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EXPRESS LETTER

Note on consistency between Kalogerakis–
Sharma Mechanism (KSM) and two‑step 
mechanism of atmospheric band emission 
(762 nm)
Mykhaylo Grygalashvyly*   and Gerd Reinhold Sonnemann

Abstract 

For more than 30 years, a two-step mechanism was used to explain observed Atmospheric band emission (762 nm) in 
mesopause region. A new mechanism, which leads to the formation of electronically excited molecular oxygen that 
gives this emission, was proposed recently. We show, based on an analytical solution, that the fit-functions for Atmos-
pheric band volume emission in the case of the two-step mechanism and the new Kalogerakis–Sharma Mechanism 
(KSM) have analogous expression. This derivation solves the problem of consistency between the well-known two-
step mechanism and the newly proposed KSM.
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Introduction
Airglow phenomena, and particularly atmospheric band 
emission (762  nm), attract interest, because they help 
infer knowledge about dynamical variabilities [e.g. tides, 
planetary waves (PWs), gravity waves (GWs)], tempera-
ture, and chemical distributions in the mesopause region. 
Atmospheric band emission (762 nm) is produced by the 
excited state of molecular oxygen O2

(

b1�+
g , v = 0

)

 
(hereafter, v is the vibrational number). It was used to 
investigate parameters of GWs (e.g. Noxon 1978; Zhang 
et al. 1993; Leko et al. 2002). PWs were studied by Lopez-
Gonzalez et al. (2009). The tides have been detected, for 
example, by Lopez-Gonzalez et  al. (2005), Marsh et  al. 
(1999). Sheese et al. (2010, 2011) utilised this emission to 
infer the temperature in the mesopause region.

Distributions of minor chemical constituents (ozone, 
atomic oxygen) were measured in a number of works (e.g. 
Mlynczak et  al. 2001; Hedin et  al. 2009, and references 
therein). The same excited state of molecular oxygen 
O2

(

b1�+
g

)

 produces emission at 865  nm, which can be 
measured from the ground, and which has been utilised 
to study solar cycle effects (e.g. Pertsev and Perminov 
2008), trends (e.g. Dalin et  al. 2020, and references 
therein), and GWs (Aushev et  al. 2000). This emission 
was utilised to investigate variability due to sudden strat-
ospheric warming (Shepherd et al. 2010). The processes 
of energy transfer between different excited states of mol-
ecules and atoms, as well as the parameters of transitions, 
should be well studied for three main reasons: for correct 
interpretation of the results of measurements, for correct 
assessment thermalisation of upcoming radiation (that is 
significant for dynamics), and because the chemical 
properties of electronically excited states of atoms and 
molecules are different from their ground states (distri-
butions of excited states are important for mesopause 
chemistry).
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For over 30  years, a two-step (Barth-like) mechanism 
(Greer et al. 1981; Witt et al. 1984; McDade et al. 1986) 
was considered as the main source of O2

(

b1�+
g , v = 0

)

 
population at nighttime conditions. It assumes produc-
tion O2

(

b1�+
g , v = 0

)

 from the recombination of atomic 
oxygen via unknown precursor. The population 
O2

(

b1�+
g , v = 0

)

 at daytime occurs by quenching of 
O(1D), which is the result of ozone and molecular oxygen 
dissociation. (e.g. Yankovsky and Vorobeva 2020). It was 
assumed until 2015 that there are no essential sources of 
O(1D) in the mesopause during night (the minor sources: 
O(1S) → O(1D)+ hν(557.7 nm) and O+

2
+ e → O(1D)+O are 

almost negligible). Recently, a new source of O(1D) popu-
lation 

(

O+OHv≥5 → O(1D)+OH
0≤v

′
≤v−5

)

 was pro-
posed (Sharma et  al. 2015; Kalogerakis et  al. 2016) as a 
hypothesis to explain the difference between experiment 
(Kalogerakis et al. 2011) and theory (e.g. Caridade et al. 
2013, and references therein). It was successfully used to 
explain the deviations between numerical simulations 
and measurements of carbon dioxide 4.3  μm emission 
(Panka et al. 2017). Hence now, this mechanism is a well-
established hypothesis. If this hypothesis is true, a new 
source for the production of O2

(

b1�+
g , v = 0

)

 via O(1D) 
takes place in the mesopause region at night. In the pre-
sent, there are different opinions about the canal 
O+OHv=9 → O(1D)+OHv′=4 . A number of authors 
takes this branch in account; on the other hand, there is 
an opinion that this canal does not exist (e.g. Yankovsky, 
private communication; Khomich et  al. 2008). This still 
opened question does not influence all discussion below. 
Hence, in our manuscript, the original nomenclature 
(Sharma et  al. 2015), which takes into an account this 
canal, is used.

Recently, by analysis of Energy Transfer in the Oxygen 
Nightglow (ETON 2) and Non-Local Thermodynamic 
Equilibrium (NLTE 2) rocket measurements, Kaloge-
rakis (2019) inferred that the 762  nm emission via this 
new mechanism is over half of the total Atmospheric 
band emission near the peak, and may even exceed the 
emission from traditional source (two-step mechanism). 
Note, this conclusion, as well as discussion below, is valid 
and for the emission 865 nm which have as a source the 
same excited state of molecular oxygen.

Hence, a question arises regarding how is it possi-
ble that the fit-function, which was derived based on 
the assumption about the dominance of the two-step 
mechanism with empirically derived fitting coefficients 
(McDade et al. 1986; Grygalashvyly et al. 2019), has been 
used more than 30  years to infer atomic oxygen from 
observed Atmospheric band emission (e.g. Hedin et  al. 
2009), or vice versa, for simulations of emission from 

atomic oxygen (e.g. Ward 1999) with well-confirmed 
results, if an additional strong mechanism exists.

In this short note, we show that in the case of Kaloge-
rakis–Sharma Mechanism (KSM), the analogous fit-func-
tion can be derived. The analytical derivation is shown in 
the next section. The conclusions are summarised in the 
last section.

Analytical derivation
Assuming the two-step mechanism as dominant for 
O2

(

b1�+
g , v = 0

)

 population (hereafter, v is the vibra-
tional number for all vibrationally excited molecules), 
McDade et al. (1986) derive fit-function:

where a5 is the reaction rate for atomic oxygen recombi-
nation; A762 is Einstein coefficient for Atmospheric band 
(762  nm) emission, V762 is corresponding volume emis-
sion; AO2(b1)_0 is Einstein coefficient for total spontane-
ous emission of O2

(

b1
∑

+

g , v = 0

)

; bO2
, bN2

, bO are the 
quenching rates of O2

(

b1�+
g , v = 0

)

 with molecular oxy-
gen, molecular nitrogen and atomic oxygen, respectively; 
and CO2 , CO are the empirical fitting coefficients that 
were calculated from the ETON 2 rocket experiment. For 
more comfortable reading, we collect all nomenclature of 
reactions used in the manuscript in Table 1.

To show that in the case of KSM can be derived by 
analogous expression, we start from the expression 
for excited hydroxyl. Excited hydroxyl is in photo-
chemical equilibrium in the mesopause region at night. 
Under this condition, its concentration is expressed 
as the ratio of productions to losses. The ozone is in 
the photochemical equilibrium in the vicinity of the 
excited hydroxyl layer and above at nighttime condi-
tions (Belikovich et  al. 2018; Kulikov et  al. 2018, 2019). 
We use the expression for ozone balance at night 
a2[O][O2][M] = a1[O3][H]+ a3[O][O3] , where a1, a2, a3 
are the coefficients for corresponding reactions (see 
Table  1). The reaction of ozone with atomic oxygen is 
relatively slow and can be omitted (Smith et  al. 2008). 
Then, we substitute the reduced ozone balance equation 
( a2[O][O2][M] = a1[O3][H] ) into the excited hydroxyl 
balance equation (first term in the numerator). Hence, we 
can write an equation where the concentration of excited 
hydroxyl is represented as a function of temperature 
(because of temperature-dependent reaction rates) and 
atomic oxygen concentration:

(1)

C
O2[O2]+ C

O
[O]

=
A762a5[O]

2
[O2][M]

V762

(

AO2(b1)_0 + bO2
[O2]+ bN2

[N2]+ bO[O]
) ,
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Here, ηv are the branching ratios for the reaction of 
atomic hydrogen with ozone; a2, a4 are the reaction rates 
for R2 and R4, respectively; Qv′v ,Pv′v , Sv′v are the quench-
ing coefficients (where lower indexes denote correspond-
ing transitions) for deactivation of excited hydroxyl by 
molecular oxygen, atomic oxygen, and molecular nitro-
gen, respectively; Ev′v are the spontaneous emission coef-
ficients; aKSM is the reaction rate for KSM, and ψv are 
the branching ratios for KSM. Note, in the denominator 
of Eq.  (2), we take into an account not only quenching 
processes and spontaneous emission, but, additionally, 
chemical removing (following by terminology of e.g. 
Varandas (2004), Caridade et al. (2013), reactive quench-
ing), and removing by KSM. Hence, we separate three 
different processes: non-reactive quenching (R16), reac-
tive quenching (R4), and Kalogerakis–Sharma process 

(2)[OHv=9,...,5] =

(

ηva2[O][O2][M]+
∑9

v′=v+1 Pv′v[OHv′ ][O]+
∑9

v′=v+1 Sv′v[OHv′ ][N2]+

+
∑9

v′=v+1Qv′v[OHv′ ][O2]+
∑9

v′=v+1 Ev′v[OHv′ ]

)

(

a4(v)[O]+
∑v−1

v′′=0 Pvv′′ [O]+
∑v−1

v′′=0 Svv′′ [N2]+

+
∑v−1

v′′=0Qvv′′ [O2]+
∑v−1

v′′=0 Evv′′ + ψvaKSM[O]

) ,

(

v < v′

v′′ < v

)

.

(R6). Taking into account that the most effective losses 
of excited hydroxyl occur by quenching with molecular 
oxygen, we can write simplified expressions for excited 
hydroxyl concentration (Grygalashvyly, 2015, eq. 14):

where µv are the coefficients which represent the arith-
metic combination of branching ratios, ηv and quench-
ing coefficients Qv′v (collected in Appendix). Similar 
approach was used in a number of papers and is repeated 
here just for clarity (e.g. Mlynczak et al. 2014; Grygalash-
vyly et al. 2014; Grygalashvyly2015).

KSM populates O(1D) from vibrationally excited 
hydroxyl with v = 5, . . . , 9 (Sharma et  al. 2015; Kaloge-
rakis et  al. 2016; Panka et  al. 2017; Kalogerakis 2019). 
[O(1D)] due to KSM using photochemical equilibrium 
(the life time is less than 1  s because of strong quench-
ing; e.g. Slanger et al. (2017), Yankovsky and Manuilova 
(2018)) and can be written as follows:

where AO(1D) is the the total coefficient of O(1D) sponta-
neous emission, and cO2

, cN2
, cO are the quenching coef-

ficients for deactivation of O(1D) by molecular oxygen, 
molecular nitrogen, and atomic oxygen, respectively.

Two lowest vibrational states of O2

(

b1�+
g , v = 0,1

)

 are 
populated via quenching of O(1D) by molecular oxygen, 
with branching ratios χ0 and χ1 , respectively. Then, 

O2

(

b1�+
g , v = 1

)

 can be deactivated by quenching with 
O2, N2, and O into zero vibrational state, or it can be 
transformed into ground state via spontaneous emission 
(e.g. Pejakovic 2014; Yankovsky et al. 2016, 2019).
O2

(

b1�+
g , v = 0

)

 is the result (at nighttime conditions) 
of deactivation of O(1D) by molecular oxygen and 
O2

(

b1�+
g , v = 1

)

 by O2, N2, and O. Then, it is deacti-
vated in processes of spontaneous emission and 
quenching.

The radiative lifetimes of O2

(

b1�+
g , v = 0,1

)

 are less 
than 12 s (e.g. Yankovsky et al. 2016, 2019 and references 
therein), hence, assuming photochemical equilibrium for 
both, we can express them as a ratio of production to the 
losses.

(3)[OHv] = µva2[O][M],

(4)

[

O(1D)

]

KSM
=

∑v=9
v=5 ψvaKSM[OHv][O]

AO(1D) + cO2[O2]+ cN2[N2]+ cO[O]
,

Table 1  List of  reactions, nomenclature of  reaction rates, 
branching ratios, quenching coefficients, spontaneous 
emission coefficients used in the paper

Reactions Coefficients/
branching 
ratios

R1 H+ O3
ηv a1
→ OHv=5,...,9 + O2

a1/ηv=9,...,5

R2 O+ O2 +M → O3 +M a2

R3 O+ O3 → 2O2 a3

R4 O+ OHv=5,..,9 → O2 + H a4(v = 9, . . . , 5)

R5 O+ O+M → O2 +M a5

R6 O+ OHv≥5
ψv aKSM
→ O(1D)+ OH0≤v

′
≤v−5

aKSM/ψv=9,...,5

R7 O(1D) → O+ hv AO(1D)

R8 O(1D)+ O2, N2,O → products cO2
, cN2

, cO

R9
O(1D)+ O2

χ0cO2
→ O2

(

b1�+
g , v = 0

)

+ O
χ0

R10
O(1D)+ O2

χ1cO2
→ O2

(

b1�+
g , v = 1

)

+ O
χ1

R11 O2

(

b1�+
g , v = 1

)

→ products+ hv(total) AO2(b1)_1

R12 O2

(

b1�+
g , v = 0

)

→ products+ hv(total) AO2(b1)_0

R13 O2

(

b1�+
g , v = 0

)

→ O2 + hv(762nm) A762

R14 O2

(

b1�+
g , v = 0

)

+ O2, N2, O → products bO2
, bN2

, bO

R15 O2

(

b1�+
g , v = 1

)

+ O2, N2, O → O2

(

b1�+
g , v = 0

)

+ O2, N2, O

dO2
, dN2

, dO

R16 OHv + O2, O, N2 → OHv′<v + O2, O, N2 Qvv′ , Pvv′ , Svv′

R17 OHv → OHv′<v + hν Evv′
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where AO2(b1)_1 is the Einstein coefficient for total spon-
taneous emission of O2

(

b1�+
g , v = 1

)

 ; χ1 is branching 
ratio (see above); and dO2

, dN2
, dO are the rates of 

quenching of O2

(

b1�+
g , v = 1

)

 by molecular oxygen, 
molecular nitrogen, and atomic oxygen, respectively.

where χ0 is branching ratio (see above); bO2
, bN2

, bO are 
the quenching rates of O2

(

b1�+
g , v = 0

)

 with molecular 
oxygen, molecular nitrogen and atomic oxygen, 
respectively.

Next, we substitute (5) into (6). The spontaneous emis-
sion coefficient AO2(b1)_1 is much smaller than other 
terms in the denominator of (5) (Pejakovic et al. 2005a,b). 
Hence, we can write

where χ = χ0 + χ1 is the total branching ratio for 
O2

(

b1�+
g , v = 0,1

)

 population.
The KSM which produces O(1D), and consecutively 

O2

(

b1�+
g , v = 0

)

, is responsible for part of Atmospheric 
band emission (762 nm):

Substituting (3) into (4), then (4) into (7), and finally (7) 
into (8), we obtain:

Omitting emissive term AO(1D) as non-effective loss 
and reorganising (9), we obtain

(5)
[

O2

(

b1�+
g , v = 1

)]

KSM
=

χ1cCO2[O2]
[

O(1D)
]

KSM
(

AO2(b1)_1 + dO2[O2]+ dN2[N2]+ dO[O]
) ,

(6)[

O2

(

b1�+
g , v = 0

)]

KSM
=

χ0cO2[O2]
[

O(1D)
]

KSM
+

[

O2

(

b1�+
g , v = 1

)]

KSM

(

dO2[O2]+ dN2[N2]+ dO[O]
)

(

AO2(b1)_0 + bO2[O2]+ bN2[N2]+ bO[O]
) ,

(7)
[

O2

(

b1�+
g , v = 0

)]

KSM
=

χcO2[O2]
[

O(1D)
]

KSM
(

AO2(b1)_0 + bO2[O2]+ bN2[N2]+ bO[O]
) ,

(8)VKSM = A762

[

O2

(

b1�+
g , v = 0

)]

KSM
.

(9)VKSM =
A762χcO2

aKSMa2[O]2[O2][M]
∑v=9

v=5 ψvµv
(

AO2(b1)_0 + bO2[O2]+ bN2[N2]+ bO[O]
)(

AO(1D) + cO2[O2]+ cN2[N2]+ cO[O]
) .

(10)CO2[O2]+ CO
[O] =

A762a5[O]2[M][O2]

VKSM

(

AO2(b1)_0 + bO2[O2]+ bN2[N2]+ bO[O]
) ,

where CO2 =
a5

χa2aKSM
∑v=9

v=5 ψvµv

(

1+
cN2

[N2]

cO2
[O2]

)

 and 
CO

=
cOa5

χa2aKSMcO2

∑v=9
v=5 ψvµv

.

Hence, the case of leading KSM gives the same expres-
sion for fit-function.

Conclusions
The fit-functions for KSM and for two-step mechanism 
have analogous analytical expressions. This explains why 
a long time of using this expression with empirically 
derived fitting coefficients but without detailed knowl-
edge on acting mechanisms gives approximately correct 
values of atomic oxygen and Atmospheric band vol-
ume emissions. In the frame of our analytical approach 

and currently available rocket experiments, we do not 
have the possibility to make any solid conclusions about 
the balance between two mechanisms. To highlight this 
problem, new simultaneous observations of the Atmos-
pheric band emission, excited hydroxyl emissions, atomic 
oxygen and temperature are necessary. Additionally, lab-
oratory investigations to study the branching ratios and 
reaction rate for KSM are desirable.



Page 5 of 7Grygalashvyly and Sonnemann ﻿Earth, Planets and Space          (2020) 72:187 	

Abbreviations
KSM: Kalogerakis–Sharma Mechanism; PWs: Planetary waves; GWs: Gravity 
waves; ETON: Energy Transfer in the Oxygen Nightglow; NLTE: Non-Local 
Thermodynamic Equilibrium.

Acknowledgements
Not applicable.

Authors’ contributions
The authors contributed equally to this work. All authors read and approved 
the final manuscript.

Funding
Not applicable.

Availability of data and materials
No data are presented—the work is theory.

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that they have no conflict of interest.

Appendix
Coefficients µv for Eq. (3).

Here Qv =
∑v′=v−1

v′=0 Qvv′ is the sum of quenching ratios 
for OHv by O2 for transitions into all lower vibrational 
levels.

µ9 =
n9

Q9

,

On the other hand, these coefficients can be repre-
sented by the simple recursive expression:
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