
Tangborn et al. Earth, Planets and Space           (2021) 73:47  
https://doi.org/10.1186/s40623-020-01324-w

FULL PAPER

Geomagnetic secular variation forecast 
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A candidate SV model for IGRF-13
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Abstract: 
We have produced a 5-year mean secular variation (SV) of the geomagnetic field for the period 2020–2025. We use 
the NASA Geomagnetic Ensemble Modeling System (GEMS), which consists of the NASA Goddard geodynamo model 
and ensemble Kalman filter (EnKF) with 400 ensemble members. Geomagnetic field models are used as observations 
for the assimilation, including gufm1 (1590–1960), CM4 (1961–2000) and CM6 (2001–2019). The forecast involves 
a bias correction scheme that assumes that the model bias changes on timescales much longer than the forecast 
period, so that they can be removed by successive forecast series. The algorithm was validated on the time period 
2010-2015 by comparing with CM6 before being applied to the 2020–2025 time period. This forecast has been sub-
mitted as a candidate predictive model of IGRF-13 for the period 2020–2025.
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1. Introduction
It has long been observed that the Earth’s main magnetic 
field changes slowly in time (Bullard et  al. 1950; Hide 
1967; Bloxham and Gubbins 1985; Jackson et  al. 2000; 
Lund 2018). This change, called the secular variation 
(SV), originates dominantly from the Earth’s iron-rich 
fluid outer core that is vigorously convecting, driven by 
thermo-chemical buoyancy released from Earth’s secular 
cooling and differentiation (geodynamo) (e.g. Lund and 
Olson 1987; Braginsky and Roberts, 1996). Over the past 
25 years, great progress has been made in numerically 
modeling the geodynamo (Glatzmaier and Roberts 1995; 
Kagyama and Sato, 1997; Kuang and Bloxham 1997; 
Christensen et  al. 2001; Jones et  al. 2011; Matsui et  al. 
2016). These models can reproduce much of the quali-
tative aspects of the Earth’s magnetic field (Christensen 
et al. 2010), including dipole dominance, westward drift 
(Aubert et  al. 2013) and occasional reversals (Olson 

2007). Although it remains computationally prohibitive 
to simulate the geodynamo in the parameter regimes 
appropriate for the Earth’s core, the asymptotic proper-
ties emerged from numerical solutions with wide range 
of dynamo parameter values open the door for quantita-
tive applications of numerical models to the geomagnetic 
field (e.g. Christensen and Aubert 2006; Christensen et al. 
2010; Aubert and Fournier 2017; Kuang et al. 2017).

One such application is to use a numerical model to 
predict geomagnetic SV on time scales of several years 
and longer, if proper initialization is made using data 
assimilation techniques, as is done in numerical weather 
prediction (NWP). Forecast results from this geomag-
netic data assimilation approach have already been used 
as predictive field candidates for previous IGRF models 
(Kuang et al. 2010; Fournier et al. 2015).

Obviously, this approach is different from other SV 
forecasts made without utilization of dynamo mod-
els. For example, Olsen, et  al. (2010) modeled the time 
dependence of the Gauss coefficients with order 6 
B-splines so that the predictive SV for 2010-2015 can be 
extrapolated from the coefficients derived from obser-
vations prior to 2010. While utilization of geodynamo 

Open Access

*Correspondence:  tangborn@umbc.edu
1 Joint Center for Earth Systems Technology, University of Maryland 
Baltimore County, Baltimore, MD, USA
Full list of author information is available at the end of the article



Page 2 of 14Tangborn et al. Earth, Planets and Space           (2021) 73:47 

models can take advantage of adding dynamically con-
sistent motional induction in the outer core to forecast 
the SV, it also carries additional complications, such as 
model bias that results from the mismatch between the 
parameter values used in the models and those appropri-
ate for the Earth’s core, and propagation of observational 
errors in both time and space. These difficulties have 
been analyzed through assimilation experiments with 
simplified systems (Sun et al. 2007; Fournier et  al 2007) 
and observation system simulation experiments (OSSEs) 
(Liu et  al 2007; Aubert and Fournier, 2011; Fournier, 
2013). It is expected that improvements to both modeling 
and assimilation techniques will make geomagnetic fore-
cast a growing contributor of the IGRF candidate models.

In this paper, we report our mean SV forecast for the 
period from 2020 to 2025. This effort differs from our 
earlier work for IGRF candidate predictive field model 
(Kuang et  al. 2010) in two major areas: we assimilate 
Gauss coefficients from the CM6 geomagnetic field 
model (Sabaka et  al in this special issue) for the period 
from 2000 to 2019; and the error covariance in our assim-
ilation is determined through a large ensemble of assimi-
lation solutions, and is updated in each analysis cycle. 
The two improvements can help produce more accurate 
SV forecasts and uncertainty estimates, since, for exam-
ple, the utilization of a single field model can avoid any 
potential disagreement in different field models that may 
lead to inconsistent observation error estimates, and 
because the time varying error covariance can provide 
more consistent analysis for each cycle.

This paper is organized as follows: the algorithm of 
our forecasts is given in Section 2; testing and validation 
are presented in Section 3, followed by the forecasts and 
discussion.

2. Geodynamo model and data assimilation 
algorithm
The geomagnetic data assimilation system used for our 
SV forecasts is the NASA Geomagnetic Ensemble Mod-
eling System (GEMS). It consists of a numerical geody-
namo model (Kuang and Bloxham 1999; Kuang and Chao 
2003), an ensemble Kalman filter (Evensen 2009; Sun and 
Kuang 2015). The model solves a set of nonlinear mag-
netohydrodynamic equations in a spherical shell domain. 
Details of the model are given in Kuang and Bloxham 
(1999), Kuang and Chao (2003) and Jiang and Kuang 
(2008). The core state in this model is defined with the 
fluid velocity field v , the magnetic field B and the relative 
density anomaly �ρ that arises from temperature varia-
tions. These state variables are described by spherical 
harmonic expansions in the co-latitude θ and the longi-
tude φ , with the spherical harmonic coefficients given on 
discrete radial grid points. If we denote by x the vector of 

these coefficients, then the dynamo system can be sym-
bolically represented as

where M includes all linear and nonlinear model opera-
tors. GEMS employs a sequential ensemble Kalman 
filter (EnKF), described below, which is the result of 
many years of development that started with a simple 
one dimensional system (Sun et  al. 2007) and an opti-
mal interpolation (OI) system (Kuang et al. 2008, 2009). 
These systems have shown how geomagnetic data assimi-
lation can be used to estimate optimal geodynamo model 
parameters and geomagnetic field model uncertainty 
(Kuang et  al. 2010; Tangborn and Kuang 2015, 2018). 
This was done by running assimilation experiments with 
various parameter values and uncertainty estimates, 
and comparing the resulting forecasts with geomag-
netic field models. In the present work, the model uses 
free-slip boundary conditions for the velocity field at the 
inner core boundary (ICB) and the core mantle boundary 
(CMB), and fixed-flux boundary conditions for tempera-
ture at the ICB and the CMB. In our geodynamo model, 
there is also a 20-km thick electrically conducting layer, 
called the D′′-layer, at the base of the mantle, with a con-
ductivity an order of magnitude lower that of the outer 
core. The D′′-layer is homogeneous in the present study. 
Since the magnetic field is no-longer a potential field in 
this layer, the SV in the layer differs from those of the 
potential field (Greff-Lefftz and Legros 1995; Kuang et al. 
2017). In our model, the Rayleigh number is Ra = 1811 
and the Rossby number is Ro = 1.25× 10−6 . A single 
magnetic Prandtl number Pr = 1 is used throughout.

The observations used for GEMS are the Gauss coef-
ficients {gml , hml } (where l and m are spherical harmonic 
degrees and orders, and m ≤ l ) from geomagnetic field 
models. They represent only the internally generated mag-
netic field. In the outer core and the D′′-layer, the magnetic 
field can be decomposed into the toroidal ( BT ) and the 
poloidal ( BP ) components:

where r̂ is the radial unit vector, and TB , PB are the toroi-
dal and poloidal scalars and are described in GEMS as

where {Ym
l } are the orthonormal spherical harmonic 

functions, and C.C. denotes the complex conjugate 
part of the expansion (similar expansions are also 
made for v and �ρ ). At the top of the D′′-layer, i.e. at 

(1)
∂x

∂t
= M(x)

(2)B = ∇ × (TBr̂)+∇ × ∇ × (PBr̂) = BT + BP

(3)

[

Pb
Tb

]

=

L
∑

l=1

l
∑

m=0

[

bml (r, t)
jml (r, t)

]

Ym
l (θ ,φ) + C .C . ,
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r = rd = 3520km , the toroidal field vanishes, i.e. jml = 0 ; 
but the poloidal field coefficients bml  can be matched with 
the observations

where rs is the mean Earth surface radius, and Lobs is the 
highest degree of the observed geomagnetic field.

In the rest of this paper, we denote the poloidal spec-
tral coefficients in (4) that are derived from the field 
models by (bml )

o and the forecast (bml )
f  . The observa-

tions yo =
[

(bml )
o
]

 are assimilated into the forecast xf  at 
analysis time ta to produce the analysis xa:

where H is the observation operator matrix and K is the 
gain matrix, defined by:

where Pf  is the forecast error covariance and R is the 
observation error covariance. The analysis xa is then used 
as the initial state of the dynamo system (1) for the next 
forecast. The forecast error covariance is computed from 
an ensemble of forecasts with Nens members (Sun and 
Kuang 2015)

where µf
x is the ensemble mean forecast state. In our 

forecasts here, we take only the diagonal part of the 
observation error covariance R and is defined simply as 
the estimated variance of the field models, ((σm

l )o)2 . The 
time dependent model for the observation error standard 
deviation is

where α = 0.1 before 1900, 0.001 ≤ α ≤ 0.1 with an expo-
nential decrease from 1900 to 2000, and where α = 0.001 
afterwards. This observation error model accounts for 
the increased accuracy of geomagnetic models at later 
times, as well as the higher relative errors for the higher 
degrees. It has been tested through a number of numeri-
cal experiments with the goal of minimizing forecast 
errors, and is therefore regarded as an appropriate esti-
mate relative to our geodynamo forecasts.

The geomagnetic field models that are used to pro-
vide the Gauss coefficients for our assimilation, and 
their maximum degree assimilated ( Lobs ) are shown in 
Table 1.

(4)
bml (rd) = (−1)m

r2s
l

√

2π

2l + 1

(

rs

rd

)l
(

gml − ihml
)

for m ≤ l ≤ Lobs,

(5)xa(ta) = xf (ta)+ K
[

yo −H · xf (ta)
]

(6)K = PfHT
[

HPfHT + R
]−1

(7)Pf = �(xf − µ
f
x)(x

f − µ
f
x)

T )�

(8)(σm
l )o = α||bml ||(l)(l + 1)/2

Details of gufm1, CM4 and CM6 can be found in 
Jackson et  al. (2000), Sabaka et  al. (2004), and Sabaka 
et al. (2020) respectively. We only summarize here that 
the latter model uses a “comprehensive inversion” tech-
nique which co-estimates parameters for the Earth’s 
internal field, using estimates of systematic and random 
errors, so as to produce an optimal separation of the 
internal and external fields. The values of L obs for each 
model here decrease further back in time, so as to avoid 
introducing errors from the smoothing or regulariza-
tion in the earlier models. These values may in fact not 
be optimal, but our previous experimentation (Tang-
born and Kuang 2018) has shown that reducing them 
for the earlier field models can lead to more accurate 
forecasts in the modern era.

The ensemble is initialized in 1590 using a long free 
model run from which uncorrelated ensemble mem-
bers are generated, and subsequent analyses are com-
puted every 20 years until 2000, when the analysis 
cycle is reduced to one year (the start of the forecast 
period using the CM6 model). Pf  is updated with the 
forecasts at each analysis time ta , but H is only updated 
if different Lobs is chosen for making the analysis. We 
use an ensemble of 400 for these experiments, and we 
have found this size to result in forecast accuracy only 
slightly better than smaller ensembles of 200 or 256, 
and very similar to an ensemble of 512. Any further 
increases in the ensemble size would result in larger 
computational costs that outweigh small increases in 
accuracy.

Geomagnetic forecasts using a geodynamo model will 
naturally contain significant forecast errors due to mis-
matches in the dynamo parameter values and numerical 
approximations, and these can grow significantly during 
a multi-year forecast. But because these error sources 
develop on relatively long timescales, we can assume that 
the model error itself varies on time scales much longer 
than, e.g. the 5-year forecast period. This assumption 
allows us to implement a bias correction scheme for the 
SV prediction by producing a set of staggered forecasts, 
and then take differences between them to reduce sub-
stantially the bias (Kuang et al. 2010). The forecast y, of 
the observed poloidal field is defined as the projection of 
the state vector, xf  onto the observation space:

Table 1 Geomagnetic field models and  the  highest 
degrees used in assimilation

Observations Period Lobs

gufm1: 1590–1960 4

CM4: 1960-2000 8

CM6: 2000-2019 13
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Fig. 1 SV validation forecasts (dashed line) and CM6 values (solid line) for 2010-2015 for scaled Gauss coefficients l = 1,m = 1 (a) and l = 2,m = 2 
(b) ( Gm

l  , Hm
l  ) normalized using g01 from 2009. The resulting SV values are shown in Table 2
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Fig. 2 Same as Fig. 1 but for l = 3,m = 2 and l = 5,m = 3
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Table 2 SV for 2010-2015 validation experiments from CM6, the GEMS EnKF, and extrapolations of CM6 from 2009-2010

L m CM6 Extrapolation Forecast

1 1 16.9980 − 29.6062 16.8822 −28.9857 16.87 −36.28

2 0 −10.0399 0.0000 −11.5499 0.0000 −4.39 0.00

2 1 −2.7965 −27.4081 −3.9213 −22.8400 −2.18 −26.57

2 2 1.6279 −13.2957 2.7249 −13.3551 2.43 −13.71

3 0 2.2055 0.0000 1.1431 0.0000 3.86 0.00

3 1 −5.1435 9.0073 −3.9088 8.7466 0.78 8.68

3 2 −1.2684 −1.3568 −2.8669 −2.8496 −1.33 −2.37

3 3 −10.3680 −0.3712 −7.7075 −1.9579 −7.70 −2.22

4 0 −1.0547 0.0000 −1.3856 0.0000 2.95 0.00

4 1 0.9199 −0.5882 1.9925 0.2234 1.41 1.34

4 2 −9.2351 4.5314 −8.9866 3.0664 −10.48 3.53

4 3 4.3963 3.2985 4.4430 3.7606 5.91 2.64

4 4 −3.8282 −3.9203 −2.0291 −0.7498 −2.00 −1.84

5 0 −0.3896 0.0000 −0.5386 0.0000 1.21 0.00

5 1 0.5725 0.4570 0.5931 0.4944 1.48 0.29

5 2 −1.5870 1.6027 −1.5356 1.4798 −0.63 1.01

5 3 0.0359 −0.2325 −0.7754 0.8731 −1.72 1.46

5 4 1.1619 3.2020 1.2403 3.7308 −0.90 3.93

5 5 2.4740 −0.1790 1.3844 −0.6087 1.73 0.04

6 0 −0.6603 0.0000 −0.2814 0.0000 0.19 0.00

6 1 −0.2173 0.0588 −0.2364 −0.0351 −0.55 0.00

6 2 −0.6162 −2.1738 −0.3307 −2.2186 −0.73 −2.39

6 3 2.3154 −0.5691 2.0345 −0.4257 1.62 −0.52

6 4 −1.2210 −0.0776 −1.5997 −0.5149 −1.91 −0.12

6 5 0.0105 0.8680 −0.1500 0.6775 −0.32 0.39

6 6 1.4449 1.3886 1.7602 0.5885 2.10 1.26

7 0 0.1644 0.0000 0.1883 0.0000 0.70 0.00

7 1 −0.1965 0.7082 −0.1043 0.5869 0.28 0.12

7 2 −0.4427 0.3374 −0.5881 0.2778 −0.74 0.47

7 3 1.3211 −0.1861 1.3548 −0.1108 0.72 −0.13

7 4 0.2199 −0.1032 0.2192 −0.1536 −0.44 −0.24

7 5 −0.2284 −0.7514 0.0913 −0.7550 0.27 −0.91

7 6 −0.9005 0.0212 −0.8291 −0.3096 −1.34 −0.34

7 7 0.3188 0.1894 0.5567 0.2978 0.61 0.08

8 0 −0.0753 0.0000 −0.1036 0.0000 −0.12 0.00

8 1 0.1342 −0.1632 0.1065 −0.0524 0.07 0.17

8 2 −0.4481 0.3643 −0.5856 0.1758 −0.64 0.00

8 3 0.4864 0.2678 0.3043 0.4529 0.58 0.51

8 4 −0.2490 0.5588 −0.2602 0.4869 −0.08 0.33

8 5 0.3437 −0.1072 0.2841 0.0695 0.45 0.12

8 6 0.1812 −0.2571 0.2611 −0.1151 0.20 −0.15

8 7 −0.3853 0.3267 −0.5167 0.3988 −0.47 0.64

8 8 0.2976 0.1551 0.2287 0.3353 0.33 0.33
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We define the forecast error, ǫ(t) , as the difference 
between the forecast state, yf (t) , and the true state, yt(t):

The forecast error is a combination of the model error 
and the growth of initial state errors, but we assume that 
the model errors remain the largest component. Con-
sider a forecast that is initialized from an analysis at time 
ta and produces a forecast at time ta + δt . We estimate 
the SV from the change in the geomagnetic field after 
time δt:

(9)yf = Hxf

(10)yf (t) = yt(t)+ ǫ(t).

The difference between these two sequences was shown 
to approximately remove the forecast error (Kuang et al. 
2010), if the change in the model error between ta + δt 
and t̃a + δt is small compared to the SV. So we can cali-
brate the SV forecast with the following scheme

where τa = |ta − t̃a| = 1year , and t = ta + δt is the 
time of the SV forecast. We take δt = 5 years for these 
forecasts.

The details of the bias correction scheme can be found 
in Kuang et al. (2010).

3. Validation Experiments
We have validated the methodology by computing SV 
forecasts for the period 2009-2015. Two forecast experi-
ments were conducted using the same assimilation run 
that started in 1590, and from 2000 it is carried forward 
with one year forecast and analysis cycles. In the first 
experiment (A), the assimilation is computed from 2000 
to 2008; the analysis in 2008 is then used to make fore-
casts for the period 2009-2014. The second experiment 
(B) is similar, but the assimilation is computed from 2000 
to 2009; and the analysis in 2009 is used to make the fore-
cast for the period 2010-2015. The final SV forecasts are 
then performed with these two staggered forecasts:

The SV for the Gauss coefficients ( gml , hml  ) are then com-
puted as follows. We show the details for gml  , while hml  
follow the same procedure. In our assimilation, we utilize 
the scaled coefficients

(12)yf (ta + δt) = yt(ta + δt)+ ǫ(ta + δt)

yf (t̃a + δt) = yt(t̃a + δt)+ ǫ(t̃a + δt)

(13)˜̇yf (t) =
1

τ a

[

Hxf (ta + δt)−Hxf (t̃a + δt)
]

(14)˜̇yAB(tf ) =
[

y2(tf + τa)− y1(tf )
]

/τa

(15)Gm
l = gml /g01
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Fig. 3 Mean square SV 2009-2015 vs. harmonic degree for forecast 
(dashed line), CM6 (solid) and CM6 extrapolation from 2009-2010 
(dotted)

Table 3 Staggered forecast experiments

ta tf1 tf2 tf3 tf4 tf5 tf6

Exp.A 2017 2018 2019 2020 2021 2022 2023

Exp.B 2018 2019 2020 2021 2022 2023 2024

Exp.C 2019 2020 2021 2022 2023 2024 2025

(11)yf (ta + δt)− ya(ta) = yt(ta + δt)− yt(ta)+ ǫ(ta + δt)− ǫ(ta) ≈ (ẏ + ǫ̇)δt

where ẏ is the SV and ǫ̇ is the SV error growth rate. We 
can reduce this error term by making use of the assump-
tion of slowly varying model error and considering stag-
gered forecasts that begin at two slightly different analysis 
times ta and t̃a , where |ta − t̃a| < δ . This gives us forecasts 
at times ta + δt and t̃a + δt in terms of the true state:
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for the SV forecasts. This is done because the parameters 
in the geodynamo model are far from those in the Earth’s 
core, and assimilating g01 would force the model into a 
regime that the current model grid cannot resolve. We 
first compute Gm

l  from our forecasts, and their time vari-
ation Ġm

l  via (14). The SV Gauss coefficients can then be 
calculated via

We then approximate the axial dipole coefficient g01 and 
its time derivative ġ01 in (16) with the values from CM6 
(Sabaka et al. 2020) as follows:

The formulations (13)–(17) are the basis for the fore-
casts of the mean SV for the period 2010-2015, and 
are compared with CM6 for each degree l and order m 
up to l = 8 . In this case the years in A correspond to τ̃ 
and those in B to τ . Some examples are shown in Figs. 1, 
which demonstrate the forecast field, ˜̇yf  , for different 
l, m. The slope of each dashed line is the scaled forecast 
from (15) while the solid line is the scaled SV computed 
from CM6 coefficients. The coefficients shown here are 
representative of the range in accuracy obtained by the 
ensemble forecast and bias correction algorithm. The 
(l = m = 1) and (l = m = 2) coefficients in Fig. 1 are typi-
cal of coefficients that predict the CM6 field model with a 
higher degree of accuracy than others. The (l = 3,m = 2) 
in Fig.  2(a) is much less accurate accurate case (for gml  ) 
with a slope of opposite sign, while (l = 5,m = 3) has a 
typical mid-range accuracy for the dimensionless scaled 
SV forecasts. The final dimenional SV values determined 
by the validation calculations are shown in Table 2 These 
bias corrected SV forecasts are computed each year out 
to 2015, and the five year time average SV can be com-
puted from them.

We summarize the SV forecasts by plotting mean 
square SV fields ( MSSV  ), shown in Fig. 3 for the EnKf 
forecast (dashed line), CM6 (solid line) and an extrapo-
lation of CM6 from 2009 (dotted line) as a function of 
degree L. The mean square SV is computed using

(16)ġml =
d

dt
(g01G

m
l ) = g01 Ġ

m
l + ġ01G

m
l .

(17)

ġ01 =
[

(g01 )
CM6(2010)− (g01 )

CM6(2009)

]

/(1year),

g01 (2009+ t) = (g01 )
CM6(2009)+ tġ01 .

Here it can be seen that the EnKF forecasts are more 
accurate than the extrapolated SV for L = 2 and shows 
similar accuracy for L = 3, 4 , while the accuracy for 
L = 5 to L = 8 is significantly worse. The individual coef-
ficients for these three cases are given in Table 2. We dis-
cuss the possible sources of error and potential solutions 
in the Summary and Conclusions section.

4. Mean SV for 2020–2025
We repeat the same method to make the SV forecast for 
the period from 2020 to 2025, except that we use three 
staggered forecasts, again using an ensemble of 400 
members each. Starting from the analysis computed for 
2000, we have continued the assimilation and forecast 
(with the annual analysis cycle) forward in time for three 
sets of experiments, with the final analysis times in 2017, 
2018 and 2019, and the forecasts are performed in the 
next six years. The experiments, labeled A, B and C; are 
summarized in Table 3.

With these three sets of forecasts, we can use up to the 
following three different combinations of the differences 
between two staggered forecasts:

where again τa = 1 year and the AC experiments are 2 
years apart. The SV for the forecast Gauss coefficients is 
computed as before, along with the SV for CM6.

The bias corrected SV forecast for 2025 is a combina-
tion of the different forecasts, BA, CB or CA from (19). 
There are two main reasons for our last analysis ending 
at 2019: one is that the predictive field from CM6 for 
2020 will be used as the initial condition for our forecast 
calibration; the other is the SV from CM6 for the period 
2019-2020

can be used to estimate our model bias. Some repre-
sentative forecasts that demonstrate the bias correction 

(18)MSSV =

l
∑

m=0

(l + 1)2

(2l + 1)

[

(ġml )2 + (ḣml )
2
]

(19)
˜̇yBA = (yB − yA)/τa,
˜̇yCB = (yC − yB)/τa,
˜̇yCA = (yC − yA)/(2τa),

(20)
( ˙gml )CM6 =

[

(gml )CM6(2020)− (gml )CM6(2019)

]

/(1year)

Fig. 4 Bias corrected forecasts of Gauss coefficients from differences between forecast sequences that start in 2016, 2017 and 2018. Each 
bias corrected forecast starts in the year of the later sequence. The solid line shows the 2020 forecast from the Goddard candidate model for 
IGRF-2020-SV, while the dashed (experiment A - experiment B), dash-dot (B-C) and dotted (A-C) lines show the bias corrected forecasts from our 
assimilation that use differences between the different forecast series. Panel a shows the coefficients for l = 1 and m = 1 , while panel b shows the 
coefficients for l = 2 , m = 1 . Each panel shows the the bias corrected forecasts for Gm

l  (upper) and Hm
l  (lower) from Eq. 19

(See figure on next page.)
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Fig. 5 Same as Fig. 4, except panel (a) shows the coefficients for l = 3 and m = 2 , while panel (b) shows the coefficients for l = 3 and m = 3
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Fig. 6 Same as Fig. 4, except panel (a) shows the coefficients for l = 6 and m = 4 , while panel (b) shows the coefficients for l = 6 , m = 5
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approach and comparison to the CM6 2020 forecast are 
shown in Figs.  4, 5, 6. Each figure consists of the three 
uncorrected forecasts for gml  and hml  , along with the 
2017-2020 forecast from CM6, on top (A,B and C) and 
the bias corrected forecasts below (BA, CB and CA). The 
corrected forecasts in each second set in each figure are 
combinations of the uncorrected forecasts, as described 
in (19). The slope of each line is the time varying SV, and 
we confirm the consistancy of each of the experiments 
with the CM6 SV in each case. For example, Fig.  4(a) 
shows the forecasts for (l,m) = (1, 1) , and the SV for g11 
requires a negligble correction since the three experi-
ments have essentially the same SV. The SV for h11 shows 
a small change from the bias correction and the AB cor-
rection is used since its slope is closest to the CM6 esti-
mate. The other two SV estimates are then discarded.

The final calibrated mean SV for the period 2020–2025 
is computed as the following: first, the optimal annual SV 
forecasts ġm(f )

l  are made from our data assimilation sys-
tem for 2020-2024, with the same procedure discussed in 
the previous section. Then, the time varying Gauss coef-
ficients are computed via

Finally, the mean annual SV Gauss coefficients are deter-
mined via

The uncertainties are determined by the standard devia-
tion of the forecast ensemble. The final results are given 
in Table 4 along with the associated uncertainties, which 
are the ensemble standard deviations from the ensemble 
forecast.

5. Summary and Conclusions
We have used an EnKF to forecast the geomagnetic secu-
lar variation (Table  4) for the time period 2020–2025, 
using 400 ensemble members. The development of 
ensemble forecasting techniques has contributed to the 
SV forecasts, particularly due to the ability to estimate 
uncertainty, which is newly available with this geomag-
netic forecast. The validation forecast for 2015 shows that 
the SV forecasts compare favorably to the SV from CM6 
(relative to an extrapolated SV from 2009-10) for degrees 

(21)

g
m(f )
l (2020+ k) =(gml )CM6(2020)

+
∑

l=0,k−1

ġ
m(f )
l (2020+ k)× (τa),

for k = 1, 2, ·, 5.

(22)ġ
m(f )
l =

[

g
m(f )
l (2025)− g

m(f )
l (2020)

]

/5.

Table 4 Table of the mean SV Gauss coefficients for gm
l
,hm

l
 

(with the  unit nT/year). The axial dipole SV ġ0
1

 is  given  by 
Sabaka et al. (2020)

l m ġ ḣ ġ uncert ḣ uncert

1 0 4.78 0.00 0.0056 0.0000

1 1 8.18 −32.26 0.0053 0.0084

2 0 −5.84 0.00 0.0054 0.0000

2 1 −0.50 −33.51 0.0073 0.0076

2 2 −3.87 −18.41 0.0042 0.0063

3 0 6.49 0.00 0.0057 0.0000

3 1 3.41 6.05 0.0038 0.0029

3 2 4.72 0.44 0.0042 0.0040

3 3 −10.90 −0.87 0.0034 0.0033

4 0 −1.17 0.00 0.0023 0.0000

4 1 −1.31 0.30 0.0029 0.0033

4 2 −6.34 6.82 0.0016 0.0022

4 3 4.91 4.66 0.0031 0.0030

4 4 −4.07 −5.10 0.0019 0.0018

5 0 −0.31 0.00 0.0028 0.0000

5 1 −0.17 0.42 0.0014 0.0013

5 2 −0.78 3.19 0.0016 0.0019

5 3 −0.08 0.46 0.0013 0.0012

5 4 2.57 3.20 0.0020 0.0012

5 5 1.24 −0.30 0.0010 0.0011

6 0 −0.60 0.00 0.0007 0.0000

6 1 −0.22 0.18 0.0010 0.0010

6 2 −0.94 −1.70 0.0008 0.0007

6 3 2.22 −0.65 0.0011 0.0010

6 4 −1.63 0.95 0.0008 0.0007

6 5 −0.11 0.08 0.0007 0.0006

6 6 0.87 0.82 0.0007 0.0007

7 0 −0.09 0.00 0.0006 0.0000

7 1 0.20 0.45 0.0005 0.0004

7 2 −0.28 0.49 0.0006 0.0005

7 3 0.91 −0.81 0.0004 0.0004

7 4 −0.55 0.05 0.0008 0.0006

7 5 −0.61 −1.01 0.0003 0.0003

7 6 −0.84 0.25 0.0004 0.0005

7 7 0.83 0.33 0.0004 0.0003

8 0 0.05 0.00 0.0003 0.0000

8 1 0.15 −0.36 0.0003 0.0003

8 2 −0.30 0.47 0.0003 0.0002

8 3 0.57 −0.02 0.0003 0.0004

8 4 −0.21 0.64 0.0003 0.0003

8 5 0.52 0.19 0.0003 0.0003

8 6 0.09 −0.32 0.0002 0.0002

8 7 −0.46 0.56 0.0003 0.0003

8 8 0.38 −0.08 0.0002 0.0002
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2-4 (degree 1 is excluded because the forecasts are scaled 
by (g01 )

o ), but show poorer accuracy for degrees 5-8. The 
lower accuracy in the higher degree terms is likely due to 
shorter timescales for model bias for these coefficients, 
which could violate the assumption that the model bias 
is constant over a period of several years. This would 
make it difficult for the model to predict geomagnetic 
jerks (Aubert and Finlay 2019). The uncertainty estimates 
provided with the candidate model are seen to be too 
low, based on the validation experiment, in part due to 
limitations on the constant bias assumption. However, 
the 2020-25 SV used a series of 3 forecasts which helped 
eliminate outlier forecasts, which benefited the final SV 
forecast, whereas the 2010-2015 forecast only used 2 
forecasts. While this is the first attempt at an SV forecast 
using this EnKF system, we expect that improvements 
can be made to the forecast in the future. In particular, 
we plan to gradually increase the range of geodynamo 
parameter values, and explore alternate timescale rela-
tionships between the dynamo model and the geomag-
netic field models.

The large ensemble has placed a constraint on this 
forecast, because at present it is computationally chal-
lenging to run the ensemble assimilation system for 
7000 years, as was done in Kuang et al. (2010) using an 
OI assimilation algorithm. Future work will investigate 
the use of localization schemes that would enable the 
use of a much smaller ensemble that could be run for 
longer time periods.
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