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Abstract 

Postseismic Global Navigation Satellite System (GNSS) time series followed by megathrust earthquakes can be 
interpreted as a result of afterslip on the plate interface, especially in its early phase. Afterslip is a stress release 
process accumulated by adjacent coseismic slip and can be considered a recovery process for future events dur-
ing earthquake cycles. Spatio-temporal evolution of afterslip often triggers subsequent earthquakes through stress 
perturbation. Therefore, it is important to quantitatively capture the spatio-temporal evolution of afterslip and related 
postseismic crustal deformation and to predict their future evolution with a physics-based simulation. We developed 
an adjoint data assimilation method, which directly assimilates GNSS time series into a physics-based model to opti-
mize the frictional parameters that control the slip behavior on the fault. The developed method was validated with 
synthetic data. Through the optimization of frictional parameters, the spatial distributions of afterslip could roughly 
(but not in detail) be reproduced if the observation noise was included. The optimization of frictional parameters 
reproduced not only the postseismic displacements used for the assimilation, but also improved the prediction skill 
of the following time series. Then, we applied the developed method to the observed GNSS time series for the first 
15 days following the 2003 Tokachi-oki earthquake. The frictional parameters in the afterslip regions were optimized 
to A–B ~ O(10 kPa), A ~ O(100 kPa), and L ~ O(10 mm). A large afterslip is inferred on the shallower side of the coseismic 
slip area. The optimized frictional parameters quantitatively predicted the postseismic GNSS time series for the follow-
ing 15 days. These characteristics can also be detected if the simulation variables can be simultaneously optimized. 
The developed data assimilation method, which can be directly applied to GNSS time series following megathrust 
earthquakes, is an effective quantitative evaluation method for assessing risks of subsequent earthquakes and for 
monitoring the recovery process of megathrust earthquakes.
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Main Text
Introduction
Large megathrust earthquakes have been recurrently 
observed in many subduction zones (Ando 1975). Dur-
ing such seismic cycles, afterslip can often be observed 
as a slow transient fault slip at plate boundaries following 
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large earthquakes. The occurrence of afterslip results 
from a stress change due to the coseismic slip, and their 
slip areas are usually adjacent to the coseismic slip area. 
Such transient slips last for months to years in the case 
of magnitude (M) 7.0 or larger interplate earthquakes 
(Miyazaki et al. 2004; Hsu et al. 2006; Chlieh et al. 2007; 
Ozawa et al. 2011). While afterslip itself is a stress release 
process, it plays various tectonic roles during seismic 
cycles.

Stress release due to afterslip further yields a stress per-
turbation in the surrounding areas that can be inferred 
as spatio-temporal evolution or propagation of after-
slip. Such stress perturbations due to afterslip some-
times trigger subsequent earthquakes in different time 
scales (Murakami et al. 2006; Pollitz et al. 2006; Miyazaki 
and Larson 2008; Uchida et  al. 2009; Ohta et  al. 2012). 
Miyazaki and Larson (2008) reported the afterslip distri-
bution 1 h after the 2003 M 8.0 Tokachi-oki earthquake 
by analyzing the high-rate Global Navigation Satellite 
System (GNSS) data. The resulting afterslip was distrib-
uted between the mainshock and the largest M 7.4 after-
shock that occurred ~ 1  h after the mainshock. Hence, 
the largest aftershock was possibly triggered by the initial 
afterslip. Another example includes the daily scale trig-
gering related to the 2011 M 9 Tohoku-oki earthquake. 
Ohta et  al. (2012) reported that the 2-day-long afterslip 
due to the M 7.3 earthquake occurred on March 9, 2011, 
2 days before the Tohoku-oki earthquake, and it was 
located on the northern side of the hypocenter of the M 
9.0 mainshock. This implies that the Tohoku-oki earth-
quake can be more or less loaded by the afterslip of the 
foreshock. For year-long triggering, Uchida et  al. (2009) 
showed that the 2004 M 7.1 Kushiro-oki earthquake, 
located ~ 100  km east of the 2003 Tokachi-oki earth-
quake, could be advanced by the eastward propagation of 
the afterslip of the Tokachi-oki earthquake. These exam-
ples show that the triggering of subsequent earthquakes 
due to the spatio-temporal evolution of afterslip can 
often occur, although whether the stress perturbations 
of afterslip can directly trigger subsequent earthquakes 
highly depends on the amplitude of the perturbation 
and the level of accumulated stress on possible source 
regions.

Afterslip and the viscoelastic relaxation effect of coseis-
mic slip reflect the recovery process following large 
earthquakes (Diao et al. 2014; Sun and Wang 2015; Klein 
et  al. 2016; Itoh et  al. 2019). Itoh et  al. (2019) modeled 
the spatio-temporal evolution of afterslip for 7.5  years 
by considering the viscoelastic effect following the 2003 
Tokachi-oki earthquake. Based on the spatial distribution 
of afterslip, they concluded that the interplate locking of 
the afterslip area had not fully recovered to the pre-seis-
mic state after 7.5 years. Hence, investigating the afterslip 

evolution both in time and space provides information 
on the probability of triggered earthquakes and on the 
relocking process following the megathrust earthquakes. 
To quantify this information, it is important to assess 
the previous and current states of afterslip based on the 
observations and evaluate the future evolution based on 
physics-based simulations.

Spatio-temporal evolution of fault slip in seismic 
cycles along a subducting plate can often be simulated 
based on a physics-based model (Hori et  al. 2004; Liu 
and Rice 2005; Kato 2008), which consists of the quasi-
dynamic equation of motion in an elastic medium 
(Rice 1993) and the rate- and state-dependent friction 
(RSF) law combined with the evolution law for the state 
variable (Dieterich 1979; Ruina 1983). In this model, 
frictional parameters in the frame of the RSF law qualita-
tively determine the behaviors of various fault slip styles 
including fast coseismic slip, slow transient aseismic slip 
such as afterslip and slow slip events, and steady slips. By 
assigning these parameters with trial and error, a wide 
variety of slip phenomena can be qualitatively repro-
duced (Nakata et al. 2012, 2014; Ohtani et al. 2014).

For a more realistic simulation and quantitative repro-
duction of observed data, many data assimilation tech-
niques have been developed and widely adopted in 
various fields of geophysics (e.g., Lewis et al. 2006). The 
data assimilation incorporates observations into phys-
ics-based models to optimize simulation variables and/
or parameters in the system of interest and forecast 
their evolutions. They have been originally developed 
and expanded in the fields of meteorology and oceanol-
ogy and now are applied to practical problems such as 
weather forecasts. In the field of seismology, data assimi-
lation methods have been recently introduced to estimate 
and forecast tsunamis and seismic waves (Hoshiba and 
Aoki 2015; Maeda et  al. 2015; Wang et  al. 2017; Furu-
mura et al. 2019; Oba et al. 2020).

To estimate and predict the fault state, such as slip 
velocities and stress states, van Dinther et  al. (2019) 
and Hirahara and Nishikiori (2019) have introduced 
the ensemble Kalman filter (EnKF), one of the sequen-
tial data assimilation methods. The EnKF sequen-
tially updates the simulation variables and/or physical 
parameters of interest every time the observations 
are acquired. Hirahara and Nishikiori (2019) verified 
that the EnKF can accurately recover the synthesized 
daily GNSS surface velocity by sequentially optimiz-
ing the slip velocities and frictional parameters in the 
case of slow slip events. On the contrary, Kano et  al. 
(2013, 2015) adopted a non-sequential approach, an 
adjoint data assimilation method (Lewis et  al. 2006), 
to optimize frictional parameters. The adjoint method 
optimizes the simulation variables and/or physical 
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parameters, such that the simulated time series quan-
titatively explains all the observations obtained during 
the study period. Kano et al. (2015) applied the adjoint 
method to the real afterslip data following the 2003 
Tokachi-oki earthquake and successfully reproduced 
and forecasted the slip velocities by optimizing spa-
tially heterogeneous frictional parameters. However, 
they assimilated indirect observations of slip veloci-
ties along the plate interface inferred by Miyazaki et al. 
(2004) using a kinematic inversion approach as if the 
slip velocities were directly observed. In this study, we 
update the adjoint method developed by Kano et  al. 
(2015) to assimilate direct observations, i.e., observed 
GNSS time series. Then, we apply the developed 
method to the postseismic deformation following the 
2003 Tokachi-oki earthquake to optimize the frictional 
parameters and simulation variables and to predict 
future evolutions of postseismic deformation.

The outline of the paper is as follows. First, we sum-
marize the adjoint data assimilation method for opti-
mizing frictional parameters and simulation variables 
together with relevant observations and a physics-
based model. Next, we present the numerical experi-
ments conducted to optimize the frictional parameters 
with synthetic postseismic data to test the feasibility of 
the developed method, followed by the application to 
the real GNSS time series after the 2003 Tokachi-oki 
earthquake. Finally, we present the additional assimi-
lation conducted for the simultaneous optimization 
of both frictional parameters and simulation vari-
ables, the comparison of the results when assimilating 
the indirect observations of slip velocities, and a dis-
cussion of the future improvements of the developed 
method.

Adjoint data assimilation method
An adjoint data assimilation method incorporates the 
observation data to a physics-based numerical simu-
lation to optimize the initial conditions and/or model 
parameters in the simulation. In this study, an adjoint 
method was employed to predict the postseismic time 
series following the 2003 Tokachi-oki earthquake by 
optimizing the frictional parameters in the physics-
based simulation. In this section, after summarizing the 
2003 Tokachi-oki earthquake and the following post-
seismic observations, we describe the physics-based 
numerical model. Then, we briefly introduce the for-
mulation of the adjoint method for our problem and 
describe the data assimilation settings used throughout 
this study following Kano et al. (2015). A more general 
explanation of the adjoint data assimilation method is 
summarized in Lewis et al. (2006).

2003 Tokachi‑oki earthquake and the postseismic GNSS 
observations
This study focuses on the postseismic deformation fol-
lowing the 2003 Tokachi-oki earthquake, which was a 
megathrust earthquake of M 8.0 that occurred on Sep-
tember 25, 2003 (UT) off the Tokachi region in north-
eastern Japan. The earthquake region is located in the 
southwestern part of the Kurile subduction zone where 
many megathrust events have repeatedly occurred due 
to a subduction of the Pacific plate including 1843, 1952, 
and 2003 Tokachi-oki earthquakes (Hatori 1984; Hirata 
et al. 2003; Tanioka et al. 2004). The main rupture zone 
of the 2003 Tokachi-oki earthquake coincides with that 
in the previous M 8.2 earthquake in 1952 (Yamanaka 
and Kikuchi 2003), which we hereafter refer to as the 
Tokachi-oki asperity (TA).

A significant postseismic deformation following 
the 2003 Tokachi-oki earthquake was continuously 
detected by the GNSS Earth Observation Network Sys-
tem (GEONET) in Japan, operated by the Geospatial 
Information Authority of Japan (GSI) (Miyazaki et  al. 
2004; Ozawa et  al. 2004; Baba et  al. 2006). Based on 
such a dense network, Miyazaki et  al. (2004) inferred 
the afterslip distributions for the first one month, which 
were complementarily distributed adjacent to the TA, 
exhibiting that frictional properties on both slip areas 
were spatially different. The spatio-temporal evolution 
of the afterslip likely triggered the 2004 M 7.1 Kushiro-
oki earthquake, located ~ 100–150  km northeast of the 
TA (Murakami et  al. 2006; Uchida et  al. 2009), through 
a stress perturbation due to the propagation of afterslip. 
The source area of the Kushiro-oki earthquake is referred 
to as KA in this study. We modeled these two asperi-
ties, TA and KA, as velocity-weakening zones in the next 
subsection.

We utilized the daily GNSS time coordinates recorded 
at 54 stations of GEONET in Hokkaido and northern 
Tohoku areas (Fig. 1), which are analyzed and offered as 
the GEONET F3 solutions by the GSI (Nakagawa et  al. 
2009). Data period is 1 month following the mainshock, 
i.e., September 26 to October 26. We calculated the dif-
ferences in the coordinates from September 26, defined 
as day 00, for the next 30  days as cumulative displace-
ments. The time series in two horizontal components 
are rotated to the trench-parallel (X-axis) and trench-
perpendicular (Y-axis) directions. We subtracted the 
coseismic steps due to two aftershocks that occurred on 
September 29 and October 8 with magnitudes greater 
than 6.2 listed in the hypocenter catalog provided by 
the Japan Meteorological Agency. The coseismic steps 
were theoretically calculated by assuming a single uni-
form slip fault model with earthquake focal mechanisms 
determined by the broadband seismic networks [F-net, 
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National Research Institute for Earth Science and Disas-
ter Resilience (NIED) 2019] using the elastic homogene-
ous half-space dislocation theory of Okada (1992). We 
divided the entire time series into two periods: the obser-
vations for the first 15 days were assimilated into numeri-
cal simulations for optimizing frictional parameters 
(assimilation period), and those for the later 15 days were 
adopted for verifying the predictability of our assimila-
tion results (prediction period).

Figure 1 shows the examples of the GNSS time series, 
which exhibits a logarithmically decaying curve. The 
cumulative displacement vectors for the assimilation 
period exhibit a clear coherent southeastward move-
ment with a maximum amplitude of ~ 8.5 cm at the 0019 
station, and decay with the distance from the epicenter. 
Because we analyzed 30 days of data following the main-
shock, these signals are mainly attributed to the afterslip 
on the plate interface rather than viscoelastic effect. This 
assumption is reasonable in view of Itoh et  al. (2019), 
which showed that the calculated surface displacement 

due to the viscoelastic effect of the 2003 Tokachi-oki 
earthquake at an inland station located at northern Hok-
kaido was, at most, a few mm in the first month following 
the earthquake, even in the case of a low viscosity (Addi-
tional file 1: Figure S13 in Itoh et al. 2019).

Fault modeling and governing equations
We modeled the plate boundary along the southwest-
ern Kurile subduction zone as a planar rectangular fault 
(Fig. 2). The entire fault is 330 km long and 220 km wide 
with a dip angle of 20° and consists of two asperities, 
TA and KA, which correspond to the source region of 
the Tokachi-oki and Kushiro-oki earthquakes, respec-
tively, and the surrounding region. TA is 60  km long 
and 60 km wide, and KA is 40 km long and 60 km wide. 
The surrounding region is divided into 666 subfaults of 
10 × 10 km, where aseismic fault slip is expected to occur. 
This fault model is exactly the same as that in Kano et al. 
(2015).

Fig. 1  Observed displacement vectors and GNSS time series. The left panel shows the observed cumulative displacement for 15 days following 
the 2003 Tokachi-oki earthquake. Black and white stars indicate the epicenters of the mainshock and three aftershocks, which are the M 7.1 2004 
Kushiro-oki earthquake and the two M 6 class earthquakes occurred within 15 days following the mainshock. The coseismic steps for the two M 6 
class earthquakes have been removed. The right panels show the examples of the GNSS time series at three stations for 30 days. The time series for 
the first 15 days are used for assimilation, while those for the later 15 days are used for testing the prediction skill of the developed method. Red and 
blue circles indicate the cumulative displacement in trench-parallel (X) and trench-perpendicular (Y) directions, respectively. The black dots show 
the locations of the GEONET stations used in this study
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Temporal evolutions of fault slips are simulated by 
solving the physics-based governing equations at each 
subfault, which consist of a quasi-dynamic equation of 
motion in an elastic medium (Rice 1993) and the RSF law 
with an aging law as the evolution of state variables (Diet-
erich 1979; Ruina 1983):

In this set of equations, simulation variables at sub-
fault i where temporal evolutions are calculated are the 
slip velocity vi(t), state variable θi(t), frictional coef-
ficient μi(t), and slip si(t). In the simulation, vi(t) and 
θi(t) were independently calculated and then μi(t) and 
si(t) were obtained using Eqs. (2) and (4). vpl is the plate 
convergence velocity, G is the rigidity, vs is the shear 
wave velocity, and μ0 is the reference frictional coef-
ficient while sliding at a reference velocity v0 at the 

(1)σiµi(t) =
∑

j

kij(vplt − sj(t))−
G

2vs
vi(t),

(2)

σiµi(t) = σiµ0 + Ai ln

(

vi(t)

v0

)

+ Bi ln

(

v0θi(t)

Li

)

,

(3)
dθi(t)

dt
= 1−

vi(t)θi(t)

Li
,

(4)
dsi(t)

dt
= vi(t).

steady state. These constants were set as vpl = 9.0  cm/
year (DeMets et  al. 1990), G = 30  GPa, vs = 3.0  km/s. 
The constants μ0 and v0 were not explicitly given in the 
simulation because these values are necessary only to 
calculate μi(t), which was not calculated in this study. 
The slip response function kij represents the shear 
stress change at subfault i due to a unit slip at sub-
fault j. Thus, the first term on the right-hand side of 
Eq.  (1) indicates the contribution of the stress change 
for all subfaults. We calculated kij assuming a homo-
geneous elastic half-space based on Okada (1992). The 
second term represents the radiation damping, which 
approximates the inertial term (Rice 1993) and is often 
adopted in quasi-dynamic simulations rather than 
treating the fully dynamic effect. Ai, Bi, and Li are the 
frictional parameters at subfault i that control the slip 
behavior of the subfault. A corresponds to the instan-
taneous change due to a change in the slip velocity, 
while B is related to the evolution of the state variable. 
At steady state, i.e., dθ/dt = 0 in Eq.  (3), the change in 
the frictional coefficient at the instantaneous veloc-
ity change is proportional to A–B. Thus, when A–B is 
negative, the frictional coefficient decreases, showing 
a velocity-weakening frictional property leading to an 
unstable slip; when A–B is positive, it yields a velocity-
strengthening frictional property, resulting in a stable 
fault slip. L is the characteristic slip distance. In this 
study, we set two asperities as the velocity-weakening 
regions and fix the frictional parameters as A = 40 kPa, 

Fig. 2  Fault models. Thick rectangle is the modeled region, which is divided into 10 km × 10 km subfaults. Two gray regions represent the 
Tokachi-oki and the Kushiro-oki asperities, respectively. The entire fault is divided into 9 and 71 regions in a model 1 and b model 2, respectively. 
Frictional parameters are assumed to be uniform within each region. Model 1 is used in the numerical experiments, while model 2 in the 
application to real data
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A–B = −  40  kPa, L = 40  mm in TA, A = 40  kPa, 
A–B = − 30 kPa, L = 40 mm in KA by referring to Kano 
et al. (2015).

This study focuses on optimizing the frictional param-
eters in the surrounding region. Since it is difficult to 
spatially resolve frictional parameters in all subfaults, we 
assume spatial homogeneity of frictional parameters with 
two different spatial scales based on Kano et  al. (2015) 
(Fig.  2): we divide the modeled region into 9 regions in 
model 1 in the synthetic test to evaluate the feasibility of 
the developed method (Fig. 2a), and 71 regions in model 
2 to apply the method to real GNSS data (Fig.  2b). The 
frictional parameters are assumed to be uniform within 
each region. Therefore, the numbers of parameters to 
be optimized in models 1 and 2 are 27 and 213, respec-
tively. Note that the spatial distributions of the frictional 
parameters were obtained based on model 2 in Kano 
et al. (2015).

By taking the time derivatives of Eqs. (1) and (2) and 
combining them with Eq.  (3), the governing equations 
can be rewritten as the following differential equations:

where Nf is the number of all subfaults. We here define 
the functions Pi, Qi, and Ri of simulation variables and 
frictional parameters for clarity and hereafter simply rep-
resent without arguments of each function. We solve Eqs. 
(5) and (6) using the adaptive time-step Runge–Kutta 
method (Press et al. 1996) to obtain the temporal evolu-
tion of simulation variables.

(5)

dvi(t)

dt
=

∑

j

kij(vpl − vj(t))−
Ai−(Ai−Bi)

θi(t)

(

1− vi(t)θi(t)
Li

)

Ai
vi

+
G
2vs

≡
Pi(v1, . . . , vNf

, θi,Ai,Ai − Bi, Li)

Qi(vi,Ai)
,

(6)
dθi(t)

dt
= 1−

vi(t)θi(t)

Li
≡ Ri(vi, θi, Li),

optimum value is conducted by iteratively updating the 
simulation variables and parameters based on the gradi-
ents of the cost function with respect to the simulation 
variables and parameters calculated using adjoint equa-
tions. This section briefly summarizes the outline of the 
adjoint data assimilation method for optimizing fric-
tional parameters. The derivation of the adjoint equa-
tions for our problem is based on the study of Kano et al. 
(2015).

The steps of the adjoint data assimilation method used 
in this study can be summarized as follows:

Step 1: Assign the values of simulation variables 
xf and frictional parameters cf as starting values for 
parameter search as well as their error variance–
covariance matrices Bx and Bc. These values, hereaf-
ter referred to as first-guess values, must be assigned 
in advance based on the prior knowledge of simula-
tion variables and frictional parameters. In this study, 
we adopt the slip velocities estimated by the kin-
ematic inversion analysis (Miyazaki et  al. 2004) as 
the first-guess values. We set the first-guess values of 
state variables as θi = vi/Li for each subfault i under 
steady-state conditions. The corresponding error vari-
ance–covariance matrix Bx is assumed to be diagonal, 
in which each diagonal element is set to be the square 
of the standard deviation of σv = 1.0 × 10–8 m/s for slip 
velocities (Miyazaki et  al. 2004) and infinity for state 
variables because little information is available for state 
variables. As for the frictional parameters, we adopt 
the same first-guess values as Kano et al. (2015) in the 
numerical experiments summarized in Table 1 and spa-
tially uniform values of A–B = 40 kPa, A = 160 kPa, and 
L = 10  mm for the application to the real data, which 
are roughly searched through a grid search. We do not 
explicitly consider Bc as explained in Step 2.

Step 2: Define a cost function:

Adjoint data assimilation method for our problem
The adjoint method searches an optimum value in a 
high-dimensional space of simulation variables and 
parameters of interest where the cost function, an indi-
cator of the misfit between the observed and theoreti-
cal values, takes its minimum value. The search for the 

(7)J (x0, c) = J̃ (x0, x1, . . . , xNt , c) =
1

2

Nt
∑

t=1

(Hxt − dt)
TR−1

t (Hxt − dt)+
1

2
(x0−xf )

TB−1
x (x0−xf ),

where vector xt contains the simulation variables on 
day t, and c is a frictional parameter vector. An observa-
tion vector dt consists of a cumulative displacement on 
day t, H is an observation matrix connecting the simu-
lation variables xt and the observed quantity dt and is 
calculated by Okada (1992). Mathematically, the only 
difference between Kano et  al. (2015) and this study is 
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related to the observation matrix H because we assimi-
late directly observed surface displacements, while Kato 
et  al. (2015) utilized slip velocities on the plate inter-
face. Nt is the number of assimilated epochs, i.e., 15 in 
this study. Hence, the first term on the right-hand side of 
Eq.  (7) indicates the misfit between the theoretical and 
observed displacements at GNSS stations in the assimi-
lation period, and is referred to as the misfit term. We 
assume that the variance–covariance matrix for obser-
vations, Rt, is a time-invariant and diagonal matrix, 
where each element is set to be the square of the stand-
ard deviation of the sum of the observation error, 1 mm, 
and the modeling error defined as 20% of the cumulative 
displacement on day 15 in each component. We intro-
duce the modeling error considering the assumption of 
homogeneous elastic media (Sato et al. 2007, 2010). The 
second term on the right-hand side of Eq.  (7) provides 
a constraint for the parameters not to be optimized 
distantly from the first-guess values, and hereafter, is 
referred to the first-guess term. However, this term is 
zero when we focus only on the optimization of fric-
tional parameters, except for the first subsection in the 
“Discussion” section where we attempt the simultaneous 
optimization for both frictional parameters and initial 
values of simulation variables. In addition, we consider 
the first-guess term only for the simulation variables as 
described in Step 1, but not for frictional parameters. 
This is equivalent to the assumption that elements of the 
error variance–covariance matrix for frictional param-
eters are infinite; thus, the frictional parameter vector c 
can take any value. Note that we only impose non-nega-
tive constraints for A, B, and L in updating the parame-
ters in Step 6. Thus, the parameters are optimized within 
a physically plausible range. Because the theoretical dis-
placements at all epochs are uniquely calculated by set-
ting the simulation variables at the initial time, or initial 
values x0 and frictional parameters c, the cost function 
is a function of (x0, c). Hereafter, we use J when refer-
ring to the cost function as a function of (x0, c), while 
J̃  is used as a function of the simulation variables at all 
days xt and parameters c.

Step 3: Simulate the temporal evolution of simulation 
variables using the first-guess values.

Step 4: Calculate the value of the cost function in Eq. (7) 
using the theoretical displacements.

Step 5: Solve the following adjoint equations to obtain 
the gradients of the cost function with respect to the simu-
lation variables ∂J/∂x0 and frictional parameters ∂J/∂c:

Table 1  True, first-guess, and  optimized values 
of  frictional parameters in  each subregion (Fig.  2a) 
in  the  numerical experiments, and  the  values of  cost 
function calculated by using Eq. (7)

Region True values First-guess values Optimized values

Exp. 1 Exp. 2

1

 A–B (kPa) 8.00 6.00 8.13 6.98

 A (kPa) 60.0 60.0 37.0 50.2

 L (mm) 30.0 50.0 47.3 49.0

2

 A–B (kPa) 10.0 8.00 7.18 9.00

 A (kPa) 40.0 40.0 37.3 49.7

 L (mm) 10.0 10.0 9.73 9.03

3

 A–B (kPa) 6.00 7.00 7.03 7.95

 A (kPa) 20.0 30.0 28.0 21.0

 L (mm) 20.0 18.0 17.3 17.0

4

 A–B (kPa) 6.00 8.00 6.19 8.95

 A (kPa) 20.0 40.0 20.5 30.6

 L (mm) 20.0 20.0 20.3 19.0

5

 A–B (kPa) 8.00 6.00 7.61 6.99

 A (kPa) 60.0 60.0 68.8 69.7

 L (mm) 10.0 10.0 9.96 9.04

6

 A–B (kPa) 10.0 6.00 8.29 4.99

 A (kPa) 40.0 60.0 63.2 50.0

 L (mm) 10.0 10.0 10.5 11.0

7

 A–B (kPa) 10.0 12.0 11.4 11.0

 A (kPa) 40.0 50.0 56.1 60.0

 L (mm) 20.0 17.0 18.3 18.0

8

 A–B (kPa) 6.00 8.00 6.77 7.00

 A (kPa) 20.0 20.0 29.5 30.0

 L (mm) 30.0 20.0 21.4 21.0

9

 A–B (kPa) 8.00 8.00 11.5 9.00

 A (kPa) 60.0 40.0 33.7 30.0

 L (mm) 10.0 8.00 9.17 9.00

Cost function (assimilation period)

 Exp. 1 0 3.80*101 2.41*10−2

 Exp. 2 2.04*103 2.10*103 2.03*103

Cost function (prediction period)

 Exp. 1 0 2.82*102 4.58*10−1

 Exp. 2 2.95*103 3.20*103 3.10*103
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where λ represents the adjoint variables. The subscripts 
of λ indicate the simulation variables or frictional param-
eters. These adjoint equations are numerically integrated 
backwards with time using λ = 0 at the final time-step. 
In the backward integration, since only the term on the 
right-hand side of Eq. (10) is not multiplied by the adjoint 
variables, the adjoint variables are kept at zero until this 
term is added for the first time. This term is a derivative 
of the slip with respect to the cost function (Eq. (7)) and, 
thus, corresponds to the misfit between the theoreti-
cal and observed displacements when the observation is 
acquired. Thus, the adjoint equations integrate the infor-
mation of the misfit through backward propagation. The 
resulting adjoint variable at initial time λ(0) is equal to 
the gradient of the cost function with respect to the cor-
responding simulation variable or frictional parameter, 
i.e., the elements of ∂J/∂x0 and ∂J/∂c.

Step 6: Update the simulation variables and frictional 
parameters of interest using the gradients derived in Step 
5 based on the following steepest descent method:

where αx and αc control the magnitudes of the updates 
of the simulation values and frictional parameters at the 
kth iteration, respectively, which are set as:
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The coefficients η are determined as ηA = 1.0 × 104 Pa, 
ηA–B = 1.0 × 103 Pa, and ηL = 1.0 × 10–3 m in the numeri-
cal experiments following Kano et  al. (2015) and ηA 
= 5.0 × 103  Pa, ηA-B = 5.0 × 103  Pa, and ηL = 5.0 × 10–

2  m in applications to real data. In addition, we set 
ηv0 = 1.0 × 10–9 m/s and ηθ0 = 2.5 × 103  s when we addi-
tionally consider the optimization of the simulation 
variables. If the frictional parameters are updated to be 
negative A, B, and L, we reduce the corresponding coef-
ficient η to η/2. Note that we allow negative A–B. Since 
we first only focus on the frictional parameters, the ini-
tial slip velocities and state variables are not updated but 
fixed to the first-guess values. However, this strategy is 
appropriate only if we have good estimates for the first-
guess values of the simulation variables. Therefore, in the 
“Discussion”, we attempt to estimate both parameters and 
initial simulation variables. Because ∂J/∂x0 are automati-
cally calculated by the adjoint equations, Eqs. (8)–(13), 
in calculating ∂J/∂c, we can easily include the simulation 
variables as targets to be optimized.

Step 7: Simulate the temporal evolution of the simula-
tion variables again.

Step 8: Repeat Steps 4–7 iteratively until the cost func-
tion converges or until 10,000 iterations are conducted. 
We adopt the criterion of convergence as follows:

Numerical experiments based on synthetic data
Synthetic data
The developed adjoint data assimilation method are vali-
dated based on two numerical experiments, Exps. 1 and 

(16)αν0i = ην0

/

∂J

∂ν
(1)
0i

,

(17)αθ0i = ηθ0

/

∂J

∂θ
(1)
0i

,

(18)αAi = ηA

/

∂J

∂A
(1)
i

,

(19)αAi−Bi = ηA−B

/

∂J

∂(A
(1)
i − B

(1)
i )

,

(20)αL = ηL

/

∂J

∂L
(1)
i

.

(21)

∣

∣

∣

∣

∣

J (k) − J (k+1)

J (k+1)

∣

∣

∣

∣

∣

< 1.0× 10−6.



Page 9 of 24Kano et al. Earth, Planets and Space          (2020) 72:159 	

2, using synthetic postseismic time series. This subsec-
tion describes how to generate the synthetic data used in 
numerical experiments using physics-based simulations. 
The procedure is the same as in Kano et al. (2015), except 
for the observed physical quantity used for data assimi-
lation. We assume the spatial heterogeneity of frictional 
parameters (Fig. 2a) and set their values as summarized 
in Table  1, which are referred to as true values. As for 
the initial values of the slip velocities, we assume the 
slip velocities estimated by Miyazaki et al. (2004) on day 
00, the day after the Tokachi-oki earthquake. The initial 
values of the state variables are defined as θi = vi/Li. By 
assigning these initial values and true frictional param-
eters, we simulate the spatio-temporal evolution of the 
slip velocity and the corresponding surface displacement 
in both X and Y directions at all the GNSS stations for 
30 days. The surface displacements are sampled daily and 
utilized as synthetic data in Exp. 1. In addition, we add 
the observation noise that obeys the Gaussian distribu-
tion with an average of 0 and the standard deviation of 
the sum of the observation error and the modeling error, 
defined as 1 mm and 20% of the cumulative displacement 
on day 15 in each component. The degree of the obser-
vation noise can be considered as the variance–covari-
ance matrix for observations Rt in Step 2 mentioned in 
the previous subsection. These synthetic data with noise 
are utilized in Exp. 2. For both experiments, we assimilate 
the synthetic data for the first 15 days in the assimilation 

period and use those for the later 15 days in the predic-
tion period for testing the prediction skill of our method. 
The synthetic data are summarized in Fig.  3 and Addi-
tional file  1: Figure S1, showing a logarithmic transient 
curve with a maximum displacement of ~ 3.0  cm in X 
and ~ 4.5 cm in Y directions for 30 days.

Results
The adjoint data assimilation method iteratively 
reduced the cost function for both experiments 

Fig. 3  Examples of postseismic time series in the numerical experiments. Blue squares and red circles indicate the synthetic data in Exps. 1 and 
2. Green, blue, and red lines are the theoretical time series calculated by using the first-guess and optimum frictional parameters in Exp. 1 and 2, 
respectively. The locations of the GNSS stations are shown in Fig. 1

Fig. 4  Cost function. The blue line indicates the changes in the cost 
function values calculated using Eq. (7) with the number of iterations 
in Exp. 1. The red and green lines are those in Exps. 1-(i) and 1-(ii) 
mentioned in the “Discussion”
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(Table 1 and Fig. 4). In Exp. 1, the number of iterations 
reached its maximum value of 10,000 iterations in our 
experimental setting (Fig.  4). The values of the cost 
function significantly decreased from its initial value of 
3.80 × 101 calculated by using the first-guess frictional 
parameters and did not largely change after ~ 1000 iter-
ations. Thus, we consider that the cost function con-
verged and define the frictional parameters after 10,000 
iterations as the optimized values in Exp. 1. The opti-
mization finished only in two iterations in Exp. 2. The 
value of the cost function decreased from 2.10 × 103 to 
2.03 × 103 after the optimization, which is smaller than 
2.04 × 103 calculated by using true values. Because syn-
thetic data in Exp. 2 include the observation noise, the 
global minimum of the cost function does not neces-
sarily exist at the true parameter values, and the opti-
mized values indicate a location close to at least one of 
the local minimums of the cost function.

Table  1 presents the comparison of the optimized 
frictional parameters with the true values as well as 
the first-guess values, showing that some parameters 
are optimized close to the true values, while some 
are not. To investigate the reliability of the optimized 
parameters, we calculated the cost functions by vary-
ing one frictional parameter with the other ones fixed 
to their optimized values (Fig.  5). Because we search 
for a 27-dimensional parameter space, this calcula-
tion cuts a one-dimensional cross-section of such a 

high-dimensional space, which roughly reflects the 
parameter sensitivity with respect to the cost function. 
If values of the cost function largely vary depending on 
a value of one parameter, then the theoretical surface 
displacement is sensitive to the parameter change. If 
not, a small change of the parameter does not affect the 
cost function; in other words, the observed data rarely 
constrain the parameter. Furthermore, because the the-
oretical displacement is a sum of the product of fault 
slips and the observation matrix H, the parameter sen-
sitivity to the cost function includes the contributions 
of both the parameter sensitivity to the slip velocities 
in each region and the amplitude of the corresponding 
element of H, which are determined by the plate geom-
etry and the locations of the observation sites, irrespec-
tive of the parameters.

In Exp. 1, the shapes of the cost function for most 
parameters can be approximated by parabolic functions 
with vortices close to their optimized values (stars in 
Fig. 5). In regions 4–9 where significant afterslip occurs, 
the values of the cost function largely change with the 
parameter values. The large curvature in these regions 
may reflect high sensitivity to the observations. Such 
variations are smaller in regions 1 and 3 because there 
is little afterslip in these regions, and the parameters 
rarely contribute to the observed displacement. Despite 
the differences in sensitivity, the frictional parameters 
are optimized such that each cross-section of the cost 

Fig. 5  Cost function with respect to parameter changes in the numerical experiments. a–d Cost functions in Exp. 1 as a function of each frictional 
parameter of a A, b A–B, and c L, and d the enlarged view of the horizontal axis of c. The color of each line corresponds to the number of region 
shown in Fig. 2a. Stars and circles indicate the optimum and true frictional parameters with corresponding colors. e–h Same as a–d, but for Exp. 2
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function takes its minimum value. Even in such a situ-
ation, the optimized values are not always close to the 
true values. Figure 6 shows the two-dimensional contour 
maps of the cost function by, respectively, changing two 
frictional parameters in region 5. In this calculation, all 
the other parameters are fixed to the optimized ones. 
These contour maps indicate the trade-offs of each two-
parameter set, and the optimized parameters are located 
at the trough of the contours. It is not possible to search 
the parameters in the directions where the cost function 
is almost flat, which may result in a discrepancy between 
the true and optimized parameters.

If we include the observation error in the synthetic data 
(Exp. 2), the cross-sections of the cost function indicate 
the parabolic forms as in Exp. 1 (Fig.  5a–d). The differ-
ence is that the shapes of the parabolic functions become 
broader for all the parameters in Exp. 2 than those in 
Exp. 1; i.e., the variation of a frictional parameter changes 
the cost function values slightly in Exp. 2 (vertical axis 
for Exp. 2 in Fig.  5e–h is larger than that for Exp. 1 in 
Fig.  5a–d). Thus, the observation noise results in larger 
estimation errors. The characteristics of the relative sen-
sitivity among regions are similar to the case of noise-free 
synthetic data. For example, A in region 4 is the most 
sensitive to the cost function, while those in regions 1–3 
are less sensitive (Fig. 5a and e). Therefore, the inclusion 
of the observation noise does not change the relative sen-
sitivity of the parameters among regions with respect 
to the cost function, but such relative sensitivity can be 
determined by the physics of the governing equations 
and the observation matrix. In addition, the cost func-
tion for some parameters such as L in regions 1 and 3 
does not show its minimum at the optimized values but 
monotonically decreases, while those for most param-
eters become minimum close to their optimized values as 

in Exp. 1. If some parameters are much more sensitive to 
the cost function than the others, the parameters cannot 
update when the highly sensitive parameters are close to 
the minimum even though it is possible for less sensitive 
parameters to update. Figure 5g represents the situation 
that L in regions 1 and 3 with few afterslip cannot update 
any longer. A similar situation can be observed in the 
case of assimilating real data, which will be presented in 
the next section.

Although the optimized values are not always close 
to the true ones, both experiments revealed good esti-
mates in terms of the cost function, i.e., good fit to the 
data. Figures 3 and Additional file 1: Figure S1 display the 
comparison of the theoretical displacements and the syn-
thetic observation data. Note that these results are for the 
assimilation period (day 1–15); those for the prediction 
period (day 16–30) are presented later in this section. 
The theoretical displacements (blue lines) in Exp. 1 fit the 
observed data without noise (blue squares). The green 
lines in Fig. 3 and Additional file 1: Figure S1 represent 
the theoretical displacement using the first-guess val-
ues. By updating the frictional parameters through data 
assimilation, the theoretical displacements were modified 
from green to blue lines, resulting in a quantitatively bet-
ter fitting to the observations. This is also true for Exp. 2: 
the green line was updated to the red one by assimilating 
the synthetic data (red circles).

Figure  7 compares the snapshots of the spatial distri-
bution of afterslip using the true, first-guess, and opti-
mized frictional parameters. In the case of the first-guess 
parameters (Fig. 7c), afterslip continues to accelerate for 
the first few days in region 9, south of TA, which is not 
inferred in the case of the true parameters (Fig. 7b). This 
slip acceleration disappeared after assimilating noise-
free synthetic data in Exp. 1 (Fig. 7d), and the temporal 

Fig. 6  Two-dimensional contour maps of the cost function for region 5 in Exp. 1. Cost functions are calculated as functions of a (A5, A5–B5), b (A5, L5) 
and c (A5–B5, L5), while all the other frictional parameters are fixed to the optimum values. Stars indicate the locations of the optimum values. The 
contour intervals are set to be 0.5 in a and 1 in b, c 
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changes in slip velocity were modified close to the true 
value in region 9. Moreover, the slip velocity calculated 
using the optimized parameters in Exp. 1 closely resem-
bles the true ones in all regions. When synthetic data 
with observation error are assimilated in Exp. 2 (Fig. 7e), 
the estimated afterslip distributions are mostly consistent 
with the true ones, with some differences in detail. For 
example, the acceleration of afterslip is inferred for day 1 
in region 5, to the east of the TA (Fig. 7e). Therefore, even 
though the observed data can be reproduced, the com-
pletely true recovery of the slip distribution is not always 
possible from the assimilation of crustal deformation on 
the ground surface with observation noise, but a consist-
ent spatial pattern can be roughly inferred.

To investigate the prediction skill of the data assimila-
tion method, we compare crustal deformation for the 
prediction period (day 16–30) (Fig.  3 and Additional 
file 1: Figure S1, Table 1). Figure 3 and Additional file 1: 

Figure S1 indicate that, for both experiments, the theo-
retical displacements with the optimized values bet-
ter explain the synthetic data for the prediction period 
than those with the first-guess values, even though the 
data for the prediction period are not assimilated. The 
cost function calculated only for the prediction period is 
smaller for the optimized values than for the first-guess 
values (Table 1). Therefore, the assimilation of the crustal 
deformation data for the first 15 days leads to the more 
accurate prediction of postseismic deformation for the 
following 15 days.

In summary, the adjoint data assimilation was adopted 
for the synthetic afterslip data with and without the 
observation noise to optimize the frictional param-
eters. Frictional parameters sensitive to the data were 
optimized so that the cost function could be minimized 
along the cross-section of each parameter. The optimized 
parameters well reproduced the synthetic data in the 

Fig. 7  Comparison of spatio-temporal evolutions of afterslip in numerical experiments. a The assumed initial slip velocities on day 00 (Miyazaki 
et al. 2004). b–e Temporal evolutions of afterslip calculated by using b the true, c the first-guess, and the optimum frictional parameters in d Exp. 1 
and e Exp. 2
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assimilation period, although there was a difference for 
the slip velocity on the plate interface calculated by using 
the true and optimized parameters, reflecting a limita-
tion for resolving a fault slip when using crustal deforma-
tion data on the ground surface with observation noise. 
Nonetheless, the prediction of the time series of crustal 
deformation was improved through data assimilation.

Application to the GNSS data following the 2003 
Tokachi‑oki earthquake
Figure 8 (red circles) illustrates the updates of the cost 
function values starting from the first-guess values. The 
cost function value decreased from 3.97 × 103 before 
data assimilation to 1.43 × 103 after 22 iterations. The 
frictional parameters, A–B, A, and L, were optimized 
as O(10  kPa), O(102  kPa), and O(10  mm), respectively 
(Fig.  9a). To investigate the robustness of the param-
eters, we calculated the values of the cost function by 
changing one parameter, while all the other parameters 
are fixed to their optimum values. As the number of 
parameters is large, we cannot calculate the values of 
the cost function for many cases as in Fig.  5; instead, 
we simply calculate the cost function with a small per-
turbation of δ(A–B), δA, and δL added to or subtracted 
from the optimized value and, respectively, obtain the 
difference in the cost function values in the optimized 
case. Here, we assume δ(A–B) = 1  kPa, δA = 10  kPa, 
and δL = 1 mm. If the cost function becomes larger for 
both adding and subtracting small perturbations for a 
certain parameter, the shape of the cross-section of the 
cost function is roughly approximated as a parabolic 
function with a vortex of optimized values. Such a par-
abolic function is rarely indicated, but most parameters 

monotonically decrease or increase around the opti-
mum values: the cost function becomes smaller (larger) 
when the perturbation is added and larger (smaller) 
when it is subtracted because L in region 49 (Fig. 2b), 
where a large afterslip is inferred (Fig.  10a), is highly 
sensitive to the data. In such a case, the other parame-
ters are rarely updated after the highly sensitive param-
eter is optimized. Therefore, we conduct additional 
data assimilation starting from optimized values under 
the same conditions, but the parameters in region 49 
are fixed to the optimized values. As expected, the cost 
function further decreases (red triangles in Fig. 8), and 
the other parameters are further updated. In this pro-
cedure, it is implicitly assumed that the parameters 
in region 49 are orthogonal to the other parameters, 
but further investigation is necessary to validate this 
assumption. Even though further optimization may 
occur, we define the first optimization results (indi-
cated by the black star in Fig. 8) as “optimized param-
eters” as more subjectively determined parameters. 
Figure 10a shows the spatio-temporal evolution of the 
slip velocities. The large afterslip area is located on the 
northeastern side of the TA just after the mainshock 
on day 00 (Miyazaki et al. 2004). The main slip location 
soon moved to the shallower side of the TA and con-
tinued to slip, exceeding 2 cm/year in the next 6 days, 
followed by a gradual decay until the end of the assimi-
lation period. The time constant for decaying afterslip 
on the shallower side of the TA is longer than that on 
the northeastern side of the TA, which is consistent 
with the results of Itoh et al. (2019) although they ana-
lyzed a much longer time series of 7.5 year of postseis-
mic deformation.

Figure 11 and Additional file 1: Figure S2 present the 
comparison of the theoretical displacements calculated 
by using the optimum parameters (red and blue lines) 
and those by using the first-guess parameters (pink and 
light blue lines) with the observed GNSS time series 
(circles). The theoretical displacements calculated using 
the optimized parameters reproduce the observed post-
seismic time series, especially at stations where large 
postseismic signals were identified. Station 0019 shows 
the largest observed displacement of ~  4.1 and ~  7.4 cm 
in X and Y directions, respectively, for the first 15 days 
following the mainshock, and the theoretical displace-
ment of ~  3.5 and ~   7.9  cm in X and Y directions, 
almost similar to the observations (Fig. 11). These theo-
retical displacements better fit to the observations than 
those by the first-guess parameters (pink and light blue 
lines). The daily misfit (red circles in Fig. 12), which is 
defined as same as the first term on the right-hand side 
of Eq. (7) but before summing up for index t, decreased 

Fig. 8  Cost functions in the case of applying real GNSS time series. 
The red circles indicate the change in the cost function values only 
when the frictional parameters are optimized. The black star indicates 
the optimization result. The red triangles indicate the further updates 
of the frictional parameters when L49, a highly sensitive parameter of 
the cost function, is fixed to the optimum value. The blue circles show 
the results when simulation variables and frictional parameters are 
simultaneously optimized
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by assimilating the observations compared to the case 
without data assimilation (pink circles).

The optimum parameters have the prediction skill of 
the GNSS time series. In most stations, the predicted 
time series with the optimum values show a higher 
degree of agreement with the observations than the 
first-guess parameters in the prediction period (day 
16–30) as well as the assimilation period (day 1–15). 
When the misfit values of all stations are summed 
for each day (Fig.  12), they decrease in the prediction 
period by assimilating the observations in the previous 
15 days even though the data in the prediction period 

are not assimilated. Thus, the prediction skill of the 
GNSS time series can be improved through the adjoint 
data assimilation in the applications to the real GNSS 
time series.

Discussion
Simultaneous estimation of the initial values 
of the simulation variables
The theoretical GNSS time series can be calculated by 
adopting the frictional parameters and the initial val-
ues of the simulation variables, i.e., slip velocity and 
state variables. In previous sections, we focused only on 

Fig. 9  Spatial distributions of the optimized frictional parameters. Only frictional parameters are optimized in a, while in b, the initial values of the 
simulation variables and frictional parameters are simultaneously optimized
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the optimization of frictional parameters, but fixed the 
pre-determined first-guess values for the initial values. 
In adjoint data assimilation, gradients of the cost func-
tion to the initial values and to the frictional parameters 
are simultaneously computed. Therefore, we conducted 
data assimilation for optimizing the initial values as 
well as frictional parameters. In this case, the number of 

variables to be optimized increased from 213 (frictional 
parameters) to 1545 (frictional parameters, initial values 
for slip velocity and state variable for all subfaults).

As a result, the cost function gradually decreased and 
finally satisfied the convergence condition after 30 itera-
tions (blue circles in Fig.  8). The value of the resulting 
cost function is 1.45 × 103, which is slightly larger than 

Fig. 10  History of afterslip following the 2003 Tokachi-oki earthquake. The spatio-temporal evolutions are calculated by using the optimized 
frictional parameters a without and b with the optimization of the initial velocities on day 00. c The difference in the initial slip velocities between a 
and b 

Fig. 11  Examples of postseismic time series in the application to real GNSS time series. The red and blue circles indicate the GNSS time series 
in X and Y directions. The pink, red, and orange lines are the theoretical time series in the X direction calculated by using the first-guess values, 
the optimum values when only frictional parameters are optimized and the optimum values when frictional parameters and initial values are 
simultaneously optimized, respectively. The light blue, blue, and green lines indicate the corresponding theoretical time series in the Y-direction. 
The locations of the GNSS stations are indicated in Fig. 1
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that in the case with no optimization of the initial values 
(Table  2). When the initial values were optimized, the 
first-guess term, i.e., the second term on the right-hand 
side of Eq. (7), had a finite value (1.17 × 102), which was 
zero when only the frictional parameters were optimized. 
Therefore, the simultaneous optimization of the initial 
values resulted in slightly better estimates if only the mis-
fit terms were evaluated.

The history of the afterslip distribution is summarized 
in Fig.  10b. The optimized initial velocity on day 00 is 
not significantly different from that in the case without 
optimization (Fig. 10a). The calculation of the difference 
between the optimized and first-guess initial velocities 
(Fig. 10c) showed that the initial velocity became smaller 
for most subfaults, by ~ 0.1 cm/day on deeper subfaults, 
but increased slightly on the shallower side of the TA. 
The temporal evolution of afterslip was slightly different: 
the decay time for afterslip was longer on the shallower 
side of the TA when the initial values were optimized.

Similarly, the theoretical displacements decayed more 
slowly (Fig.  11 and Additional file  1: Figure S2), which 
resulted in a larger displacement after a long time period 
(e.g., day 30). The simultaneous optimization yielded a 

slightly better reproduction of the observed displacement 
in the assimilation period. This also holds for the predic-
tion period, during which the cost function and the daily 
misfit show slightly smaller values (Table 2, Fig. 12).

The spatial distribution of the frictional parameters was 
also different (Fig.  9b). Most frictional parameters did 
not largely change from the first-guess values. Instead, 
some parameters, which are spatially isolated such as 
those in the shallower side of the TA were updated. The 
spatial characteristics of these updated parameters (e.g., 
smaller L and larger A on the shallower side of TA) were 
estimated even when only frictional parameters were 
optimized. This result indicates that the cost function 
is smaller when the initial values are updated than most 
frictional parameters because the observed crustal defor-
mation is more sensitive to the initial values, especially 
slip velocity, compared to most frictional parameters.

We assume that the error of the first-guess values for 
slip velocity is σv = 1.0 × 10–8  m/s (= 8.64 × 10–2  cm/
day) based on the inversion result of Miyazaki et  al. 
(2004). If we impose less constraint on the first-guess 
values of the initial slip velocity as σv = 1.0 × 10–7 m/s, 
the resulting cost function becomes 1.35 × 103, consist-
ing of the first-guess term of 5.03 and the misfit term 
of 1.30 × 103. At a larger error value σv, the first-guess 
term is smaller, while the misfit term is almost the same 
as in the case of smaller σv. Then, the optimized initial 
velocities are largely updated from the first-guess values 
(Additional file  1: Figure S3), resulting in a faster slip 
on the shallower side of the TA by up to 0.40 cm/day. 
The following afterslip and the theoretical displacement 
become large as well (Additional file 1: Figure S4). The 
optimized frictional parameters in Additional file  1: 
Figure S5 largely resemble those in the case of smaller 
σv (Fig. 9b), exhibiting slightly smaller updates. Thus, if 
we allow less constraint on the first-guess initial veloci-
ties, the cost function decreases by the update of the 
initial values rather than the frictional parameters as in 
the previous case (Figs. 9b and 10c).

The assimilation results mentioned in this subsection 
do not have significant impacts on the estimation of 
the afterslip evolutions and the fitting to the observa-
tions, even when the initial values are simultaneously 

Fig. 12  Daily misfit values. Misfit between the theoretical and the 
observed time series are daily summed up for all GNSS stations. The 
theoretical time series are calculated by using the first-guess values 
(pink circles), the optimum values when only frictional parameters 
are optimized (red circles), and the optimum values when frictional 
parameters and initial values are simultaneously optimized (orange 
circles), respectively

Table 2  Values of cost functions calculated by using Eq. (7) in the case of real GNSS time series

Optimization Cost function

Frictional parameters Initial values Assimilation period Prediction period

First-guess values 3.97*103 6.12*104

Optimized values Optimized Fixed 1.43*103 1.07*104

Optimized Optimized 1.45*103 1.03*104

(including first-guess term of 1.17*102)
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estimated (Figs. 10, 11, 12). If we have reasonably good 
estimates of the simulation variables, the optimization 
of the initial simulation variables is not always neces-
sary. However, in practical applications of adjoint data 
assimilation, prior knowledge of the initial values is 
usually limited. Thus, it may be reasonable to adopt 
an inverted slip velocity obtained from the kinematic 
analysis as the first-guess values for the initial slip 
velocities. Nonetheless, inversion results are some-
times biased when prior constraints such as the spatial 
and/or temporal smoothing of the slip are assumed. In 
such a case, the amount of error of the first-guess ini-
tial velocities would be set larger than that obtained in 
the kinematic analysis so that the initial velocity can be 
largely updated with less constraint.

Did the fault system reach steady state on the next day 
of the mainshock in the Tokachi‑oki region?
The first-guess initial state variables were assigned by 
assuming steady state, i.e., vθ/L = 1, and using the first-
guess frictional parameter L. In the case of optimizing 
only the frictional parameters, the initial values of v and 
θ were fixed to the first-guess values, while L was opti-
mized in the data assimilation. Since the optimized L was 
different from the first-guess values (Fig. 9a), the steady-
state assumption is not valid as in the spatial distribu-
tion of vθ/L on day 00 (Fig. 13a). On the contrary, when 
both initial values and frictional parameters were opti-
mized (Fig. 13b), the spatial pattern of vθ/L was similar to 
Fig. 13a, showing that the steady-state assumption does 
not hold even if the initial slip velocities and state vari-
ables are included as the optimized variables. Figure 13c 
and d shows examples of the temporal evolution of vθ/L 

Fig. 13  Spatial distributions of vθ/L and examples of the temporal evolution. The spatial distributions of vθ/L of a only when the frictional 
parameters are optimized, and b both initial values and frictional parameters are optimized. The temporal evolutions of vθ/L at subfaults c A and d B 
are indicated by blue and red lines, which correspond to the results of a and b, respectively. The locations of subfaults A and B are indicated in a 
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at subfaults A and B, located on the northeastern and 
shallower side of TA. These figures indicate that it took at 
least a few days to reach the steady state. Based on these 
results, we consider that the physical state on the next 
day of the Tokachi-oki earthquake did not reach a steady 
state. This fact is different from the steady-state assump-
tion that was introduced to impose coseismic stress 
change to investigate the postseismic behavior (Fukuda 
et al. 2009), which should be further investigated.

Comparison with the frictional parameters estimated 
from the Tokachi‑oki afterslip region
The frictional parameters are optimized as 
A–B ~ O(10  kPa), A ~ O(102  kPa), and L ~ O(10  mm). In 
the Tokachi-oki region, frictional parameters were esti-
mated using the postseismic GNSS time series of the 2003 
Tokachi-oki earthquake (Miyazaki et  al. 2004; Fukuda 
et  al. 2009). Miyazaki et  al. (2004) estimated A–B to be 
on the order of O(102 kPa), which is one-order larger than 
our result, based on the relation between the kinemati-
cally inverted slip velocity and the stress change assuming 
a steady state. Since the analysis period in Miyazaki et al. 
(2004) was the same as in this study, the difference of the 
parameters may result from the difference of the forward 
modeling and the assumed fault model, that is, Miyazaki 
et al. (2004) utilized a kinematic forward model in a sin-
gle spring–slider system, while we adopted the quasi-
dynamic model with an elastic continuum model. The 
other difference is that Miyazaki et al. (2004) assumed a 
steady state. As we discussed in the previous subsection, 
this assumption did not hold at least within a few days 
following the mainshock in a continuum model. None-
theless, to investigate the impact of parameter optimiza-
tion under the assumption of a steady state, we conducted 
a parameter search assuming the spatial homogene-
ity of A–B by a one-dimensional grid search using the 
same GNSS data and the first-guess initial velocities. 
The parameter search was conducted within the range 
of A–B from 0 to 1,600 kPa with an interval of 4 kPa. As 
a result, an A–B of 8 kPa attained the minimum value of 
the cost function of J = 2.98 × 103, which was almost twice 
as high as that in our assimilation result (Table 2). If we 
assume A–B = 100  kPa, the cost function became much 
larger value of J = 6.40 × 103, indicating worse fitting to 
the observation. This result of a smaller A–B compared 
to that without a steady-state assumption suggests that 
the assumption in our model would further enlarge the 
difference between the parameter estimations between 
Miyazaki et al. (2004) and this study.

Fukuda et al. (2009) focused on the early afterslip in 5 h 
following the 2003 Tokachi-oki mainshock and estimated 
A–B ~ O(100 kPa), A ~ O(100 kPa), and L ~ O(1 mm) using 
a single spring–slider system. The parameter A was on 

the same order as our results, while A-B and L were esti-
mated to be one-order larger and smaller, respectively. 
Although these differences may be partly caused by the 
single spring–slider model as discussed above in the case 
of Miyazaki et al. (2004), the main reason is likely the dif-
ference in the data period: Fukuda et  al. (2009) focused 
on the 5 h directly after the main shock, while we assimi-
lated the data for the following 15 days.

We showed that there are trade-offs among the param-
eters in region 5, even in the simple numerical experi-
ment (Exp. 1) (Fig.  6), indicating a negative trade-off 
between A–B and A and positive trade-offs between A 
and L, and A–B and A. Trade-offs among parameters 
were also investigated in Fukuda et  al. (2009), which 
showed the negative trade-off between A and L and no 
clear trade-offs between A–B and A or L. These patterns 
are different from our results as well. We guess that these 
differences also arose from the assumed model. For this 
difference, the number of the frictional parameters to 
be optimized was 27 in this study, larger than that of 3 
in Fukuda et  al. (2009), and thus, this resulted in the 
complex trade-off relations among this large number of 
parameters.

Comparison with the results of assimilating slip velocity data
The numerical experiment Exp. 1 revealed that the fric-
tional parameters were not optimized close to the true 
values because of the trade-offs among parameters (Fig. 6) 
even though the observation noise was not considered. To 
investigate the origin of these trade-offs, we conducted 
an additional numerical experiment using the synthetic 
slip velocity data without the observation noise under 
the same experimental settings as in Exp. 1. Then, we 
conducted a two-dimensional grid calculation by chang-
ing two of the frictional parameters in region 5 by fixing 
all the other frictional parameters to the optimized ones. 
Figure 14a shows the contour maps of the cost function, 
which is defined by the sum of the misfits between the 
theoretical and observed slip velocities at all subfaults. 
All the contour maps indicate similar trade-offs to those 
found when the surface displacement was assimilated 
(Fig. 6). Furthermore, Fig. 14b shows the contour maps of 
the pairs of frictional parameters in region 5 in the case of 
fixing all the other parameters to their true values, show-
ing similar trade-offs to those in Fig.  14a. These results 
indicate that the trade-offs among frictional parameters 
shown in Figs. 6 and 14 are originated not by the differ-
ence in the assimilated physical quantities, i.e., the dif-
ference of the observation matrix H, but by the nature 
of our data assimilation system including the physics-
based governing equations and the observed phenomena. 
Therefore, the developed data assimilation system has low 
resolution along the troughs of the contour maps.



Page 19 of 24Kano et al. Earth, Planets and Space          (2020) 72:159 	

Kano et al. (2015) estimated the spatial distribution of 
the frictional parameters in the afterslip region following 
the 2003 Tokachi-oki earthquake using an adjoint data 
assimilation method. The only difference between this 
study and Kano et  al. (2015) is the assimilated observa-
tion data: Kano et al. (2015) adopted the slip velocity on 

the plate interface inferred from the GNSS data using 
the kinematic inversion analysis (Miyazaki et  al. 2004) 
as “observation” as if they were in  situ observations. 
Although the spatial variations of the frictional param-
eters in Kano et  al. (2015) are not similar to those in 
this study, the frictional parameters are optimized in 

Fig. 14  Two-dimensional contour maps of the cost function when slip velocities are assimilated. Cost functions are calculated as functions of 
(A5, A5–B5), (A5, L5), and (A5–B5, L5), while all the other frictional parameters are fixed to a their optimum values and b true values. Stars indicate the 
locations of a the optimum values and b the true values. The contour intervals are set to be 10 for (A5, A5–B5) and 40 for (A5, L5) and (A5–B5, L5)

Fig. 15  Examples of the postseismic time series using the results of Kano et al. (2015). Red and blue circles indicate the GNSS time series in the X 
and Y directions. The red and blue lines are the corresponding theoretical time series calculated by using the optimum values obtained in Kano 
et al. (2015), which assimilated the slip velocities estimated by Miyazaki et al. (2004) as observations
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the same order of L ~ O(10  mm), A–B ~ O(10  kPa), and 
A ~ O(100  kPa). Figure  15 and Additional file  1: Figure 
S6 display the comparison of the theoretical surface dis-
placement calculated by using the optimized frictional 
parameters in Kano et  al. (2015) with the GNSS time 
series used in this study. The theoretical time series 
underestimates the displacement in the Y-direction 
at stations where large postseismic deformation was 
observed. The resulting cost function is 3.71 × 103, which 
is much larger than our result of 1.43 × 103. This differ-
ence may be caused by the difference in the assimilated 
data. The slip velocity data in Kano et  al. (2015) were 
obtained in the kinematic inversion analysis where the 
inverted daily slip velocity indicates the daily averaged 
slip velocity. Therefore, it may not always be reasonable 
to fit the daily averaged slip velocity by the continuously 
varying slip velocity calculated using physics-based equa-
tions. The kinematic analysis often imposes the smooth-
ing of the slip velocity as a prior constraint resulting in 
strong correlations between slip velocities in neighboring 
subfaults. Nonetheless, Kano et  al. (2015) did not con-
sider the covariance matrix of the observed assimilated 
slip velocity, assuming that slip velocities were indepen-
dently observed. Inclusion of such a covariance effect, 
i.e., the consideration of the covariance matrix in the cost 
function, may improve the optimization of in situ obser-
vations, which is beyond the scope of this study.

Effect of the first‑guess values of frictional parameters
In the numerical experiments, we assumed the first-
guess frictional parameters adopted in Kano et al. (2015), 
which were not so far from the true values (Table  1). 
Kano et al. (2015) roughly determined these values based 
on a two-dimensional grid calculation by changing two of 
the frictional parameters in each region. Therefore, these 
first-guess values were suitable to some degree. To inves-
tigate the effect of the choice of the first-guess values, we 
additionally conducted two numerical experiments using 
the noise-free synthetic data adopted in Exp. 1 by setting 
two different first-guess values: Exp. 1-i, which used the 
first-guess values with 100% perturbation added to the 
true values and Exp. 1-ii, where 900% perturbation were 
added to (or one-order larger from) the true values. The 
optimization results are summarized in Table  3 with 
the first-guess frictional parameters. The cost function 
calculated using these first-guess values are 1.14 × 103 
and 2.16 × 103 in cases Exp. 1-i and Exp. 1-ii, respec-
tively, which are much larger than 3.80 × 101 for Exp. 1 
(Table  1). The adjoint data assimilation reduced these 
values to 2.51 × 100 and 6.45 × 101 after 1,046 and 10,000 
iterations (Fig.  4), respectively, which were larger than 
the result (2.41 × 10–2) in Exp. 1. The theoretical surface 
displacements are compared in Fig.  16, indicating that 

the ability to explain the observations becomes worse as 
the time from the mainshock elapsed when larger pertur-
bations are added in Exp. 1-ii. Especially in the prediction 
period (day 16–30), the misfit terms in the cost function 
in Exps. 1-i and 1-ii become four-orders of magnitude 
larger than in Exp. 1. These results indicate the neces-
sity to estimate good first-guess frictional parameters or 
starting points for the parameter search. This will be dis-
cussed further in the next subsection, in terms of future 
improvements.

Future improvements
Our assimilation results can quantitatively reproduce 
the daily postseismic deformation both in the assimi-
lation and prediction periods. When we focus on the 
short time-scale deformation of the theoretical displace-
ment, there is a step-like movement between day 0 and 
1 regardless of the initial values being optimized or not 
(Fig. 11). This step-like movement is caused by the sud-
den acceleration of afterslip close to the shallower edge 
of the TA (Fig. 9a). Since we assimilated the daily GNSS 
time series, the temporal resolution was not shorter than 
a day, and thus, it is difficult to resolve if such slip accel-
eration truly occurred from the data used in this study. 
In addition, the daily coordinates represent an average 
position for 24 h, and consequently would not accurately 
reflect the exact position of the representative time, i.e., 
12:00 PM in the case of GEONET F3 solutions, especially 
when significant deformation occurs during one day. Fur-
thermore, Twardzik et  al. (2019) reported that ~ 64% of 
the postseismic signal detected in the first 36  h follow-
ing the mainshock occur within the first 12 h in the case 
of three large earthquakes along the South American 
subduction zone. Therefore, to clarify the temporal evo-
lution of the slip in detail, especially for the initial stage 
of the afterslip, e.g., within one day following the main-
shock, high-sampling GNSS data should be assimilated, 
which will be the topic of a future study. Another possible 
update related to the observation data is an inclusion of 
the vertical component of GNSS time series. The verti-
cal component may be more sensitive to the location of a 
fault slip, and thus, will contribute to better constraint of 
the spatial distribution of the afterslip area.

We demonstrated that the adjoint data assimilation is 
capable of predicting weekly postseismic deformation by 
optimizing the frictional parameters and initial values 
of simulation variables. This study fixed the data period 
of the data assimilation for the first 15  days following 
the mainshock and predicted the following time series. 
In a practical application of predicting the postseismic 
deformation, we can sequentially update the predictions 
in real time similar to weather forecasts: every time new 
data are derived, we can assimilate the new data as well 
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as the previous observations and update the prediction 
of postseismic time series through a further update of 
frictional parameters, which have been optimized using 
the previous observations. Such sequential updates will 
improve the prediction skill.

Further improvement of the adjoint data assimilation 
method and relevant numerical models is possible to 

attain more accurate predictions. In general, the opti-
mization of the adjoint method depends on the first-
guess values because the method always searches for 
the direction in the parameter space at which the cost 
function becomes smaller. This often results in a local 
minimum of the cost function. In addition, as discussed 
in the previous subsection, if the adjoint method is not 

Table 3  True, first-guess and optimized values of frictional parameters in each subregion in the numerical experiments 
in Exps. 1-i, 1-ii, and 1, and values of the cost function calculated by using Eq. (7)

Region True values First-guess values Optimized values

Exp. 1-i Exp. 1-ii Exp. 1-i Exp. 1-ii Exp. 1

1

 A–B (kPa) 8.00 16.0 80.0 19.7 109 8.13

 A (kPa) 60.0 120 600 74.4 233 37.0

 L (mm) 30.0 60.0 300 54.7 281 47.3

2

 A–B (kPa) 10.0 20.0 100 20.0 112 7.18

 A (kPa) 40.0 80.0 400 51.6 279 37.3

 L (mm) 10.0 20.0 100 14.9 60.3 9.73

3

 A–B (kPa) 6.00 12.0 60.0 15.9 68.8 7.03

 A (kPa) 20.0 40.0 200 16.6 70.8 28.0

 L (mm) 20.0 40.0 200 41.6 224 17.3

4

 A–B (kPa) 6.00 12.0 60.0 13.1 63.9 6.19

 A (kPa) 20.0 40.0 200 27.9 108 20.5

 L (mm) 20.0 40.0 200 38.5 219 20.3

5

 A–B (kPa) 8.00 16.0 80.0 2.96 142 7.61

 A (kPa) 60.0 120 600 42.5 234 68.8

 L (mm) 10.0 20.0 100 9.42 149 9.96

6

 A–B (kPa) 10.0 20.0 100 23.9 117 8.29

 A (kPa) 40.0 80.0 400 25.9 119 63.2

 L (mm) 10.0 20.0 100 18.0 157 10.5

7

 A–B (kPa) 10.0 20.0 100 21.9 106 11.4

 A (kPa) 40.0 80.0 400 61.2 422 56.1

 L (mm) 20.0 40.0 200 36.0 149 18.3

8

 A–B (kPa) 6.00 12.0 60.0 12.8 68.9 6.77

 A (kPa) 20.0 40.0 200 28.0 71.0 29.5

 L (mm) 30.0 60.0 300 60.6 422 21.4

9

 A–B (kPa) 8.00 16.0 80.0 10.8 − 117 11.5

 A (kPa) 60.0 120 600 124 294 33.7

 L (mm) 10.0 20.0 100 11.2 192 9.17

Cost function (assimilation period) 0 1.14*103 2.16*103 2.51*100 6.45*101 2.41*10−2

Cost function (prediction period) 0 1.33*104 2.08*104 5.01*103 6.55*103 4.58*10−1
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started based on suitable first-guess values, it results in 
a worse fitting to and prediction of the observation. This 
is partly because the adjoint method linearizes the non-
linear forward simulation. To avoid such an effect, it is 
possible to develop a hybrid data assimilation approach 
by utilizing an ensemble-based approach, such as EnKF 
(Hirahara and Nishikiori 2019; van Dinther et al. 2019) or 
the simple grid calculation (Kano et al. 2015), which do 
not require the linearization of the forward equation, for 
example, to obtain better first-guess values then optimize 
them using the adjoint method. Another disadvantage of 
the adjoint method is that it is difficult to directly obtain 
the uncertainties of the optimized model parameters. The 
uncertainties are principally evaluated by calculating the 
second-order derivatives of the cost function around the 
optimized parameters, which is computationally expen-
sive to be implemented. Ito et  al. (2016) recently devel-
oped a second-order adjoint method that is applicable 
even to massive systems within reasonable computational 
time and resources. Following Ito et al. (2016), Ito et al. 
(2017) proposed a data assimilation method to predict 
the time series together with the uncertainties by consid-
ering the uncertainties of the optimized model param-
eters. Implementation of their methods to our adjoint 
system will lead to the evaluation of the uncertainties of 
the optimized frictional parameters and the prediction of 
postseismic deformation with the uncertainties. Finally, 

this study focused on the short time-scale (~ one month) 
evolution of postseismic GNSS time series that is mostly 
attributed to afterslip. When the year-long postseismic 
time series is considered, the introduction of the viscoe-
lastic effect to numerical simulations will be essential for 
achieving more accurate predictions.

Conclusions
We developed an adjoint method for optimizing fric-
tional parameters by directly assimilating the GNSS time 
series. The developed method was validated through 
numerical experiments using synthetic postseismic 
data, showing that the data could be well reproduced. 
Although the spatial distribution of afterslip was not 
completely recovered, the estimated slip velocities were 
consistent with the true ones. Using the optimized fric-
tional parameters, the prediction skill of the following 
postseismic time series was significantly improved. The 
developed method was applied to the GNSS time series 
following the 2003 Tokachi-oki earthquake. The fric-
tional parameters were optimized to A–B ~ O(10  kPa), 
A ~ O(100 kPa), and L ~ O(10 mm). The optimized param-
eters reproduced the observed time series and predicted 
the following GNSS time series. The largest afterslip was 
inferred on the shallower side of the coseismic slip area. 
All these characteristics were inferred even if the simu-
lation variables as well as the frictional parameters were 

Fig. 16  Examples of postseismic time series in the numerical experiments. Blue squares indicate the noise-free synthetic data. Blue, red, and green 
lines are the theoretical time series calculated using the optimum frictional parameters in Exps. 1, 1-i and 1-ii, respectively. The locations of the GNSS 
stations are indicated in Fig. 1
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additionally optimized. Although future improvements 
are needed, the developed data assimilation method will 
provide a more quantitative evaluation for assessing risks 
of subsequent earthquakes and for monitoring the recov-
ery process of megathrust earthquakes.
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Additional file 1: Figure S1. Postseismic time series at all stations in 
numerical experiments. The blue squares and red circles indicate the syn-
thetic data in Exps. 1 and 2. The green, blue, and red lines are the theoreti-
cal time series calculated by using the first-guess and optimum frictional 
parameters in Exp. 1 and 2, respectively. Figure S2. Postseismic time series 
at all stations in the application to real data. The red and blue circles indi-
cate the GNSS time series in X and Y directions. The pink, red, and orange 
lines are the theoretical time series in the X direction calculated by using 
the first-guess values, the optimum values when only frictional param-
eters are optimized and the optimum values when frictional parameters 
and initial values are simultaneously optimized, respectively. The light 
blue, blue, and green lines indicate the corresponding theoretical time 
series in the Y direction. Figure S3. (a) Spatio-temporal evolution of slip 
velocities when the diagonal elements of error variance-covariance matrix 
for slip velocities are set to be the squared of the larger standard deviation 
of 1.0×10-7 m/s compared to the results shown in Fig. 10b. (b) Difference 
between the spatial distribution of the first-guess initial slip velocity and 
that of the optimized initial slip velocity. Figure S4. Postseismic time series 
at all stations when the diagonal elements of error variance-covariance 
matrix for slip velocities are set to be the squared of the larger standard 
deviation of 1.0×10-7 m/s compared to the results shown in Figure S2. 
The red and blue circles indicate the GNSS time series in X and Y direc-
tions. The red, and blue lines are the corresponding theoretical time series 
in X and Y directions calculated by using the optimum values. Figure 
S5. Spatial distribution of the optimized frictional parameters when the 
diagonal elements of error variance-covariance matrix for slip velocities 
are set to be the squared of the larger standard deviation of 1.0×10-7 
m/s compared to the results shown in Fig. 9b. Figure S6. Postseismic 
time series at all stations. The red and blue circles indicate the GNSS time 
series in X and Y directions. The red and blue lines are the corresponding 
theoretical time series calculated by using the optimum values obtained 
in Kano et al. (2015).
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