious correlations over long distances 
(Houtekamer and Mitchell 2001). When C is the mask, 
the modified localized covariance is simply

(9)x
f
i,e = Mi,i−1(x

a
i−1,e),

(10)xai,e = x
f
i,e + Ki(yi,e −Hix

f
i,e),

(11)Ki = P
f
iH

†
i (HiP

f
iH

†
i + Ri)

−1,

(12)P
f
i,loc = C ◦ P

f
i ,
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where ◦ denotes the Schur product (element-wise). For 
systems like Earth’s atmosphere where local effects domi-
nate due to the thin-shell dynamics, a distance-depend-
ent tapering makes sense. For the Earth’s core, however, 
we expect the flows to be nearly geostrophic (i.e., to show 
minimal variation in the direction of the rotation axis) 
due to the rotation-dominated dynamics in a thick shell. 
This means that the flows should be dominantly equato-
rially symmetric, which is the property we will exploit. 
Earth’s magnetic field, on the other hand, should be dom-
inated by the equatorially antisymmetric axial dipole.

The preferred symmetries clearly shape the spectral 
covariance matrix used in geodynamo assimilation 
schemes. The action of the flow contribution with a 
given wave number m on the axial dipole causes vari-
ations in all magnetic field contributions with the same 
m. This leads to the block structure along the diagonal 
of the spectral covariance matrix shown in Fig. 1a. The 
respective mask accounting for this pattern is given by

where k represents the index of the radial levels of the 
spherical shell. S2019 demonstrated that using this mask 
stabilized their assimilation scheme for an ensemble size 
of Ne = 512.

Here we go a step further and also implement the 
checkerboard pattern evident in Fig. 1a. An equatorially 
symmetric flow acting on an equatorially antisymmet-
ric field, like the axial dipole, produces again equato-
rially antisymmetric field. Poloidal field contributions 
where ℓ+m is even (odd) are equatorially symmetric 
(antisymmetric). It follows then that for this interac-
tion an even (odd) order m only correlates with odd 
(even) degrees ℓ (Bullard and Gellman 1954). The spec-
tral localization mask, illustrated in Fig. 1b, is therefore 
given by

where mod is an operator defining the remainder of the 
division of the two arguments. The localization mask Cℓm 
corresponding to the subset of the poloidal field covari-
ance is shown in Fig. 1b. The same pattern should apply 
to covariances between the potentials of poloidal mag-
netic field and the toroidal flow (S2019).

The covariance matrix between poloidal magnetic 
field and the poloidal flow potentials (see Fig. 12 from 
Appendix) obeys a shifted checkerboard pattern, con-
sistent with

The reason is that for the case above the potentials bear 
different dominant equatorial symmetries. The shifted 
pattern also applies for the covariance between the poloi-
dal field potential and the toroidal field and codensity 
potentials.

Observations
We assimilate the main field component of a previous 
version of the Kalmag field model (Baerenzung et  al. 
2020) spanning the years 2001 to 2020. This version 
of Kalmag relies on a Kalman filter and a subsequent 
Kalman smoother for the assimilation of CHAMP and 

(13)Cm(ℓmk , ℓ′m′k ′) = δm
′

m ,

(14)Cℓm(ℓmk , ℓ′m′k ′) = δm
′

m δ
mod(m′+ℓ′,2)
mod(m+ℓ,2) ,

(15)Cℓm(ℓmk , ℓ′m′k ′) = δm
′

m δ
mod(m′+ℓ′+1,2)
mod(m+ℓ,2) .

Fig. 1  a Subset of the normalized model covariance Pf
0
 , 

corresponding to correlations of the poloidal magnetic field 
potential at the core surface Pm

ℓ (ro) calculated from the ensemble 
of dynamo simulations. Note that for illustration purposes the matrix 
is a composite of two correlation matrices based on ensembles of 
different sizes: the upper half is calculated using Ne = 512 and the 
lower half with Ne = 64 . b The associated localization matrix Cℓm . 
The matrices are organized by the stacking of the spherical harmonic 
degrees ℓ within the corresponding order m, truncated at ℓ = 14 , 
and the upper insets magnify the region where m = m′ = 3
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Swarm satellite data. It models the main surface field 
up to degree ℓ = 20 with a classical set of Gauss coef-
ficients gmℓ  and hmℓ  and also provides uncertainties. The 
Gauss coefficients are related to the state vector through 
eqs.  (11) and (12) from Sanchez et  al. (2016). The field 
evolution at the top of the core by Kalmag is para-
metrized with a second-order auto-regressive process. 
The model uses data until September 22nd 2019 and pro-
vides a forecast for 2020, which is an IGRF-13 candidate.

S2019 demonstrated that the performance of the 
assimilation scheme improves when including data cov-
ering long time intervals. We therefore extend the assimi-
lation interval before the Kalmag time span with the 
COV-OBS.x1 model for the years 1840–2000 (Gillet et al. 
2015). COV-OBS.x1 uses data from magnetic observa-
tories, surveys and satellite missions such as POGO and 
Magsat. It models the surface field up to degree ℓ = 14 
and provides uncertainty estimates based on an ensem-
ble approach. COV-OBS.x1 is regularized in time by tem-
poral cross-covariances associated with a second-order 
auto-regressive stochastic process.

A comparison of the uncertainties σ o from COV-OBS.
x1 and Kalmag models in Fig.  2 reveals a growing dis-
crepancy over the last 60 years. COV-OBS.x1 uncer-
tainties decrease very fast after 1990, reaching a 10 µ T 
RMS value at the core surface, and likely underestimate 
the true errors in recent epochs (as also pointed out by 
Barrois et  al. 2018). Kalmag uncertainties, on the other 
hand, maintain a 30  µ T RMS level during the same 
period. We assume here that the Kalmag uncertainties 
are more realistic and use them as a lower bound. Each 
uncertainty coefficient from COV-OBS.x1 lower than 
the corresponding Kalmag value in 2001 is simply set to 
the corresponding Kalmag value. The resulting corrected 
COV-OBS.x1 RMS uncertainty estimate is shown in 
Fig. 2.

We choose to only assimilate Kalmag up to ℓ = 18 , 
since the signal-to-uncertainty ratio is small for 
ℓ ≥ 19 . The composite field model is assimilated every 
�to = 5  years for COV-OBS.x1 and every �to = 1  year 
for Kalmag.

Results
The results shown in the following explore the effects of 
different assimilation setups while keeping the observa-
tions (a sequence of snapshots of the Kalmag model) 
and dynamo model the same. The first section shows the 
impact of the covariance localization and the ensemble 
size on the forecast errors. The following section dis-
cusses the quality of 5-year forecasts based on different 
SV estimates using hindcast tests. We afterwards present 
our candidate model for the SV in 2020 and compare it to 

the final IGRF-13. Lastly, predictions of the Earth’s main 
magnetic field for the next 50 years are shown.

We quantify forecast errors (sometimes called ’O-F’, 
observation minus forecast) by

They are often compared to the forecast uncertainties, 
estimated by the ensemble spread

Impact of localization
Figure 3 shows the evolution of the RMS forecast errors 
εf  and the forecast uncertainties σ f  at the top of the 
Earth’s core for different ensemble sizes Ne and locali-
zations during the assimilation interval. The case corre-
sponding to the scheme used in S2019 with Ne = 512 and 
Cm localization serves as a reference case and is shown 
by the thick black line. The forecast uncertainties σ f  in 
Fig.  3b closely follow the evolution of the observation 
uncertainties σ o shown in Fig.  2, at least for the period 
until 2000 covered by COV-OBS.x1. The sudden decrease 
in σ f  after 2000 is caused by the decrease in the assimi-
lation interval from �to = 5  years to 1  year. Forecast 
uncertainties seem to level-off at the end of the assimila-
tion scheme, while the errors slightly grow. The predicted 
uncertainties should be a representation of the discrep-
ancies between the model and reality. Therefore discrep-
ancies between the forecast errors and uncertainties in 

(16)εf =

√

(y −H�xf �)2.

(17)σ f =

√

√

√

√

1

Ne − 1

Ne
∑

e=1

(x
f
e − �xf �)2.

Fig. 2  RMS uncertainty σ o , evaluated at the core surface, of 
COV-OBS.x1 and Kalmag truncated to spherical harmonic degree 
ℓ = 14 . Also shown are the COV-OBS.x1 uncertainties when corrected 
with lower bounds determined by Kalmag uncertainties
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the reference case shown in Fig. 3a and b are likely related 
to systematic model errors, i.e., biases, not accounted for 
in our approach. An analysis of such bias is very impor-
tant in a data assimilation approach and will be tackled in 
forthcoming studies.

Figure  3a demonstrates that the forecast quality sys-
tematically deteriorates with decreasing ensemble size. 
This is accompanied by a contraction in the ensemble 
spread (variance) and hence a decrease of the uncertainty 
estimate shown in Fig. 3b. The smaller ensemble size cov-
ers a smaller fraction of the possible solution space and 
tends to underestimate variances and overestimate the 
covariances. The latter can lead to unrealistic updates of 
hidden (non-observed) model variables, which progres-
sively deteriorate each analysis but further decreases the 
variances (Van Leeuwen 1999). The effect becomes more 

prominent when the assimilation interval is reduced 
to only 1  year after 2000. In this situation, the dynamo 
dynamics does not have sufficient time to spread up the 
ensemble in the forecast step before the next analysis 
cycle.

When using the Cm localization, the degradation 
becomes more noticeable for Ne = 128 and unacceptable 
for Ne = 64 , as illustrated in Fig.  3a. The more restric-
tive localization Cℓm helps to mitigate the problem, in 
particular for Ne = 128 and Ne = 64 . Now 50% of the 
remaining possibly spurious elements in the covariance 
matrix are simply set to zero, which alleviates artificial 
amplification of the unobserved state variables and miti-
gates the decrease in ensemble spread. The fact that the 
assimilation still deteriorates with decreasing Ne indi-
cates that at least some of the remaining correlations 
are still spurious and that the ensemble spread is too 
small. All in all, Fig. 3 shows that the differences in fore-
cast error and uncertainties for the cases with Ne > 100 
and Cℓm remain relatively small. In the following, we use 
Ne = 256 and the Cℓm localization to be on the safe side.

Five‑year prediction tests
In order to assess the applicability of our method for 
IGRF SV predictions, we perform a group of 5-year 
hindcast tests. In the EnKF context, hindcast means that 
the analysis steps stop at a time ti , after which observa-
tions are still available. The ensemble then freely evolves 
to time tf = ti + δt , where δt = 5  year is the prediction 
window of interest. This allows assessing the quality of 
the forecast by directly comparing the forecast with past 
or present observations, which consist of snapshots of 
the main field (in the form of Gauss coefficients) of the 
Kalmag model.

Figure 4 illustrates the evolution of two observed Gauss 
coefficients, the axial dipole g01 and h35 , and their respec-
tive SVs. We have stopped the analysis at ti = 2015 and 
observe the behavior of the forecast until tf = 2020 . 
The result of the assimilation is compared with three 
field models: Kalmag, CHAOS-7 (Finlay et al. 2020) and 
IGRF-12 (Thébault et  al. 2015). While the coefficients 
in the field models agree very closely, the SV can differ 
significantly, in particular between 2010 and 2014. This 
period corresponds to a gap in satellite data between the 
CHAMP and Swarm missions, and highlights the tempo-
ral regularization in CHAOS.

The axial dipole in our assimilation scheme follows the 
field observations closely, as seen in Fig.  4a. The SV is 
also reproduced reasonably well after each analysis step, 
as shown in Fig. 4c, despite not being directly observed. 
The SV tends to deviate from the observations during the 
forecasts sometimes, implying that the dynamo model 
seems to often favor unrealistic secular accelerations g̈01 . 

Fig. 3  RMS forecast a errors εf  and b uncertainties σ f  of assimilation 
runs with different ensemble sizes Ne and localization C . The RMS 
values are evaluated at the top of the core and truncated to ℓ = 14
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This is not so much of an issue during the final 5-year 
forecast, however, where the model dynamics success-
fully captures the gradual decrease of ġ01 . The axial dipole 
in our 5-year prediction for 2020 differs by only 5  nT 
from the observations.

The evolution of coefficient h35 agrees less well with the 
observations (Fig.  4b and d). Particularly problematic is 
the epoch between 2010 and 2015 when ḣ35 tends to too 
large values. From 2015 to 2020, the observed ḣ35 first 
increases, but then decreases again. The 5-year assimi-
lation forecast does not capture this variation and keeps 
predicting an always positive ḣ35 that only gradually slows 
down at the end of the epoch. The predicted value for 
2020 ends up deviating by about 7 nT from the observed 
one. The prediction quality of the other large-scale Gauss 

coefficients fall in between the two examples given by g01 
and h35 , not following an obvious pattern.

Figure 4 also shows the linear predictions based on the 
SV values from the last mean analysis step from the assimi-
lation, coined here as LP. For g01 this yields a worse result 
than the dynamic forecast, which captures the gradual 
decrease in the SV. For h35 , however, the linear prediction 
incidentally outperforms the assimilation because of the 
oscillatory behavior of the SV. In order to quantify the over-
all quality of the forecasts, we calculate the RMS difference 
between the predictions and CHAOS-7 at Earth’s surface 
truncated to ℓ = 8 between the initial and final prediction 
times ti and tf  . Figure 5 compares this prediction error εf  
for four 5-year hindcast tests from 2005 to 2020 from the 
dynamic forecast from our assimilation (black triangles). In 

Fig. 4  Comparison of the a axial dipole g0
1
 and b h3

5
 coefficients and their respective SV c ġ0

1
 and d ḣ3

5
 between an assimilation hindcast with 

ti = 2015 and tf = 2020 (black solid curve), the Kalmag model (blue curve), CHAOS-7 (red curve) and IGRF-12 (green star). The shaded areas 
represent the standard deviation of the assimilation and Kalmag model. Also shown in a and b are predictions based on the linear extrapolation 
(LP) of the coefficients using SV in 2015 from the assimilation (dashed black line), CHAOS-7 (dashed red) and IGRF (dashed green)
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addition, the figure also includes the errors εf  with respect 
to CHAOS-7 based on the linear predictions (LP) using the 
SV at ti from our mean model (black squares), CHAOS-7 
(red circles) and IGRF (green stars).

Since the CHAOS model serves as the reference, the LP-
CHAOS prediction error represents the optimum value 
that can be achieved with the linear forecast in Fig 5. The 
error from the LP-IGRF forecast is more than twice as large 
for 2005 and about 20% larger than this optimum for 2015 
and 2020. The fully dynamic assimilation forecasts perform 
slightly better for 2005 and 2020, but worse for 2010 and 
2015. The error in the linear prediction based on the assim-
ilation SV, however, comes close to the CHAOS optimum, 
except for 2005. Our analysis of the h35 coefficient suggests 
that the secular acceleration (SA) is not well constrained 
or problematic. For the 5-year forecast, magnetic diffusion 
can in principle be neglected and the SA is then given by

where ∇H denotes the horizontal part of the divergence 
operator and �UH the horizontal flow. The first term on 
the right-hand side depends on the SV, which is often 
decently realistic in our assimilation. The second term on 
the right-hand side of Eq.  18, however, depends on the 
flow changes and thus crucially on the force balance in 
the Navier–Stokes Eq. 1.

(18)B̈r ≈ −∇H ·
(

�UHḂr

)

− ∇H ·
(

�̇UHBr

)

,

From analyzing a number of dynamo simulations, 
Christensen et  al. (2012) conclude that the fast secular 
acceleration in geomagnetic data is mostly explained by 
this second term. Fournier et al. (2015) use the Coupled 
Earth dynamo model (Aubert et  al. 2013) in combina-
tion with an assimilation scheme that differs from the 
approach chosen here. Instead of adopting a sequential 
approach, the authors perform independent snapshot 
analysis steps and assimilate not only the field, but also 
the SV as an additional source of information. This means 
that the first term in the right-hand side of Eq. 18 is less 
problematic. Fournier et  al. (2015) show that the fore-
cast quality increases significantly when the flow is kept 
constant in their dynamo simulations (what is known as 
a ’steady flow’ approximation). They therefore argue that 
the second term on the right-hand side of Eq. 18 is over-
estimated in their dynamo-based forecasts.

We have repeated the exercise of using a steady flow 
in the assimilation forecast, meaning that after the last 
analysis step, only the induction equation (Eq. 2) is inte-
grated forward in time by the ensemble. As seen in Fig. 5, 
the forecast from the assimilation only slightly improves 
for 2015 and 2020 by using the steady-flow approxima-
tion (white triangles), and except for 2020 it remains 
significantly worse than the LP-assimilation forecast, for 
which the SA is zero. This means that in the assimilation 
forecast the first term on the right-hand side of Eq. 18 is 
also problematic. The SV ( Ḃr ) is often reasonably close to 
observations, (for instance, for the 2015–2020 hindcast 
case 55%, 78% and 91% of the time the error lies beneath 
1 σ , 2 σ and 3 σ , respectively). Therefore, the horizon-
tal flow �UH is likely an important source for unrealistic 
accelerations.

However, Fig. 5 also shows that the quality of the assim-
ilation forecasts improves over time and reaches the level 
close to the LP-assimilation forecast in 2020. This may 
indicate that the dynamo ensemble is still gradually con-
verging to more realistic dynamics after the transition 
to the higher observation cadence in 2001. Since the LP 
forecasts perform better than dynamic forecasts for most 
of the hindcasts, we have decided to propose the LP fore-
cast as a candidate model for the IGRF-13. For predic-
tions beyond the 5-year horizon, however, we use the full 
dynamic ensemble forecast.

SV candidate model
Our assimilation of COV-OBS.x1 and Kalmag from the 
year 1840 to 2020 reveals an intricate pattern of flow 
and SV underneath the CMB, shown in Fig. 6. The SV is 
particularly strong underneath Siberia and around the 
west coast of Africa. The pattern mostly agrees with the 
SV from CHAOS-7, but the overall amplitude is slightly 
smaller. The flow reflects the dichotomy between the 

Fig. 5  RMS errors εf  of hindcasts starting in ti and ending in 
tf = ti + 5 years. The predictions correspond to the full dynamic 
mean forecast from the assimilation (black triangles) and linear 
approximations (LP) based on the SV at ti from our mean model 
(black squares), IGRF (green stars) and CHAOS-7 (red circles). Also 
shown is the mean forecast error using a steady-flow approximation 
after the last analysis in ti (white triangles). The prediction errors are 
truncated at ℓ = 8 and evaluated at the Earth’s surface with respect 
to CHAOS-7 (Finlay et al. 2020)
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magnetically quiet Pacific and the more active Atlantic 
hemispheres. Meandering westward flows at low Atlan-
tic latitudes explain the notorious westward drift of mag-
netic features observed in this region. Previous studies 
show a clearer westward stream of larger extent over this 
area (Bärenzung et  al. 2018; Barrois et  al. 2018; Aubert 
2020). It is suggested that these flows are part of an 
eccentric gyre that might reach deep into the core (e.g., 
Barrois et al. 2018; Aubert 2020). In our model, there is 
an overall westward flow region extending deep into 

the core, but comprising smaller-scale structures which 
reach out to the surface. They are apparent, for example 
as an eastward flow underneath Arabia and the Indian 
Ocean.

Our assimilation scheme also interprets the strong SV 
patches at high northern latitudes differently than other 
studies. For example, Livermore et al. (2017) and Aubert 
(2020) infer localized westward jets as the origin of this 
signal, while our assimilation suggests large-scale eddies. 
The tangent cylinder (TC) that touches the inner core 

Fig. 6  Instantaneous radial SV ( ̇Br ) at the CMB and horizontal flow ( �UH ) for the 2020 analysis of our assimilation. The top panel shows a Mollweide 
projection while the bottom panels display views on the north and south poles. The SV is truncated at ℓ = 18 , the maximum Kalmag degree 
assimilated in our scheme. The dashed circle represents the TC
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boundary is often regarded as a dynamical flow barrier. 
The high latitude flows by the aforementioned authors 
are dominated by the westward jets just outside the TC 
and only slower flows cross the TC. Our flows, how-
ever, cross the TC in many locations, as shown in Fig. 6. 
Aubert (2020) suggests that the westward jet along the 
TC turns into a pronounced southward-directed flow 
underneath China. This feature is also not present in our 
solution.

As previously mentioned, we have decided to contrib-
ute to the IGRF-13 SV, which estimates the variation of 
the magnetic field between 2020 and 2025. A table listing 
the coefficients from our SV candidate model is given in 
Table 1 of the Appendix. Figure 7a shows our candidate, 
truncated to the IGRF SV resolution ℓ = 8 and projected 
to the Earth’s surface. Due to the upwards projection 
many of the small details in Fig. 6 have vanished and the 
SV underneath Siberia is now negative throughout. The 
pattern is reminiscent of the previous IGRF-12 since the 
large-scale contributions change very little over a 5-year 
period. In total, 14 groups have contributed with SV can-
didates for the IGRF-13, which is a considerable increase 
from only 9 candidates for IGRF-12. Figure 7b shows the 
difference between our candidate and the final IGRF-13 
SV model, a weighted average of all 14 contributions. The 
largest discrepancies amount to about 10% of the peak SV 
and lie mainly beneath Eurasia. This encloses the region 
where Aubert (2020) reports the localized westward jet 
along the TC and the southerly flow underneath China.

The power spectra of the differences between all can-
didate models and the IGRF-13 are shown in Fig. 8 (gray 
lines). We observe that our model lies very close to the 
final IGRF-13 (red line). Also shown are the uncertainties 
in our candidate model (dashed red line), i.e., the spread 
of the ensemble of dynamo models, calculated using 
Eq. 17, and the dispersion of all SV candidates around the 
IGRF-13 (dashed black line). The high level of dispersion 
of the 14 candidates relates to the diversity of modeling 
approaches (Alken et al. 2020a). Our uncertainties closely 
follow the differences between our model and the IGRF, 

which points to a decent error estimation by the ensem-
ble of dynamo models, at least on the 5-year time scale.

Long‑term predictions
We have shown above that the instantaneous SV offers 
a better approximation to geomagnetic field changes on 
the 5-year time-scale than the dynamo ensemble. How-
ever, when considering decadal or even longer time 
scales, the dynamo dynamics starts to pay off (Aubert 
2015). We have therefore used the dynamo ensemble 
dynamics for predicting the magnetic field evolution over 
the next 50 years after assimilating the observations from 
1840 to 2020.

Figure 9 shows the assimilation up to 2020 and the con-
secutive prediction for the axial dipole g01 and coefficient 
h35 . The axial dipole SV in 2020, 6.8  nT/year, is close to 
that suggested by CHAOS and Kalmag, but significantly 
larger than the IGRF-13 value of 5.7 nT/year. We predict 

Fig. 7  a Radial SV in 2020 of our candidate model and b the difference to IGRF-13 at the Earth’s surface for ℓ ≤ 8

Fig. 8  Mauersberger–Lowes power spectra of the differences 
between each of the other 13 SV model candidates and the IGRF-13 
(gray curves) as well as the dispersion of all the candidate models 
around the latter (dashed black curve). The difference between our 
candidate model and IGRF-13 and its corresponding uncertainty 
given by the spread of the ensemble (red solid and dashed curves, 
respectively), are also shown
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that the value will increase further until 2028, staying 
roughly constant around 9.2  nT/year until 2039, drop-
ping and staying around 8 nT/year until 2070. Using the 
instantaneous SV from 2020 for a linear prediction sug-
gests an axial dipole for 2070 that is only less than 1% 
smaller than for the dynamic prediction. The reason is 
the generally low value of the axial dipole SV. We con-
clude that the axial dipole strength will continue to 
decrease in a roughly linear fashion at a rate of 800  nT 
per century.

The prediction for the coefficient h35 is much more 
dubious, as is shown in Fig. 9b and d. In 2020, the respec-
tive SV is less than half the absolute value suggested by 
CHAOS or Kalmag. The IGRF-13 lies somewhere in 
between. Our model predicts that the SV will increase 
significantly from −0.4nT/year in 2020 to about 2.5nT/
year in 2047 and will then remain roughly constant. The 

amplitude of the h35 coefficient will decrease enormously 
from −122 nT in 2020 to only −22 nT in 2070. The lin-
ear prediction, on the other hand, suggests a drastically 
different value of −140 nT for 2070. We have already 
discussed above that h35 and its SV vary on a rather short 
time scales from 2010 to 2020. Should this behavior con-
tinue, neither of the two predictions is trustworthy.

The evolution of the South Atlantic Anomaly is of par-
ticular practical interest. During the past century, the 
SAA has decreased in intensity, drifted towards the west 
and has grown in surface area (Finlay et al. 2010). Fig. 10 
illustrates the evolution of the SAA from 1970 to 2070, 
using observations until 2020 and our full dynamical 
forecast thereafter. Contour lines show the field in 2020 
from our ensemble mean, which is virtually identical to 
CHAOS or Kalmag. The crosses mark the positions of 
the two intensity minima within the SAA in a 10-year 

Fig. 9  Same as Fig. 4, but for predictions of the axial dipole g0
1
 and h3

5
 coefficients and their SV after the assimilation of COV-OBS and Kalmag until 

the year 2020. The green star now shows the IGRF-13
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cadence. For the predictions, the crosses consist of error 
bars that show the location uncertainty in latitude and 
longitude. Currently, the deeper western minimum is 
located in northern Argentina. The eastern minimum, 
which appeared around 2010, presently sits at 42◦ S and 
0◦ E.

We predict that the western minimum continues the 
westward drift it has been showing over the last dec-
ades with a rate of 0.19◦/year. After a quick move to the 
northeast in 2020, the eastern minimum also begins a 
westward drift, but at a much lower rate of 0.07◦/year. 
The SAA will therefore stretch in longitude. The reason 
for the drift is the predominantly westward flow in this 
region. According to our forecast, the field intensity of 
the SAA will decrease further. For the western minimum, 
we predict a rate of 16.3  nT/year, which is significantly 
slower than the observed value of 34.0 nT/year over the 
last century. Our predicted rate for the eastern minimum, 
on the other hand, is 42.6 nT/year. By 2070, the intensity 
of the eastern minimum will reach 21.2± 1.0 µ T and will 
be lower than that of its western counterpart.

Identifying the cause of the SAA structure in terms of 
field at the CMB and its evolution is no trivial matter. 
Terra-Nova et al. (2019) shows that intensity anomalies at 
the surface such as the SAA are due to equatorial asym-
metries of both reverse as well normal magnetic flux 
patches at the CMB. A sequence of snapshots of flow and 
field at the CMB and surface intensity during our long-
term forecast are available at the Appendix (Figs. 13, 14 
and 15). These suggest that the relatively high-intensity 
decrease rate of the eastern minimum is related to the 
system of upwellings located beneath Southern Africa, 

causing the reversed flux patches and low-latitude nor-
mal flux patches in that region to diverge horizontally. 
Underneath the western minimum, however, the over-
all westward flow advects the normal and reverse flux 
patches alike.

Figure 11 shows the observed and predicted positions 
of the geomagnetic poles and the magnetic dip poles. The 
former relates to the poles of the dipole component. The 
dip poles, on the other hand, are points where the total 
field is vertical. According to our predictions, the geo-
magnetic poles will continue to approach the geographic 
poles, which is mainly a consequence of the decreasing 
equatorial dipole coefficient h11 . The northern magnetic 
dip pole has crossed to the Eastern Hemisphere, after a 
period of acceleration over the past 20 years (see Thébault 
et  al. 2015) and will continue rapidly moving towards 
Siberia over the next 50 years. Meanwhile, the southern 
dip pole follows a slower path towards the northwest. 
Over the next decades, the dip poles will approach simi-
lar longitudes and resemble an eccentric dipole that is 
offset from Earth’s center.

Discussion
We have used an EnKF to predict the geomagnetic field 
evolution based on the assimilation of the COV-OBS.
x1 and Kalmag geomagnetic field models with a full 
3D-numerical dynamo model. The mild parameters of 
the dynamo model allowed for the performing of various 
tests with different ensemble sizes and configurations. 
Since the ensembles are not large enough to sufficiently 
constrain the Nx ∼ O(106) elements in the dynamo 
model covariance, the assimilation can become unstable 

Fig. 10  Evolution of the South Atlantic Anomaly (SAA) over the period 1970–2070 calculated from the ensemble assimilation (note that after 
2020 only the forecast is shown, while before only the analyses are displayed). The background contour lines represent the field intensity based on 
the mean analysis in 2020 and the symbols correspond to the position and intensity (color scale) of the two minima every 10 years. The error bars 
correspond to the 1 σ uncertainty in latitude and longitude, while the symbol size scales with the uncertainty in the intensity of each minimum 
point in time
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when confronted with observations bearing small uncer-
tainties. S2019 showed that correlations between model 
coefficients of the same wave number clearly domi-
nate in the model covariance. Reducing the covariance 
matrix accordingly by setting all other elements to zero, 
a procedure they called spectral covariance localization, 
stabilized their assimilation scheme. Building on their 
method, we went a step further and in addition only 
kept covariance matrix entries that reflect the dominant 
equatorial symmetries (see Fig 1). This allowed a strong 
decrease of the ensemble size (from Ne = 512 down 
to 128, see Fig.  3) without considerable loss of forecast 
quality.

The surface core flow resulting from the assimilation of 
COV-OBS.x1 and Kalmag (Fig. 6) bears important differ-
ences with respect to previous studies. For instance, the 
westward flow at low latitudes underneath the Atlantic 
shows considerable variations in the latitudinal compo-
nent instead of a more coherent meandering flow band 
as in Barrois et al. (2018). However, the most prominent 
discrepancies of our estimation reside on the strong 
eastward flow underneath western Asia and the veloc-
ity at high latitudes, notably inside the TC (e.g., Aubert 
2020). The former might be the cause of the peak 15 nT/
year difference between our candidate model and IGRF-
13 SV underneath Asia (see Fig. 7b). The reason behind 
such differences in flow pattern has not been explored 
in depth yet, but likely resides on the characteristics of 
the background dynamo model. The dominant flow wave 
number and degree of equatorial symmetry are some 

characteristics of the background dynamo model which 
are probably introducing important errors in the flow 
estimation and consequently in the predictions.

Using a more advanced dynamo model is certainly 
desirable for improving assimilation-based forecasts. 
Decreasing the Ekman number (Schaeffer et  al. 2017b) 
or imposing boundary conditions that reflect the lower 
mantle thermal structure (Aubert et  al. 2013) come to 
mind. The higher numerical cost would require a fur-
ther reduction of the ensemble size, which would in turn 
call for additional measures to stabilize the assimilation 
scheme. One possible measure is covariance inflation 
(Anderson and Anderson 1999). Inflation is implemented 
by multiplying the covariance matrix by a factor slightly 
larger than one, which can prevent the scheme from put-
ting too much confidence in the model forecasts. We thus 
envision assimilations at more realistic dynamo setups, 
but somewhat smaller ensembles which retain the spec-
tral localization discussed here and additionally employ 
inflation.

However, we stress that the results of our assimilation 
already provide realistic secular variation patterns (see 
Fig  6). Hindcast tests show that predictions based on 
instantaneous SV values slightly outperform forecasts 
using the dynamical model. This can be traced to prob-
lems in the SA, which depends on the flow itself and also 
on the flow changes. The force balance that determines 
the flow in the Navier–Stokes equation is therefore of 
crucial importance. Aubert (2020) showed that enforcing 
realistic force balance constraints during the analysis can 

Fig. 11  Evolution of the geomagnetic poles (blue) and magnetic dip poles (red) over the period 1970–2070, evaluated every 10 years (note that 
after 2020 only the forecast is shown, while before only the analyses are displayed). The magnetic dip poles where calculated using the field at the 
native truncation of the dynamo model ( ℓ = 85)
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improve the dynamic predictions. However, steady flow 
forecasts where only the induction equation is integrated 
forward in time while the flow field is kept constant, still 
provide the best forecasts (Aubert 2020).

Using steady flow is seen to deteriorate our dynamic 
hindcasts before 2010, but improve them after that (see 
Fig.  5). The non-systematic and relatively small differ-
ences between those, of around 10  nT, can mean that 
errors in flow estimation are comparable to the impact of 
errors from flow variations in our assimilation. Nonethe-
less, the dynamic hindcasts are observed to improve with 
time, suggesting that the dynamic assimilation scheme 
might be still converging to the forecast quality level of 
the linear extrapolations.

Since the linear forecasts typically provide the best 
5-year hindcasts, we decided to propose the SV in 2020 
as a candidate model for the IGRF-13. Our SV model is 
close to the final IGRF-13, with a RMS difference at the 
Earth’s surface of about 4 nT/year (see Fig. 7). Table 1 of 
the  Appendix lists the Gauss coefficients from our SV 
model candidate. Most of the other candidates also pro-
vide the SV for 2020. However, the intention of the IGRF 
is to linearly describe the evolution over the next 5 years. 
It would thus be more appropriate to use the mean SV 
over this period. We list the mean SV suggested by our 
dynamic forecast in Table 2. The values agree with the SV 
in 2020 within the uncertainty. The RMS difference of the 
average SV to the IGRF-13 is 15 nT/year and lies within 
the dispersion of the different candidate models (see 
Fig 8). Only time will tell whether this mean SV provides 
a better forecast for 2025.

The Earth’s magnetic field is thought to bear a rather 
long predictability window, with an e-folding time of 
about 30 years (Lhuillier et  al. 2011a). Prediction analy-
ses have revealed that this window might lie somewhere 
between half and a full century (Hulot et al. 2010; Aubert 
2015). We choose here to focus on a prediction window 
of 50 years using the results from our dynamic forecast 
from the ensemble of dynamo models. Our predictions 
for the axial dipole and the SAA over the next 50 years 
are in general agreement with the forecasts by Aubert 
(2015), but there are also differences. The predicted tra-
jectories of the SAA western minimum from our ensem-
ble point to a westward drift rate of about 0.20◦/year and 
a decrease of the local field intensity by about 1.0 µ T in 
the next 50 years. For comparison, the corresponding 
values from Aubert (2015) are 0.26◦/year and 1.46 µ T, 
respectively. Additionally, our forecast predicts that the 
SAA eastern minimum, which drifts towards the West at 
a rather slow rate of 0.07◦/year and undergoes an inten-
sity field decrease of 2.9 µ T, will become the main mini-
mum of the anomaly in the next 50 years (see Fig. 10).

Our predictions for the magnetic north pole cor-
respond to a southward movement of about 472  km 
towards Siberia. This value is considerably lower than the 
frozen-flux advection-based forecast of 660 km by Liver-
more et al. (2020). The authors propose that most of the 
recent migration of the pole towards Siberia is related to 
the elongation of the Canadian magnetic flux lobe, which 
has been continuously stretched by a northwestward flow 
underneath that region. The differences in the pole’s evo-
lution hence likely lies on the structure of the high lati-
tude flow between the two models.

It is important to note that these predictions do not 
contemplate the existence of geomagnetic jerks. Geo-
magnetic jerks are virtually abrupt changes in the sec-
ond time derivative of the magnetic field. Recent dynamo 
simulations suggest that they happen where a special 
kind of fast magnetic waves reach the CMB (Aubert and 
Finlay 2019). The waves only seem to appear in small 
Ekman number simulations and are therefore not part of 
the dynamics in our dynamo model. Our scheme should 
fail to provide decent magnetic field prediction over 
epochs where the jerks play an important role in the geo-
magnetic field evolution.

Conclusion
In this study, we used a geomagnetic sequential data 
assimilation scheme based on a full 3D-numerical 
dynamo model for forecasting the Earth’s main magnetic 
field. The scheme adopts an EnKF approach that assimi-
lates the main magnetic field from COV-OBS.x1 (Gillet 
et al. 2015) and Kalmag (Baerenzung et al. 2020) models 
from 1840 to 2020. A new spectral covariance localiza-
tion method, extending the study by S2019, stabilized 
the assimilation scheme for moderate and small ensem-
ble sizes. We chose to use an ensemble of moderate size 
( Ne = 256 ) to contribute to the 2020 SV prediction for 
the IGRF-13 as well as to predict the field evolution over 
the next 50 years.

Hindcasts tests focusing on the period from the year 
2000 to 2020 showed that the scheme provides reason-
able forecasts over a 5-year period. A linear prediction 
(LP) that simply uses the instantaneous secular variation 
yields overall better results than the dynamic forecasts 
from the dynamo simulations, although the latter seem to 
steadily improve over time. We therefore decided to pro-
pose the LP in 2020 from our assimilation scheme as an 
IGRF-13 SV candidate. For our forecast of the field evo-
lution until 2070, however, we used only the prediction 
based on the full dynamics.

We predict that the axial dipole will keep on decreas-
ing at a rate that will slightly increase over the next 
half-century. The overall SAA field intensity will drop 
by another 10%, continue its drift further westward and 
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increase its longitudinal extent. The magnetic dip poles 
predictions show that the magnetic north pole continues 
rapidly drifting towards Siberia, although at a decreas-
ing rate over the next 50 years. The dip poles hence 
appear to approach a configuration close to an eccentric 
dipole. However, these predictions should be taken with 
care, since a careful analysis of model errors has not yet 
been taken into account. In particular, the estimated 
flows showed important differences with respect to pre-
vious studies. Their impact on the predictability of the 
Earth’s magnetic field will be the subject of forthcoming 
studies.
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Appendix
Covariance localization
Figure  12 shows a subset of the initial model covari-
ance corresponding to correlations between the poloidal 
magnetic field potential and the poloidal flow potential, 
as well as the corresponding subset of the localization 
including the checkerboard pattern.

Predictions
Figures  13, 14 and 15 show snapshots of the flow and 
field evolution over the 50 years discussed in this study. 
The fields correspond to mean values from the ensemble 
of dynamo models during the forecast.
 

Fig. 12  Same as Fig. 1 but for correlations between the poloidal 
field potential and the poloidal flow potential near the CMB and the 
corresponding Cℓm localization
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Tables 1 and 2 list the Gauss coefficients corresponding 
to the SV predictions for 2020 (submitted as a candidate 
model for the IGRF-13) and from the dynamical trajec-
tory of the ensemble averaged over the period 2020–2025, 
respectively. Note that since the latter correspond to a fore-
cast incorporating the nonlinear dynamics of the model, 
the uncertainties are considerably greater than the instan-
taneous SV. 

Fig. 13  Maps of the flow just below the CMB (top), radial magnetic 
field at the CMB (middle) and field intensity at the Earth’s surface 
(bottom). The horizontal flow is shown with streamlines, while the 
radial field is displayed by the color scale. The maps are based on the 
assimilation analysis in 2020 and are given in Mollweide projections

Fig. 14  Same as Fig. 13, but for the forecast in 2045

Fig. 15  Same as Fig. 13, but for the forecast in 2070
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Table 1  SV coefficients and  their uncertainties from  our 
candidate model, based on  the  instantaneous SV in  2020 
issued from  the  assimilation of  COV-OBS and  Kalmag 
in nT/year

ℓ m ġm
ℓ ḣm

ℓ
σ [ġm

ℓ
] σ [ḣm

ℓ
]

1 0 6.78 0.00 0.86 0.00

1 1 6.55 − 24.29 1.02 1.10

2 0 − 10.87 0.00 0.93 0.00

2 1 − 6.67 − 29.61 0.75 0.72

2 2 − 2.97 − 22.56 0.65 0.62

3 0 1.91 0.00 0.67 0.00

3 1 − 5.79 6.52 0.54 0.59

3 2 2.62 − 0.76 0.47 0.45

3 3 − 12.16 0.55 0.50 0.45

4 0 − 1.39 0.00 0.40 0.00

4 1 − 1.62 − 0.78 0.45 0.45

4 2 − 5.87 6.47 0.41 0.37

4 3 5.30 3.69 0.36 0.32

4 4 − 5.35 − 5.22 0.33 0.35

5 0 − 0.42 0.00 0.31 0.00

5 1 0.41 − 0.18 0.32 0.37

5 2 − 0.33 2.42 0.29 0.30

5 3 0.11 − 0.51 0.29 0.28

5 4 1.52 3.25 0.22 0.22

5 5 1.71 0.40 0.24 0.28

6 0 − 0.61 0.00 0.20 0.00

6 1 − 0.41 − 0.29 0.22 0.22

6 2 0.31 − 1.66 0.23 0.22

6 3 1.45 − 1.09 0.19 0.18

6 4 − 1.28 0.47 0.20 0.20

6 5 − 0.04 0.17 0.16 0.17

6 6 1.17 1.25 0.18 0.19

7 0 − 0.19 0.00 0.12 0.00

7 1 − 0.15 0.49 0.14 0.16

7 2 − 0.04 0.47 0.15 0.14

7 3 0.74 − 0.57 0.15 0.13

7 4 0.17 − 0.19 0.14 0.13

7 5 − 0.66 − 1.09 0.13 0.12

7 6 − 0.80 0.14 0.12 0.11

7 7 0.71 0.19 0.13 0.13

8 0 0.07 0.00 0.09 0.00

8 1 0.32 − 0.43 0.10 0.10

8 2 − 0.13 0.29 0.11 0.10

8 3 0.43 0.00 0.10 0.09

8 4 − 0.23 0.40 0.10 0.10

8 5 0.26 − 0.47 0.08 0.08

8 6 0.17 − 0.30 0.08 0.09

8 7 − 0.09 0.42 0.07 0.07

8 8 0.39 − 0.03 0.08 0.09

Table 2  SV coefficients and  their uncertainties 
based on  the  average SV between  2020 and  2025 
from  the  dynamic forecast of  the  ensemble of  dynamo 
models. Units are in nT/year

ℓ m ġm
ℓ ḣm

ℓ
σ [ġm

ℓ
] σ [ḣm

ℓ
]

1 0 8.24 0.00 1.66 0.00

1 1 5.94 − 23.77 2.59 2.92

2 0 − 9.56 0.00 1.99 0.00

2 1 − 5.12 − 24.20 2.07 2.20

2 2 − 5.38 − 15.31 1.79 1.77

3 0 2.30 0.00 1.40 0.00

3 1 − 5.32 6.66 1.47 1.55

3 2 1.82 1.20 1.22 1.25

3 3 − 11.93 − 1.75 1.18 1.04

4 0 − 1.11 0.00 0.89 0.00

4 1 − 1.72 −1.94 0.86 1.00

4 2 − 4.18 6.89 0.76 0.81

4 3 5.31 3.72 0.69 0.68

4 4 − 4.66 − 4.68 0.70 0.75

5 0 − 0.52 0.00 0.61 0.00

5 1 0.08 − 0.45 0.65 0.68

5 2 − 0.54 3.24 0.56 0.60

5 3 0.69 0.36 0.49 0.54

5 4 1.78 3.04 0.41 0.40

5 5 2.69 0.25 0.46 0.49

6 0 − 0.63 0.00 0.34 0.00

6 1 − 0.39 − 1.15 0.33 0.36

6 2 0.28 − 1.30 0.38 0.37

6 3 1.54 − 0.77 0.31 0.29

6 4 − 1.36 0.15 0.32 0.30

6 5 − 0.12 0.13 0.25 0.26

6 6 1.58 1.30 0.30 0.30

7 0 − 0.26 0.00 0.20 0.00

7 1 − 0.32 0.33 0.22 0.22

7 2 − 0.08 0.42 0.21 0.20

7 3 0.70 − 0.30 0.21 0.21

7 4 0.15 − 0.16 0.18 0.17

7 5 − 0.64 − 1.02 0.19 0.17

7 6 − 0.79 0.13 0.15 0.15

7 7 0.64 0.15 0.20 0.18

8 0 0.22 0.00 0.13 0.00

8 1 0.47 − 0.56 0.12 0.13

8 2 − 0.21 0.16 0.14 0.13

8 3 0.37 0.15 0.12 0.12

8 4 −0.29 0.35 0.12 0.13

8 5 0.16 − 0.53 0.11 0.10

8 6 0.00 − 0.21 0.11 0.10

8 7 − 0.09 0.41 0.09 0.09

8 8 0.43 − 0.12 0.11 0.12
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