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Abstract 

This study presents results of mapping three-dimensional (3-D) variations of the electrical conductivity in depths 
ranging from 400 to 1200 km using 6 years of magnetic data from the Swarm and CryoSat-2 satellites as well as from 
ground observatories. The approach involves the 3-D inversion of matrix Q-responses (transfer functions) that relate 
spherical harmonic coefficients of external (inducing) and internal (induced) origin of the magnetic potential. Transfer 
functions were estimated from geomagnetic field variations at periods ranging from 2 to 40 days. We study the effect 
of different combinations of input data sets on the transfer functions. We also present a new global 1-D conductivity 
profile based on a joint analysis of satellite tidal signals and global magnetospheric Q-responses.
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Introduction
Understanding 3-D physical properties of the Earth’s 
mantle on a global scale is an outstanding problem of 
modern geophysics. There exist only two direct methods 
that can determine the distribution of physical properties 
in the mantle: seismic and electromagnetic (EM) meth-
ods. Seismic tomography provides a variety of global 3-D 
velocity models (Debayle and Ricard 2012; Lekic and 
Romanovicz 2011; Ritsema et al. 2011; Schaeffer and Leb-
edev 2013, among others), but the interpretation of seis-
mic velocities alone leads to ambiguities. Additionally, 
seismic velocities are only weakly sensitive to the hydro-
gen content (Buchen et al. 2018; Fei et al. 2017; Schulze 
et al. 2018, among others).

The goal of EM sounding methods is to identify spa-
tial variations of the electrical conductivity in the 

Earth’s interior. Since the conductivity is sensitive to 
temperature, chemical composition and hydrogen con-
tent (Karato and Wang 2013; Khan 2016; Yoshino 2010, 
among others) its knowledge helps understanding the 
Earth’s origin as well as its past evolution and recent 
dynamics. Constraining the 3-D conductivity distribu-
tion in the mantle is conventionally performed by means 
of Geomagnetic Depth Sounding (GDS). Until now GDS 
studies most often rely on the long-period variations of 
magnetic field of magnetospheric origin coming from a 
global network of geomagnetic observatories. From these 
data local C-responses (Banks 1969) (see also Appendix 
A of this paper explaining the concept) are estimated at 
a number of periods and then inverted for mantle con-
ductivity. There are numerous studies (Chen et al. 2020; 
Khan et al. 2011; Munch et al. 2018; Schultz and Larsen 
1990; Zhang et  al. 2020, among others) that performed 
1-D inversions of local C-responses at a number of loca-
tions in order to detect lateral variations in the mantle 
conductivity.

Open Access

*Correspondence:  kuvshinov@erdw.ethz.ch
1 Institute of Geophysics, ETH Zurich, Sonneggstrasse, 8092 Zurich, 
Switzerland
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-4341-2123
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40623-020-01341-9&domain=pdf


Page 2 of 26Kuvshinov et al. Earth, Planets and Space           (2021) 73:67 

In addition, a few semi-global (Koyama et  al. 2006, 
2014; Shimizu et  al. 2010; Utada et  al. 2009) and global 
(Kelbert et al. 2009; Li et al. 2020; Semenov and Kuvshi-
nov 2012; Sun et al. 2015) 3-D mantle conductivity mod-
els have been derived by means of an inversion of local 
C-responses. A few comments on the recovered 3-D 
models are relevant at this point. First, due to limited fre-
quency band, local C-responses, and thus models based 
on them have limited sensitivity in the crust and upper 
mantle (Grayver et  al. 2017; Kelbert et  al. 2008; Püthe 
and Kuvshinov 2014). Second, the family of 3-D models 
produced until now are rather divergent. This discrep-
ancy is mostly due to the inherent strong non-uniqueness 
of the inverse problem arising from spatial sparsity and 
irregularity of data distribution, limited period range, and 
inconsistency of the assumed external field model, which 
is based on a too simplistic assumptions about the geom-
etry of the magnetospheric ring current. Indeed, there 
has long been evidence for a more complex structure and 
asymmetry of the magnetospheric source (Balasis and 
Egbert 2006; Luhr et al. 2017; Olsen and Kuvshinov 2004, 
among others).

To overcome the former problem, Püthe et  al. (2014) 
introduced a new type of transfer functions (TFs) that 
are capable of handling sources of arbitrary complexity. 
These TFs relate the expansion coefficients describing the 
source globally with a locally measured magnetic (or/and 
electric) field, hence these TFs are referred to as global-
to-local (G2L) TFs. Guzavina et  al. (2019) and Munch 
et  al. (2020) estimated and inverted “vertical magnetic” 
G2L TFs at several continental geomagnetic observato-
ries in terms of local 1-D conductivity distributions and 
revealed noticeable lateral variations in mantle conduc-
tivity. Note that the term “vertical magnetic” stresses the 
fact that G2L TFs under consideration relate the global 
expansion coefficients to the local vertical magnetic field 
component.

However, regardless of whether local C-responses 
or global-to-local transfer functions are used, the spa-
tially uneven distribution of observatories with only a 
few stations in oceanic regions precludes obtaining a 
cogent global 3-D model of mantle conductivity of uni-
form lateral resolution from observatory data. In con-
trast to ground-based data, satellite-borne measurements 
provide better spatio-temporal data coverage. With 
the Swarm satellite constellation mission (Olsen and 
Floberghagen 2018), the possibility of obtaining global 
images of 3-D mantle heterogeneities, especially in oce-
anic regions, was considered as attainable. Bearing this in 
mind, mapping 3-D electrical conductivity of the Earth’s 
mantle has been identified as one of the scientific objec-
tives of the Swarm satellite mission.

A major challenge when working with satellite data 
is the fact that, due to constantly moving platform, one 
cannot use the local response or global-to-local trans-
fer functions concepts discussed above. Instead, in the 
course of the Swarm mission preparation, two alternative 
approaches, both based on an inversion of the induced 
coefficients of a spherical harmonic (SH) expansion of 
the magnetic potential due to signals of magnetospheric 
origin, have been developed. Both the time-domain 
(Velimsky 2013) and the frequency-domain (Püthe and 
Kuvshinov 2013) approaches yield promising results in 
3-D model studies. However, a 3-D inversion of internal 
coefficients has an inherent shortcoming since it requires 
a precise description of the magnetospheric source, i.e., 
good knowledge of the time series of the inducing SH 
coefficients. However, in reality the source is inevitably 
determined with uncertainty. This may lead to artifacts in 
resulting 3-D mantle conductivity images.

Püthe and Kuvshinov (2014) presented the concept of 
an alternative 3-D inverse solution that alleviates this 
problem. The inversion scheme is based on an analy-
sis of array of transfer functions, hereinafter denoted as 
Q-matrix or matrix Q-response. The frequency-depend-
ent Q-matrix relates external (inducing) and induced SH 
coefficients of the magnetic potential describing the sig-
nals of magnetospheric origin (Olsen 1999). This scheme 
avoids complications with actual description of the 
source. Only the geometry of the source, namely the spe-
cific set of SH terms that are significant for its descrip-
tion, is assumed a priori (in analogy with the plane wave 
source geometry assumption in magnetotellurics). Data 
analysis also allows the researchers for a direct estima-
tion of uncertainties, which can be incorporated into the 
inversion scheme. Moreover, the approach permits the 
use of intermittent data, e.g., data from different satellite 
missions that are separated in time.

In this paper, we implement the matrix Q-responses 
concept to constrain the 3-D mantle conductivity distri-
bution using 6 years of satellite and observatory magnetic 
data. Most of the satellite data come from the Swarm 
mission, but we also exploit magnetic data from the 
Cryosat-2 satellite. As shown by Olsen et al. (2020), plat-
form magnetometer data like those from CryoSat-2 are 
a highly valuable augmentation to data from dedicated 
geomagnetic missions like CHAMP and Swarm. As we 
will see, Cryosat-2 data indeed allows us to improve the 
determination of inducing and induced SH coefficients 
discussed above.

The paper is organized as follows. In “Data” section, 
we shortly describe the ground-based and satellite mag-
netic data used in this study. In “Methodology” sec-
tion, we discuss the concept of matrix Q-responses and 
explain how these responses are numerically predicted. 
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Estimation of matrix Q-responses requires in its turn 
retrieving time series of SH inducing and induced coef-
ficients which is explained in “Estimating inducing and 
induced coefficients” section. Derivation of experimen-
tal matrix Q-responses from the recovered time series is 
presented in “Estimating matrix Q-responses” section. 
In “Obtaining background 1-D conductivity model” sec-
tion, we determine global 1-D conductivity profile which 
we use as starting and background conductivity distribu-
tion during 3-D inversion. “Obtaining 3-D conductivity 
model” section provides details of 3-D inverse solution 
and presents the results of the inversion. A summary and 
final remarks are given in “Concluding remarks” section. 
Finally in “Outlook” section, we discuss potential ways to 
improve the recovery of 3-D conductivity structures in 
the mantle. Four appendices detail some aspects of the 
paper.

Data
Observatory data
Hourly means of three components of magnetic field 
(vector data) from 161 worldwide distributed geomag-
netic observatories for the period 25 November 2013 
to 31 December 2019 were utilized for estimation of 
time series of SH inducing and induced coefficients. The 
observatory data had been checked for trends, jumps, 
spikes and other errors (Macmillan and Olsen 2013). Fig-
ure 1 shows the locations of these observatories.

Satellite data
Most of the satellite data come from the Swarm mission. 
The data include vector magnetic field measurements 
decimated to 1-min sampling rate from two of the three 
Swarm satellites, namely Alpha and Bravo, for the same 
time interval as for the observatory data. Data from the 
third satellite, Charlie, that flies nearby Alpha are not 
included into the analysis since this data set would be 
significantly redundant to that from Alpha, at least from 
the GDS perspective. Additionally, we used 5 years (25 

November 2013 to 31 December 2018) of calibrated 
1-min data from the CryoSat-2 satellite (Olsen et  al. 
2020). Note that satellites move with a speed of ∼ 7.7 
km/s, and thus 1-min temporal sampling corresponds to 
∼ 460 km spatial interval.

Methodology
Concept of matrix Q‑responses
We begin by stating Maxwell’s equations in the frequency 
domain

where �B ≡ �B(�r,ω) and �E ≡ �E(�r,ω) are the Fourier trans-
forms of the magnetic and electric fields, respectively; 
�r = (r,ϑ ,ϕ) with r, ϑ and ϕ being distance from Earth’s 
center, colatitude and longitude; and ω = 2π/T  is angu-
lar frequency with T as period. �jext ≡ �jext(�r,ω) is the 
Fourier transform of an impressed (extraneous) source 
current density. σ(�r) is the conductivity distribution in 
the media and µ0 is the magnetic permeability of free 
space. This formulation neglects displacement currents, 
which can be ignored in the considered period range of 
hours and longer. Also note that we adopted the Fourier 
convention

In a source-free region above the conducting Earth, but 
below the region enclosed by the current �jext (in our case 
the magnetosphere), Eq. (1) reduces to ∇ × �B = 0 . There-
fore, �B is a potential field and can be written as a gradient 
of a scalar magnetic potential V, i.e.,

Since �B is solenoidal, i.e., ∇ · �B = 0 , V satisfies Laplace’s 
equation ∇2V = 0 , and can be represented as sum of 
external (inducing) and internal (induced) parts,

where both parts are expanded in series of spherical har-
monics (SH):

(1)
1

µ0
∇ × �B = σ �E +�jext,

(2)∇ × �E = iω�B,

(3)f (t) =
1

2π

∞
∫

−∞

f̃ (ω)e−iωtdω.

(4)�B = −∇V .

(5)V = V ext + V int,

(6)V ext(�r,ω) = a
∑

n,m

εmn (ω)

( r

a

)n
Ym
n (ϑ ,ϕ),

Fig. 1  Location of 161 ground magnetic observatories used in this 
study
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Here, a = 6371.2  km is Earth’s mean radius, εmn (ω) and 
ιlk(ω; σ) are the SH coefficients of the inducing and 
induced parts of the potential, respectively, and Ym

n  is the 
spherical harmonic of degree n and order m,

with P|m|
n (cosϑ) being the Schmidt quasi-normalized 

associated Legendre function of degree n and order |m|. 
For brevity, we will use the convention

where Next and Nint are the maximum degree of inducing 
and induced coefficients, respectively. Further note that 
in Eq.  (7) we explicitly specify that V int and ιmn  depend 
on subsurface conductivity σ , and in Eqs.  (6)–(7) we 
use different indices for external (inducing) and internal 
(induced) coefficients to account for the Earth’s 3-D con-
ductivity distribution. In contrast, for a 1-D Earth model 
(that is, conductivity depends only on depth), every 
inducing coefficient produces exactly one induced coeffi-
cient of the same degree and order, and these coefficients 
are linearly related through the scalar Q-response defined 
as

Further, Qn is independent of the order m (e.g., Bailey 1969) 
and can be calculated analytically using appropriate recur-
rence formulas. Based on the Srivastava (1966) formalism, 
Parkinson (1983) presents such formulas for layered spheri-
cal Earth’s model with piece-wise constant conductivity. 
There also exist recursions for other layered Earth’s mod-
els, for example, for a conductivity distribution that obeys 
a power law within each layer (cf. Kuvshinov and Semenov 
2012).

It follows from Eqs. (4)–(10) that the magnetic field above 
or on the surface of the Earth ( r ≥ a ) can be written as

(7)

V int(�r,ω; σ) = a
∑

k ,l

ιlk(ω; σ)
( r

a

)−(k+1)
Y l
k(ϑ ,ϕ).

(8)Ym
n (ϑ ,ϕ) = P|m|

n (cosϑ)eimϕ ,

(9)
∑

n,m

=

Next
∑

n=1

n
∑

m=−n

and
∑

k ,l

=

Nint
∑

k=1

k
∑

l=−k

,

(10)ιmn (ω; σ) = Qn(ω; σ)ε
m
n (ω).

(11)

Br(�r,ω; σ) =−
∑

n,m

εmn (ω)

[

n
( r

a

)n−1

− (n+ 1)Qn(ω; σ)
(a

r

)n+2
]

Ym
n (ϑ ,ϕ),

Here �BH = (Bϑ ,Bϕ) and ∇⊥ denotes the angular part of 
the gradient, i.e.,

with �eϑ and �eϕ as the unit tangential vectors of the spheri-
cal coordinate system.

In case of a 3-D conductivity distribution, every induc-
ing coefficient εmn  generates an infinite series of induced 
coefficients ιlk ; thus we can write

where the Qlm
kn forms a two-dimensional array of trans-

fer functions we refer to as “matrix Q-response” or 
“Q-matrix” (Olsen 1999). The magnetic field above or on 
the surface of Earth reads

Modeling matrix Q‑responses
A 3-D inversion of observed (i.e., estimated from the 
data) matrix Q-responses involves multiple computations 
(predictions) of these responses for given 3-D conductiv-
ity models. This requires solving numerically Maxwell’s 
equations (1)–(2), and thus an elaboration on the form of 
current density term �jext . Since we work with the magne-
tospheric ring current as a source we can assume that the 
source current flows in a thin shell of infinitesimal radius 
a+ δr as δr → 0 (that is, just above the Earth’s surface), 
and the shell is surrounded by an insulator. Then �jext col-
lapses to the sheet current density �J ext . Since the current 

(12)

�BH (�r,ω; σ) =−
∑

n,m

εmn (ω)

[

( r

a

)n−1

+ Qn(ω; σ)
(a

r

)n+2
]

∇⊥Y
m
n (ϑ ,ϕ).

(13)∇⊥ = �eϑ
∂

∂ϑ
+ �eϕ

1

sin ϑ

∂

∂ϕ
,

(14)ιlk(ω; σ) =
∑

n,m

Qlm
kn (ω; σ)ε

m
n (ω),

(15)

Br(�r,ω; σ) =−
∑

n,m

εmn (ω)

[

n
( r

a

)n−1
Ym
n (ϑ ,ϕ)

−
∑

k ,l

(k + 1)Qlm
kn (ω; σ)

(a

r

)k+2
Y l
k(ϑ ,ϕ)

]

,

(16)

�BH (�r,ω; σ) =−
∑

n,m

εmn (ω)

[( r

a

)n−1
∇⊥Y

m
n (ϑ ,ϕ)

+
∑

k ,l

Qlm
kn (ω; σ)

(a

r

)k+2
∇⊥Y

l
k(ϑ ,ϕ)

]

.
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density is a solenoidal field, one can write �J ext in the form 
of a stream function �

where �er is the unit radial vector, and × stands for the vec-
tor product. The stream function � can be expanded in 
terms of the coefficients εmn  as (Schmucker 1985)

By substituting Eq. (18) into Eq. (17) the sheet current 
density �J ext reads

Note that �J ext described by Eq. (19) produces exactly the 
external magnetic field �Bext at the surface of the Earth 
(see Appendix G of Kuvshinov and Semenov (2012) for 
details). In particular, Bext

r  at the surface of the 3-D Earth’s 
is obtained from Eq. (15) as

and correspondingly, the induced part of the radial com-
ponent at the surface of the 3-D Earth reads

where �ra = (a,ϑ ,ϕ) . We can further define

as the inducing and induced parts of the radial compo-
nent (at r = a ) generated for a given 3-D conductivity 
distribution by spherical harmonic sources with unit 
amplitude εmn (ω) = 1 , namely

Since Bm,int
n,r = Bm

n,r − Bm,ext
n,r  , we compute (predict) the 

matrix Q-responses by making use of the orthogonality 
of the spherical harmonics Y l

k

(17)�J ext = −�er ×∇⊥� ,

(18)� = −
1

µ0

∑

n,m

2n+ 1

n+ 1
εmn (ω)Y

m
n (ϑ ,ϕ).

(19)�J ext =
1

µ0

∑

n,m

2n+ 1

n+ 1
εmn (ω) �er ×∇⊥Y

m
n (ϑ ,ϕ).

(20)Bext
r (�ra,ω) =−

∑

n,m

nεmn (ω)Y
m
n (ϑ ,ϕ),

(21)

Bint
r (�ra,ω; σ) =

∑

n,m

εmn (ω)

[

∑

k ,l

(k + 1) Qlm
kn (ω; σ)Y

l
k(ϑ ,ϕ)

]

,

(22)Bm,ext
n,r (�ra,ω) =− n Ym

n (ϑ ,ϕ),

(23)

Bm,int
n,r (�ra,ω; σ) =

∑

k ,l

(k + 1) Qlm
kn (ω; σ)Y

l
k(ϑ ,ϕ)

(24)�jmn = δ(r − a+)
1

µ0

2n+ 1

n+ 1
�er × ∇⊥Y

m
n (ϑ ,ϕ).

Here � is the complete solid angle, d� = sin ϑdϑdϕ , Y l∗

k  
denotes complex conjugation of Y l

k , and 
∥

∥

∥
Y l
k

∥

∥

∥

2
 is the 

squared norm of the spherical harmonic Y l
k . For calculat-

ing Bm
n,r in a given 3-D conductivity model we utilize the 

global EM forward solver x3dg (Kuvshinov 2008) which 
numerically solves the corresponding Maxwell’s 
equations

using the integral equation (IE) approach with con-
tracting IE kernel (Pankratov and Kuvshinov 2016). The 
mathematical machinery underlying the x3dg solver is 
extensively described in Kuvshinov and Semenov (2012).

Determination of responses from magnetic field obser-
vations consists of two stages: (i) time series of SH coef-
ficients of inducing and induced parts of the magnetic 
potential are determined from the satellite and observa-
tory data and (ii) matrix Q-responses are estimated from 
these time series. The following two sections provide 
details of each stage.

Estimating inducing and induced coefficients
First, the core, lithosphere and ionosphere magnetic field, 
as given by the Comprehensive Inversion (CI; Sabaka 
et al. 2018) are subtracted from the vector magnetic field 
data. The residual field variations in the period range 
between a few days and a few months are assumed to 
contain the signals of magnetospheric origin. Subtrac-
tion of ionospheric signals allowed us to use both day 
and night residual data, thus substantially increasing the 
amount of available data.

Data poleward of ±55◦ geomagnetic latitude were 
heavily down-weighted by a factor 0.01 sin(ϑ) to suppress 
the negative influence of auroral ionospheric currents. 
Time series of SH inducing and induced coefficients were 
then estimated from the three components of magnetic 
field using its real-valued representation that reads

(25)

Q
lm,pred
kn

(ω; σ) =
1

(k + 1)
∥

∥

∥
Y l
k

∥

∥

∥

2

∫

�

(

Bm
n,r(�ra,ω; σ)− Bm,ext

n,r (�ra)
)

Y l∗

k (ϑ ,ϕ)d�.

(26)
1

µ0
∇ × �Bm

n = σ �Em
n +�jmn ,

(27)∇ × �Em
n = iω�Bm

n ,
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where qmn  , smn  and glk , h
l
k stand for the inducing and induced 

coefficients, respectively, that are determined in the geomag-
netic dipole coordinate system. Since it is assumed that the 
signals under consideration are governed by dynamics of the 
distant magnetospheric ring current which mostly flows in 
(geomagnetic) equatorial plane, the dominant coefficients 
in the above expansions are of degree 1 and order 0. These 
coefficients were estimated in 1.5-h time bins, roughly cor-
responding to a single satellite orbit. The remaining coeffi-
cients were estimated in time bins of 6 h in order to improve 
the spatial resolution and avoid overfitting. With these set-
tings, the coefficients for the jth time (either 1.5 or 6 h) bin 
are estimated by solving the following minimization problem

(28)

Br(�r, t) =−

Next
∑

n=1

n
∑

m=1

n
[

qmn (t) cosmϕ

+smn (t) sinmϕ
]

( r

a

)n−1

Pm
n (cosϑ)

+

Nint
∑

k=1

k
∑

l=1

(k + 1)

[

glk(t) cos lϕ

+hlk(t) sin lϕ
](a

r

)k+2

Pl
k(cosϑ),

(29)

Bϑ(�r, t) =−

Next
∑

n=1

n
∑

m=1

[

qmn (t) cosmϕ

+smn (t) sinmϕ
]

( r

a

)n−1 ∂Pm
n (cosϑ)

∂ϑ

−

Nint
∑

k=1

k
∑

l=1

[

glk(t) cos lϕ

+hlk(t) sin lϕ
](a

r

)k+2 ∂Pl
k(cosϑ)

∂ϑ
,

(30)

Bϕ(�r, t) =

Next
∑

n=1

n
∑

m=1

[

qmn (t) sinmϕ − smn (t) cosmϕ
]

( r

a

)n−1 m

sin ϑ
Pm
n (cosϑ)

+

Nint
∑

k=1

k
∑

l=1

[

glk(t) sin lϕ − hlk(t) cos lϕ
]

(a

r

)k+2 l

sin ϑ
Pl
k(cosϑ),

(31)

∑

t∈Dj

∑

α∈{r,θ ,φ}

∣

∣

∣
w(�r)

[

Bobs
α (�r, t)

−
{

Bext
α (�r)+ Bint

α (�r)
}

]∣

∣

∣

2

−→
qj ,sj ,gj ,hj

min,

j = 1, 2, ...,N ,

where Bext
α  and Bint

α  correspond to the terms with 
∑Next

n=1

∑n
m=1 and 

∑Nint

k=1

∑k
l=1 summation, respectively, 

in Eqs. (28)–(30) and qj , sj , gj ,hj are vectors of estimated 
coefficients. For example, for qj , it reads

where the superscript T denotes the transpose of a vec-
tor. The notation t ∈ Dj means that we take all available 
measurements in time bin, Dj , which reads

where �t is either 1.5 or 6 h. The absence of depend-
ence on time t in Bext

α  and Bint
α  in Eq. (31) implies that we 

assume that coefficients do not vary within a time bin 
Dj . Note also that for satellite data �r ≡ �r(t) , since satel-
lite moves in time. The weights in Eq. (31) are defined as 
follows:

Our choice of Next is based on the following consid-
eration. Since the magnetospheric ring current is 
located a few Earth’s radii away from the Earth, its 
hypothetical small-scale structures are filtered out 
when the signal approaches the Earth and low orbit 
satellites such as Swarm and CryoSat-2. In view of 
this, Next = 2 appears a reasonable option. The choice 
of Nint is mostly constrained by spatio-temporal cov-
erage of input data sets. Our statistical analysis (not 
shown here) indicates that we can determine coef-
ficients up to degree Nint = 3 . Therefore, we need 
to estimate Next(Next + 2)+ Nint(Nint + 2) = 23 coef-
ficients for every time bin. Since the problem (31) 
is linear with respect to the coefficients, we used a 
Huber-weighted robust regression method (Aster 
et al. 2018) to solve it.

Figure 2 presents the determined time series of induc-
ing and induced coefficients up to degree Next = 2 . Note 
that the sixth-year time series were recovered using 
Swarm and observatory data only, since CryoSat-2 data 
were not available for us at the time of this study. We 
observe that the dominant coefficients are indeed of 
degree 1 and order 0. Additionally, in agreement with 
theory, the induced coefficients are a fraction of the 
inducing coefficients.

Further, we would like to study the influence of differ-
ent input data sets on the quality of the recovered time 
series. We tried five data combinations:

•	 Observatories,
•	 Swarm,

(32)qj = (q01,j , q
1
1,j , ..., q

Next
Next,j

)T ,

(33)
Dj ≡ [tj −�t/2; tj +�t/2], tj = (j − 1/2)�t, j = 1, 2, ...,N ,

(34)w(�r) =

{

1 |90◦ − ϑGM | ≤ 55◦GM
0.01 sin ϑ |90◦ − ϑGM | > 55◦GM .



Page 7 of 26Kuvshinov et al. Earth, Planets and Space           (2021) 73:67 	

00-2014 00-2015 00-2016 00-2017 00-2018 00-2019 00-2020
Time

-50

0

50

100

150

C
oe

ffi
ci

en
t, 

nT
q10
g10

00-2014 00-2015 00-2016 00-2017 00-2018 00-2019 00-2020
Time

-20

-15

-10

-5

0

5

10

15

20

C
oe

ffi
ci

en
t, 

nT

q11
g11

00-2014 00-2015 00-2016 00-2017 00-2018 00-2019 00-2020
Time

-15

-10

-5

0

5

10

15

20

25

C
oe

ffi
ci

en
t, 

nT

s11
h11

00-2014 00-2015 00-2016 00-2017 00-2018 00-2019 00-2020
Time

-8

-6

-4

-2

0

2

4

6

8

C
oe

ffi
ci

en
t, 

nT

q20
g20

00-2014 00-2015 00-2016 00-2017 00-2018 00-2019 00-2020
Time

-30

-20

-10

0

10

20

30

C
oe

ffi
ci

en
t, 

nT

q21
g21

00-2014 00-2015 00-2016 00-2017 00-2018 00-2019 00-2020
Time

-30

-20

-10

0

10

20

30

40

C
oe

ffi
ci

en
t, 

nT

s21
h21

00-2014 00-2015 00-2016 00-2017 00-2018 00-2019 00-2020
Time

-6

-4

-2

0

2

4

6

8

10

C
oe

ffi
ci

en
t, 

nT

q22
g22

00-2014 00-2015 00-2016 00-2017 00-2018 00-2019 00-2020
Time

-6

-4

-2

0

2

4

6

C
oe

ffi
ci

en
t, 

nT

s22
h22

Fig. 2  Time series of estimated inducing (blue) and induced (red) coefficients up to degree Next = 2 . Note the different y-axis ranges on the plots
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•	 Swarm + CryoSat-2,
•	 Swarm + observatories,
•	 Swarm + CryoSat-2 + observatories.

We calculated multiple squared coherency (MSC) 
between inducing and induced coefficients for all com-
binations. Frequency-dependent real-valued MSC is a 
measure that assesses the extent to which the output sig-
nal (in our case time series of induced SH coefficients of 
a given degree k and order l) can be predicted from all 
input signals (in our case eight time series of inducing 
SH coefficients), using the assumed linear model stated 
by Eq. (14). MSC varies between 0 and 1, and for ideal 
linear system it is equal to one. Thus, the higher MSC 
the higher the correlation between inducing and induced 
coefficients. In the absence of systematic biases and cor-
related noise, the higher MSC would indicate the statisti-
cally more reliable estimates of coefficients.

Figure  3 shows the MSC for all combinations of the 
data sets. Justification of the choice of the period range 
for which we estimated MSC is given in the next sec-
tion. Further note that in order to make the time-domain 
and frequency-domain presentations consistent, we 
use a complex-valued notation for the time series of 

coefficients in the remainder of the paper. In this nota-
tion, vector magnetic field is given as

where Re denote real part, εmn  and qmn , smn  are related as

and similarly ιlk can be written via glk and hlk as

(35)

Br =− Re

[

∑

n,m

nεmn (t)
( r

a

)n−1

Ym
n (ϑ ,ϕ)

−
∑

k ,l

(k + 1)ιlk(t)
(a

r

)k+2

Y l
k(ϑ ,ϕ)

]

,

(36)

�BH =− Re

[

∑

n,m

εmn (t)
( r

a

)n−1

∇⊥Y
m
n (ϑ ,ϕ)

+
∑

k ,l

ιlk(t)
(a

r

)k+2

∇⊥Y
l
k(ϑ ,ϕ)

]

,

(37)

εmn = (qmn − ismn )/2, m > 0;

εmn = (q|m|
n + is|m|

n )/2, m < 0; ε0n = q0n,

(38)
ιlk = (glk − ihlk)/2, l > 0;

ιlk = (g
|l|
k + ih

|l|
k )/2, l < 0; ι0k = g0k .
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It is seen from the figure that MSC is highest when both 
satellite and observatory data sets are used to calcu-
late MSC. MSC obtained using only observatory data is 
noticeably lower than MSC derived entirely from satel-
lite data. Likewise, MSC estimated from the Swarm and 
CryoSat-2 data sets combination is higher than MSC 
obtained using only Swarm data. However, adding obser-
vatory data to the Swarm or Swarm + CryoSat-2 data 
levels the difference. With this exercise we aimed to dem-
onstrate that satellite data are indeed indispensable for 
better separation/description of inducing and induced 
coefficients.

Finally, we note that the highest MSC is observed 
for the coefficient ι01 , as expected. The lowest MSC is 
obtained for the coefficient ι02 ; this is probably due to the 
fact that the major part of the variance in n = 2m = 0 
coefficients is due to annual and seasonal variability (cf. 
Fig. 2) which is outside of the considered period range.

Estimating matrix Q‑responses
The Q-matrix is estimated row-wise for a given k and 
l and at a given frequency ω by solving a minimization 
problem

where Ql
k stands for the row elements of Q-matrix, i.e.,

and the vector E i contains estimates of the time spectra 
(for a given frequency ω ) of all inducing coefficients at i-
th segment of the full time time series, i.e.,

Similarly, ιlk ,i is an estimate of the time spectra of the 
individual induced coefficient at the i-th segment of the 
corresponding full time series. The length of the time 
segments depends on ω and in general is a multiple of the 
associated period P = 2π/ω . Short segments increase 
Nseg , but in turn also increase the spectral leakage. We 
found a segment length of 3P to be an optimal value in 
practice. Furthermore, the time segments overlap to 
improve statistical efficiency and are tapered before per-
forming the Fourier transform to further decrease the 
spectral leakage (e.g., Chave and Jones 2012). Since the 
problem (39) is linear with respect to elements of Ql

k , 
we used the Huber-weighted robust regression method 
(Aster et  al. 2018) to find the minimizing estimate. The 
uncertainties of the estimates are calculated by using the 
jack-knife approach. Repeating regression analysis for 
each k and l pair, we eventually obtained the estimates for 

(39)
Nsec
∑

i=1

∣

∣

∣
ιlk ,i −Ql

kE i

∣

∣

∣

2
−→
Ql

k

min,

(40)Ql
k(ω) = (Ql−1

k −1(ω),Q
l 0
k 1(ω), ...,Q

l Next

k Next
(ω)),

(41)E i(ω) = (ε−1
−1,i(ω), ε

0
1,i(ω), ..., ε

Next
Next,i

(ω))T .

all, Next(Next + 2)× Nint(Nint + 2) = 8× 15 , elements of 
Q-matrix and their uncertainties.

We note here that the matrix Q-responses are esti-
mated at log-spaced periods. The shortest period was 
chosen to be two days to avoid the influence of different 
ionospheric sources. The longest period is constrained 
by the length of the time series. For a reliable statistical 
estimate, the number of time segments must significantly 
exceed the number of dependent variables, Next . In our 
case, we have 6 years of data and Next = 8. Using seg-
ments with a length of 3P, an overlap of 50 percent, and 
requiring the number of segments to be at least 4Next , 
the maximum period at which we can estimate matrix 
Q-responses is ≈ 40 days.

Figure  4 shows estimated “diagonal” matrix 
Q-responses. Since diagonal responses are dominant, 
they are the most well resolved components. Addition-
ally, Fig.  4 shows the “upper limit” responses from the 
perfectly conducting Earth model (see details in Appen-
dix B), as well as the “best fit” responses from the recov-
ered 3-D model (will be discussed later in the paper).

Obtaining background 1‑D conductivity model
As we already discussed in “Introduction” section, with 
magnetic field variations of magnetospheric origin one 
can constrain the 3-D conductivity distribution at depths 
approximately between 400 and 1600  km. Due to the 
non-linearity and non-uniqueness of the inverse prob-
lem, the choice of the background 1-D model within 
and outside this depth range is crucial for obtaining 
plausible 3-D conductivity distribution. In this section, 
we will obtain the background 1-D model that will be 
used as a starting and background model during inver-
sion of matrix Q-responses. The present section, in its 
methodological part, closely follows the scheme outlined 
by (Grayver et al. 2017). It is based on a joint quasi 1-D 
inversion of the magnetic signature of oceanic tidal sig-
nals and “magnetospheric” Q-responses. Here the term 
“quasi” is used to stress the fact that during 1-D inver-
sion the 3-D forward modeling operator is exploited to 
account for the effects arising from laterally variable oce-
anic bathymetry and sediment thickness. The 3-D for-
ward modeling operator used to estimate these effects 
has already been introduced in the previous section. We 
also note here that the oceanic tidal signals are included 
into our analysis in order to constrain the conductivity in 
the upper mantle (depths between 10 and 400 km).

Determination of the M2 magnetic tidal signal
The tidally generated flow of the electrically conductive 
seawater in Earth’s main magnetic field produces electric 
currents in the oceans, which in turn produce EM field 
in the subsurface. The magnetic field measured on the 
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coast, at the sea bottom and with satellites thus contain 
information about the subsurface electrical conductiv-
ity. In contrast to the conventional EM sources of iono-
spheric and magnetospheric origin (which are inductively 
coupled with the Earth due to the insulating atmosphere 
between the source and the Earth), the unique charac-
teristic of the motion-induced electric currents in the 
oceans is its galvanic coupling with the oceanic litho-
sphere. This enhances the sensitivity to resistive subsur-
face structures (Schnepf et al. 2015; Velimsky et al. 2018) 
since the induced fields are influenced by the toroidal 
(galvanic) part of the primary tidal EM field. Despite 
small amplitude (a few nT), tidal magnetic signals due 
to the semi-diurnal lunar M2 tide (of period of 12 h and 
25 min) have been reliably extracted from magnetic sat-
ellite measurements using the Comprehensive Inver-
sion (CI) approach based on a simultaneous estimation 
of the different contributions (in the core, lithosphere, 
ionosphere, etc.) and selection of data for geomagnetic 
quiet periods (Sabaka et al. 2015, 2016, 2020). The radial 
component, BM2

r  , of the M2 magnetic tidal signal was 
synthesized from the estimated M2 SH coefficients, τmn  , 
at mean satellite altitude (h = 430 km) on a 2◦ × 2◦ grid. 

The expansion of the M2 signal in the CI model is based 
on a potential representation given by

The upper panel of Fig.  5 shows the magnitude of the 
observed (i.e., synthesized from the estimated SH coeffi-
cients) M2 radial magnetic field component.

Estimating dominant Q‑response
As already discussed, the n = 1 and m = 0 term is larg-
est in a SH expansion of the signals of magnetospheric 
origin. To derive a global 1-D conductivity profile we 
use the corresponding diagonal elements of the matrix 
Q-response, namely the response that relates the induc-
ing ε01 , and induced, ι01 , coefficients. Hereinafter we call 
those as the “dominant” Q-response. To estimate this 
response, we first estimate time series of inducing and 
induced coefficients up to spherical harmonic degrees 
Next = 2 and Nint = 3 , respectively (see Section “Estimat-
ing inducing and induced coefficients”). Since the model 
we work with consists of a surface thin layer of laterally 

(42)

VM2(�r, t) = Re

[

eiωM2ta

18
∑

n=1

n
∑

m=−n

τmn

(a

r

)n+1

Ym
n (ϑ ,ϕ)

]

, r ≥ a.
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variable (2-D) conductance on top of a 1-D conductivity 
structure (cf. Fig.  6), the problem becomes intrinsically 
3-D and requires the implementation of Eq. (14) to esti-
mate the desired Q00

11 . To this end we solve the minimiza-
tion problem

where

As discussed in “Estimating inducing and induced coef-
ficients” section, 6 years of magnetic data allows us to 
estimate Q00

11 up to periods of ≈ 40 days. In addition, 
and together with Q00

11 , we estimate seven responses: 
Q0−1
1−1,Q

0 1
1 1, ...,Q

0 2
1 2 . However, the amplitude of these 

responses are much smaller than Q00
11 . Therefore, in order 

to utilize longer periods, we resort to the “uni-variate” 
minimization problem

This allows us to estimate Q00
11 up to periods of about one 

year. To verify the validity of this approach we also per-
formed an estimation of Q00

11 using Eq. (43) and compared 
the results in the period range where both responses 
overlap (2–30 days). The observed difference (not shown 
here) between both uni- and multi-variate responses 
are negligible, thus reaffirming the use of a uni-variate 
approach for estimating Q00

11 . Circles with error bars in 
Fig.  8 depict the estimated Q00

11 (the results shown with 
solid lines will be explained later).

Modeling tidal signals and the dominant Q‑response
Joint inversion of magnetic tidal signals and Q00

11 
responses requires their multiple prediction for a given 
conductivity model. To accurately predict (calculate) 
magnetic fields/responses due to tidally induced oce-
anic or magnetospheric electric currents, it is essential 
to account for the conductivity of non-uniform oceans 

(43)
Nsec
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∣

∣

∣
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1E i

∣
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(44)Q0
1(ω) = (Q0−1

1−1(ω),Q
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1 1(ω), ...,Q
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(ω)).

(45)
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Fig. 5  Top and middle: global maps of magnitudes of the observed 
and predicted (modeled) M2 radial magnetic field component. 
Predicted fields are obtained using the “joint” 1-D conductivity profile 
shown in Fig. 7. Bottom: residuals, i.e., magnitude of the difference 
between observed and predicted M2 radial magnetic field. Values are 
shown for a mean satellite altitude of h = 430 km
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(Kuvshinov 2008). To this end, we added a thin shell of 
laterally variable conductance (corresponding to oceans 
and continents) on top of a 1-D mantle conductivity 
model (Fig.  6). As discussed in the “Modeling matrix 
Q-responses” section, we calculate the EM field by using 
the global EM forward code x3dg (Kuvshinov 2008), 
which numerically solves Eqs. (1)−(2).

The extraneous current density, �jext , induced by the 
tidal forces, is confined to the ocean and given by

where �ra = (a,ϑ ,ϕ) , and ϑ , and ϕ are geographic colati-
tude and longitude, respectively, σs is the depth-averaged 
conductivity of seawater, �Bmain is Earth’s main (core) 
magnetic field, �v = �u/h , h is the height of the water col-
umn and �u is the depth-integrated seawater velocity of 
the M2 tidal mode. �Bmain is calculated using the World 
Magnetic Model (Chulliat et  al. 2015), �u is taken from 
the HAMTIDE ocean tidal model (Taguchi et  al. 2014), 
and σs is derived from ocean salinity and temperature 
data given by the World Ocean Atlas 2009; see Grayver 
et al. (2016) for more detail about the individual terms of 
Eq. (46) and their uncertainties.

In case of Q00
11(ω; σ) , the extraneous source is given 

by a sheet current density, parameterized using a single 
Y 0
1 = cosϑ spherical harmonic. Following Eq.  (24), it 

reads

Once the corresponding radial component of the mag-
netic field, B

0,pred
1,r  , is computed at Earth’s surface, 

Q
00,pred
11 (ω; σ) is obtained as

where ϑ and ϕ are geomagnetic colatitude and longitude, 
respectively. To obtain Eq.  (48), we used Eqs.  (22) and 
(25) with

Joint stochastic 1‑D inversion of tidal signals and dominant 
Q‑responses
We consider a 1-D conductivity model consisting of 
M = 46 layers of fixed thicknesses (see second column in 
Table 1) and a core of fixed conductivity of 105 S/m. We 

(46)�jext(�ra) = σs(�ra)
[

�v(�ra)× �Bmain(�ra)
]

,

(47)�J0,ext1 =
3

2µ0
�er ×∇⊥Y
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1 (ϑ ,ϕ) =

3

2µ0
sin ϑ �eϕ .

(48)
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8π
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1

2
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(49)
∥

∥Ym
n

∥
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∫

�

Ym
n (ϑ ,ϕ)Ym∗

n (ϑ ,ϕ)d�
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1
2
.

aim at estimating the conductivity values σ1, σ2, · · · , σM 
by solving a non-linear inverse problem, formulated as 
the minimization task

where φd is the data misfit, � and φr are a regulariza-
tion parameter and a regularization term, respectively, 
and m = [ln σ1, ln σ2, · · · , ln σM] is the vector of model 
parameters. Solving the logarithm of conductivity 
ensures positivity of the arguments. The data misfit in 
Eq. (50) reads

where ωi corresponds to periods between 1.5 and 
150  days with number of frequencies N1D = 27 , and 
�rj = (a+ h,ϑj ,ϕj) are 2◦ × 2◦ grid points, with number 
of grid points Ngrid = 90× 180 . We do not have experi-
mental estimates for δBM2

r  , but in order to make the sec-
ond term dimensionless and compatible with the first 
term we introduce δBM2

r (�rj ,ωM2) = 0.1 nT. As discussed 
by Grayver et al. (2017) and Munch et al. (2020), normal-
izing with the numbers of actual measurements ( N1D and 
Ngrid ) is an important aspect that helps equalize the con-
tribution of different input data sets.

The regularization term reads

where li is the regularization operator of the i-th model 
parameter. In our implementation it approximates the 
first derivative with respect to the model parameters; 
in other words it corresponds to the differences in log-
conductivities between neighboring layers. The scalar pm 
controls the norm of the regularization term; by varying 
pm one retrieves different regularization norms, rang-
ing from a smooth L2-norm ( pm = 2 ) to the structurally 
sparse L1-norm ( pm = 1 ) solutions. The regularization 
parameter � was determined by means of an L-curve 
analysis (Hansen 1992). pm was set to 1.5 which provides 
a good balance between sharp conductivity contrasts and 
smooth models (Grayver and Kuvshinov 2016).

The minimization problem described by Eq.  (50) is 
solved by means of a global stochastic optimization tech-
nique (Covariance Matrix Adaptation Evolution Strat-
egy (CMAES); Hansen and Ostermeier (2001)). The 
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Table 1  Depths (to the  top of  the  layers), thicknesses, conductivities and  95 % confidence intervals of  the  recovered 
“joint” 1-D (layered) conductivity model. Note that 1-D model starts from the depth of 1 km; this is because the layered 
1-D model is overlain by a thin (of 1 km thickness) shell of laterally variable conductance

Depth (km) Thickness (km) Conductivity (S/m) Lower bound (S/m) Upper bound (S/m)

1 10 0.00032 0.00015 0.00069

11 12 0.00032 0.00016 0.00065

23 15 0.00034 0.00016 0.00070

38 15 0.00039 0.00017 0.00091

53 13 0.00050 0.00018 0.00138

66 15 0.00073 0.00024 0.00223

81 15 0.00116 0.00037 0.00370

96 17 0.00203 0.00068 0.00602

113 20 0.00374 0.00155 0.00905

133 23 0.00701 0.00306 0.01606

156 25 0.01293 0.00511 0.03273

181 30 0.02182 0.00956 0.04978

211 35 0.03137 0.01531 0.06429

246 35 0.04030 0.02118 0.07668

281 40 0.04775 0.02331 0.09783

321 40 0.05626 0.02849 0.11108

361 40 0.06939 0.03300 0.14594

401 40 0.09014 0.04158 0.19539

441 50 0.13698 0.06509 0.28830

491 60 0.25818 0.12804 0.52059

551 50 0.55871 0.26782 1.16554

601 60 0.98034 0.56960 1.68726

661 70 1.13267 0.67351 1.90487

731 70 1.17502 0.71936 1.91933

801 80 1.19377 0.74119 1.92270

881 100 1.21470 0.73511 2.00719

981 100 1.22527 0.72305 2.07633

1081 110 1.24674 0.71139 2.18497

1191 110 1.30836 0.67681 2.52924

1301 100 1.49968 0.76569 2.93726

1401 100 1.89385 0.86980 4.12354

1501 100 2.46800 1.12520 5.41326

1601 100 3.18402 1.48421 6.83058

1701 100 3.84989 1.80636 8.20526

1801 100 4.19080 1.90199 9.23387

1901 100 4.32177 1.92951 9.68005

2001 100 4.37388 1.91005 10.01588

2101 100 4.38075 1.74362 11.00642

2201 100 4.36998 1.53189 12.46614

2301 100 4.37026 1.41580 13.49000

2401 100 4.38499 1.26547 15.19443

2501 100 4.38851 1.13948 16.90154

2601 100 4.37654 1.04112 18.39754

2701 100 4.37371 0.99958 19.13727

2801 90 4.37127 0.99070 19.28740
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details of the CMAES algorithm used in our inversion are 
described in Grayver and Kuvshinov (2016).

Figure  7 shows mantle conductivity models estimated 
by inverting the dominant Q-responses and tidal radial 
magnetic field separately and jointly. The obtained mod-
els generally follow previous results (Grayver et al. 2017), 
demonstrating that joint inversion allows us to resolve 
the conductivity of the upper mantle, the mantle tran-
sition zone, and the lower mantle. Table 1 lists the esti-
mated (layered) 1-D conductivity model along with the 
95 % confidence interval for each layer.

The middle panel in Fig. 5 shows a map of the magni-
tude of the predicted (modeled) M2 radial magnetic field 
at mean satellite altitude of h = 430 km. This predicted 
field is obtained using the estimated “joint” 1-D profile 
shown in Fig.  7. Comparing estimated and predicted 
fields we conclude that they match remarkably well. The 
bottom panel of this figure shows a global map of residu-
als, i.e., the magnitude of the difference between the pre-
dicted and the observed M2 radial magnetic field, which 
is small in most regions of the world.

Finally, the solid curves in Fig.  8 present predicted 
dominant Q-responses calculated using the “joint” 1-D 
profile of Fig.  7. We see that predicted responses agree 
very well with the data-based responses at all periods.

Obtaining 3‑D conductivity model
Concept of the 3‑D inversion
Similar to the 1-D inversion described in the previous 
section, we formulate the 3-D inverse problem as a mini-
mization task described by Eq. (50), where the data misfit 
φd(m) reads

Here ωi correspond to periods between 2 and 37.25 days 
with number of frequencies N3D = 17 . The model vector 
m contains the 3-D conductivity distribution structure of 
the Earth’s mantle that we want to determine, the param-
eterization of which will be specified in the next section. 
The form of the regularization term φr(m) depends on 
the desired level of smoothness and model parameteriza-
tion, as discussed later in the paper.

In contrast to 1-D inversion where we were able to 
invoke a stochastic optimization technique—and thus to 
quantify the uncertainty of the obtained 1-D model—for 
the 3-D inversion, we exploit a deterministic approach 
owing to the high computational cost of the problem. 
Due to the non-linearity of EM inverse problems, itera-
tive descent methods (e.g., Nocedal and Wright  2006) 
are typically the methods of choice for deterministic 
inversions. These methods require a computation of the 
gradient of the penalty function φ with respect to the 
model parameters, i.e.,

While the gradient of the regularization term is easily 
calculated analytically, calculation of the data misfit gra-
dient is more challenging. The straightforward option—
a brute-force numerical differentiation—requires 
extremely high computational loads and is approximate 
by nature. A much more efficient way to rigorously cal-
culate the gradient of the misfit is provided by an adjoint 
source approach; see e.g., Pankratov and Kuvshinov 
(2010a). It allows the calculation of the misfit gradient 
for the price of only a few additional forward calculations 
(i.e., numerical solutions of Maxwell’s equations) excited 
by a specific (adjoint) source. Each inverse problem set-
ting requires explicit formulas for the adjoint source. The 
corresponding formulas for our inverse problem are pre-
sented in Appendix C.

Numerical implementation
The derivations presented so far neither depend on the 
choice of the forward solver (which numerically solves 
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Fig. 7  Mantle conductivity models obtained by inverting the 
dominant Q-responses and M2 tidal radial magnetic field separately 
and jointly. Gray lines show 95 % confidence interval for the “joint” 
model



Page 15 of 26Kuvshinov et al. Earth, Planets and Space           (2021) 73:67 	

Maxwell’s equations (1)–(2) for a given conductiv-
ity model and a given source) nor on the optimization 
method used to solve the inverse problem. In this section, 
we describe how we numerically implement the inversion 
concept outlined in the previous section.

For the forward computations, the 3-D conductivity 
structure σ is discretized at a spherical grid consisting of 
nr × nϑ × nϕ volume cells; the conductivity in each cell is 
assumed to be constant.

The most expensive part—in terms of computational 
loads—of our forward solution (based on IE approach) 
is the calculation of Green’s tensors. However, these ten-
sors depend on the chosen 1-D background conductivity, 
but not on the 3-D conductivity distribution in the model 
(Kuvshinov and Semenov 2012). This gives a possibility to 
make the inversion algorithm much more computation-
ally efficient by isolating the computation of Green’s ten-
sors from the rest of the forward calculations, such that it 
does not need to be repeated in each iteration of the opti-
mization procedure. A parallelization with respect to N3D 
frequencies and to Next(Next + 2) elementary sources �jmn  
has been implemented to further optimize the computa-
tional load.

The inversion domain is divided into Nr layers of pos-
sibly variable thicknesses, which do not necessarily coin-
cide with the nr layers used for the forward modeling. 
Since our data are transfer functions relating SH coeffi-
cients of the magnetic potential, it is most natural to also 
parameterize the model domain in terms of spherical har-
monics, as done previously by e.g., Kelbert et al. (2008). 
Within each layer the conductivity is thus defined as a 
finite sum of spherical harmonics up to a cut-off degree 
L, i.e., the number of model parameters Nm is given by 
Nm = Nr(L+ 1)2 . Derivation and a detailed description 
of this parameterization is presented in Appendix D.

As mentioned in section “Concept of the 3-D inver-
sion”, we stabilize the inversion with a regularization term 
φr . A parametrization with spherical harmonics auto-
matically yields a smooth solution. Due to the low cut-off 
degree L, an additional natural regularization is included 
in the parametrization. Further smoothing is performed 
by multiplication of the coefficients by a factor l(l + 1) . 
Radial smoothing, i.e., regularization across layer bound-
aries, was omitted in this study.

An inversion is usually initiated using strong regu-
larization. Once the convergence rate flattens, the value 
of the regularization parameter � is decreased, and the 
results obtained with the previous � are used as starting 
model. This gradual adaptation of the amount of regu-
larization constrains the solution to be close to the global 
minimum in every stage of the iterative inversion pro-
cess. This, in turn, facilitates convergence and prevents 
stepping into a local minimum.

To minimize the penalty function our inversion code 
offers the option to choose between several popular opti-
mization methods: non-linear conjugate gradients, quasi-
Newton and limited-memory quasi-Newton (LMQN). 
Our tests (not shown here) revealed that the LMQN 
method is superior to other methods in terms of compu-
tational cost. Our implementation of the method follows 
Nocedal and Wright (2006). The iterative formula for 
updating the model vector m is

where H (k) is an approximation to the inverse Hessian 
matrix, updated at every iteration k, using the limited-
memory Broyden–Fletcher–Goldfarb–Shanno formula 
(e.g., Nocedal and Wright 2006). The step length α(k) is 
computed by an inexact line search and chosen to satisfy 
the Wolfe conditions (Nocedal and Wright 2006).

Results of 3‑D inversion
As discussed earlier matrix Q-responses were estimated 
in the period range between 2 and 37.25  days. This 
means—following the skin depth concept (e.g., Weidelt 
1972)—that with these responses we constrain the 3-D 
conductivity distribution at mid-mantle depths. Specifi-
cally, we search for conductivity variations in the depth 
range between 410 and 1200 km. We parametrize the 3-D 
conductivity distribution at these depths by three spheri-
cal layers of 260, 230, and 300 km thickness. The thick-
ness and position of the first layer was chosen to coincide 
with the mantle transition zone (depths 410 – 670  km) 
where seismic studies show compositional changes. The 
thicknesses of the two lower layers are taken to be com-
patible with those used in other global 3-D EM inversions 
(Kelbert et  al. 2009; Semenov and Kuvshinov 2012; Sun 
et al. 2015). To remain compatible with the cut-off degree 

(55)m(k+1) = m(k) − α(k)H (k)(∇φ)(k),

Fig. 8  Estimated (circles) dominant Q-responses and their 
uncertainties (error bars), and model predictions (solid curves). 
Predictions are for the 1-D profile obtained by jointly inverting the 
dominant Q-responses and tidal radial magnetic field (cf. Fig. 7). 
Positive and negative values correspond to real and imaginary parts 
of the Q-response, respectively
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for the induced SH coefficients, the conductivity in the 
mantle was parameterized by spherical harmonics up to 
degree three.

The nonuniform layers are embedded in a (fixed) back-
ground 1-D conductivity profile obtained in the “Obtain-
ing background 1-D conductivity model” section.

To account for the effects of the nonuniform distribu-
tion of oceans and continents we included in the model 
a thin surface layer describing laterally variable conduct-
ance (cf. the right panel of Fig. 6).

Forward calculations were performed on a 5◦ × 5◦ lat-
eral grid; results of our model experiments (not shown 
here) indicate that higher spatial resolution does not lead 
to improved results since the matrix Q-responses are 
estimated up to very low degree and for periods longer 
than 2 days.

Figure 9 shows the final 3-D model.
The model show significant deviations of conductiv-

ity from the global 1-D conductivity profile in the Pacific 
Ocean region, particularly at depths between 410 and 
670  km. Following many inversion runs, which entailed 
testing different model parameterization (in terms of 
number of layers and cut-off degree of SH expansion) and 
different number of Q-matrix elements included in the 
inversion, the “Pacific Ocean” anomaly appeared to be a 
robust feature. However, we would like to stress that the 
3-D model is poorly constrained in polar regions where 
the data are heavily downweighted when estimating 
inducing and induced coefficients. By purpose we do not 
compare our model with the global 3-D models obtained 
from ground-based (observatory) data (Kelbert et  al. 
2009; Semenov and Kuvshinov 2012; Sun et  al. 2015) 
since these models are inconclusive in the Pacific Ocean 
due to the lack of ground-based data in this region.

Concluding remarks
This paper presents methodological developments and 
results related to detecting three-dimensional (3-D) vari-
ations of the electrical conductivity at mid-mantle depths 
(410 – 1200 km) using 6 years of Swarm, CryoSat-2 and 
observatory magnetic field data. As far as we know this 
is one of the first endeavors to image 3-D mantle conduc-
tivity from space. The reader is referred to the paper of 
Velimsky and Knopp (2020) in the same issue where an 
alternative 3-D model based on different inversion con-
cept is presented and discussed.

Our approach relies on the estimation and inversion 
of matrix Q-responses. These responses relate spheri-
cal harmonic coefficients of inducing and induced parts 
of the magnetic potential. The limited spatio-temporal 
resolution of the data allows us to estimate time series of 
SH inducing and induced coefficients only up to degrees 
2 and 3, respectively. This, by the nature of the case, 

restricts the lateral resolution of the resulting 3-D con-
ductivity models.

The presented results show significant deviations of 
conductivity from 1-D conductivity profile in the Pacific 
Ocean region. Many inversion settings were investigated 
in order to test the robustness of this feature. These 
included varying model parameterization and num-
ber of Q-matrix elements included in the inversion. We 
refrain, however, from speculation on the origin of this 
anomaly, noting that the agreement between estimated 
and predicted responses is not fully satisfactory for many 
elements of the Q-matrix. This is in particular due to the 
fact that the estimated responses occasionally take unre-
alistic values, indicating that the determination of time 
series of SH inducing and induced coefficients is far from 
perfect and requires further improvement. In “Outlook” 
section, we discuss how the global 3-D EM mapping of 
mantle conductivity could be advanced.

We also obtained a new 1-D conductivity profile that 
is global for depths larger than 400  km (since based on 
the inversion of global long-period Q-responses) but 
semi-global (i.e., confined to the oceans) at shallower 
depths (since based on an inversion of tidal signals). As 
expected, this new 1-D profile is close to that obtained by 
Grayver et al. (2017) where a similar approach was used, 

410 km - 670 km

670 km - 900 km

900 km - 1200 km

-1 0 1
Fig. 9  Estimated 3-D conductivity model. Conductivities are shown 
as log10

σ3D
σ1D

 where σ1D stands for the 1-D background conductivity
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although utilizing different input data sets. Bearing in 
mind that this approach: (i) is most consistent in terms 
of proper accounting for the ocean effect and includ-
ing magnetospheric source terms other than P0

1 , and (ii) 
allows for constraining the 1-D electrical structure of the 
mantle throughout its full depth range, we recommend 
the use of the 1-D conductivity profile presented here or 
in (Grayver et al. 2017) instead of that obtained by Kuvs-
hinov and Olsen (2006) and Püthe et al. (2015).

Outlook
In spite of continuous and dedicated efforts, the difficult 
task of global 3-D determination of mantle conductivity 
structures remains a challenging problem. We discuss 
below some potential ways to improve the determination 
of 3-D structures on a global scale.

Alternative approaches to estimate time series of inducing 
and induced coefficients
As seen in section “Estimating matrix Q-responses”, 
many elements of the Q-matrix are poorly resolved. The 
most probable reason for this is an imperfect estimation 
of the inducing and induced coefficients. Note again that 
the induced coefficients are responsible for 3-D con-
ductivity effects, and one 3-D effect that strongly influ-
ences the results but cannot be properly addressed by the 
“separation” (Gauss) method exploited in this paper is the 
so-called ocean induction effect (Kuvshinov 2008). Recall 
that the Gauss method is based on a simultaneous analy-
sis of radial and horizontal magnetic field components. 
Given deficient spatio-temporal distribution of observa-
tory and Swarm data, with Gauss method one is able to 
recover only low SH coefficients both in the inducing and 
induced parts. But induced radial magnetic field requires 
higher SH degrees for its proper description, since this 
component is strongly affected by the (localized) ocean 
effect.

There exists an alternative approach to isolate the 
inducing part of the signals from the induced part. It 
exploits the pre-computed EM fields/responses induced 
by “elementary” extraneous currents in an a priori model 
of known conductivity; commonly this model includes 
oceans and continents of laterally variable conductance 
underlain by a layered (1-D) medium. This approach has 
been routinely used for the last two decades to retrieve 
the inducing part of the signals in the frequency domain. 
In particular, the concept was used in analyses of ground-
based (Guzavina et  al. 2019; Koch and Kuvshinov 2015; 
Kuvshinov et al. 1999, among others) and satellite (Chul-
liat et al. 2016; Sabaka et al. 2013, 2015, 2020, among oth-
ers) magnetic data of ionospheric origin (assumed to be 
mostly periodic). It was also used for analysis of aperiodic 
ground-based data of magnetospheric origin (Honkonen 

et al. 2018; Munch et al. 2020; Olsen and Kuvshinov 2004; 
Püthe and Kuvshinov 2013; Püthe et al. 2014). Note that 
the latter studies aimed to explore the spatio-temporal 
evolution of the induced EM field, and time-domain 
results in these studies were obtained by converting the 
frequency-domain results into the time domain by means 
of a Fourier transform (FT).

In the context of this study we are interested in isolat-
ing inducing and induced parts of (aperiodic) signals of 
magnetospheric origin. This prompts a two-step proce-
dure for retrieving time series of the corresponding SH 
coefficients. The procedure is based on the fact that the 
magnetic horizontal components are much less influ-
enced by 3-D effects compared to the radial component 
(Kuvshinov 2008). Thereby, by analyzing the horizontal 
magnetic components and assuming an a priori Earth’s 
conductivity model, one determines time series of induc-
ing coefficients. Note, that to account for time-domain 
induction effects in satellite data the FT approach hardly 
works, since satellites move in space. But retrieving the 
inducing coefficients can be done directly in the time 
domain using a concept of impulse responses (Svetov 
1991). We notice here that as applied to geomagnetic 
field modeling this concept was already used by Maus 
and Weidelt (2004), Olsen et al. (2005) and Thomson and 
Lesur (2007) but invoking a simplified setting, assuming a 
1-D conductivity and a magnetospheric source described 
by one single spherical harmonic. With the retrieved 
time series of external (inducing) SH coefficients, one 
determines in a second step the induced coefficients by 
analyzing the magnetic radial component only. Efficient 
implementation of this two-step approach is discussed in 
Grayver et al. (2020).

Exploiting data from non‑dedicated satellite missions
In the context of 3-D EM induction studies we strive 
for a precise and detailed description of the spatio-
temporal structure of inducing and induced signals. 
From this perspective, the ideal geomagnetic satellite 
mission would consist of a large number of low Earth 
orbiting (LEO) satellites (in polar, circular orbits) uni-
formly separated in local time (that is, in longitude). 
This configuration allows for detecting both latitudinal 
and longitudinal variability of the signals. The more sat-
ellites, the higher the resolution of the recovered induc-
ing and induced signals, in time and space. The existing 
dedicated Swarm constellation mission comprises two 
satellites (Alpha and Bravo) with varying local time sepa-
ration between zero and six hours, thus limiting detec-
tion of longitudinal variability of the signals. Olsen et al. 
(2020) and Stolle et al. (2020) used data collected by the 
CryoSat-2 and GRACE-FO satellites, respectively, and 
demonstrated that platform magnetometers do provide 
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valuable geomagnetic field measurements, given that 
vector magnetic field can be properly calibrated. These 
platform magnetometers are present onboard many LEO 
satellites, as a part of their attitude control system. In 
this study, we used calibrated CryoSat-2 data in addition 
to Swarm and observatory data, and observe that these 
data indeed improve the recovery of the aforementioned 
signals. However, improvement by adding data from one 
single satellite is limited. Obviously, more data from LEO 
satellites in orbits with different local times are necessary 
for a substantial improvement; for instance, usage of duly 
calibrated data from satellites like the Iridium-Next and 
Spire constellation could be promising.

Another opportunity are dedicated satellite constella-
tions with low-inclined satellites (e.g., Hulot et al. 2020) 
which will enable researchers to better characterize the 
complex spatio-temporal nature of the ionospheric and 
magnetospheric signals.

Multi‑response, multi‑source and multi‑resolution global 
3‑D imaging
The 3-D results presented in this paper rely on an analy-
sis of magnetic field variations of periods longer than 
one day, generated by the magnetospheric ring cur-
rent. As the penetration depth of EM field depends on 
period, these variations are sensitive to depths greater 
than 400  km. To constrain 3-D conductivity distribu-
tion at shallower depths the analysis of EM field vari-
ations at periods shorter than one day are required. 
In the period range of daily variations (4 to 24  hours) 
these variations are primarily periodic and the domi-
nating source in this period range is the (mid-latitude) 
ionospheric current system forced by solar heating of 
the ionosphere (Yamazaki and Maute 2017). Variations 
at periods shorter than 4  h—which are mostly aperi-
odic—also originate in the ionosphere, and can be spa-
tially approximated by a vertically incident plane wave 
of arbitrary polarization, at least at mid-latitudes (Chave 
and Jones 2012). Analysis of variations in a period range 
as wide as practicable would provide an opportunity for 
imaging the 3-D conductivity structures of the Earth 
throughout its full depth range—from the crust down 
to the lower mantle. However, this is a challenging task, 
because it requires combining transfer functions from 
sources of different morphology, specifically, long-period 
(a few days to a few months) matrix Q-responses, daily 
(4 to 24  hours) and long-period global-to-local transfer 
functions (Guzavina et  al. 2019; Püthe et  al. 2014), and 
shorter period (a few minutes to 3 hours) magnetotelluric 
(MT) responses—tippers (Morschhauser et al. 2019). The 
latter three (local) responses are estimated from ground-
based data, whereas the (global) matrix Q-responses 
are estimated from satellite (and observatory) data. As 

discussed above, the satellite-based matrix Q-responses 
allow for a global 3-D imaging of mid-mantle conduc-
tivity but at rather low (continental-scale) lateral resolu-
tion. Ground-based data allow for higher resolution 3-D 
imaging of the Earth’s mantle in regions with a dense 
net of continuous observation sites (like in Europe and 
China), or temporary long-term (like in Australia (Koch 
and Kuvshinov 2015)) observations. However, bearing in 
mind an overall very irregular spatial distribution of the 
ground-based magnetic sites (with substantial gaps in 
oceanic regions), a proper determination of a global 3-D 
mantle conductivity model of (uniform) high-resolution 
is hardly feasible. The above considerations suggest a 
multi-resolution approach to global 3-D imaging. Specifi-
cally, at a first step a low-resolution baseline global 3-D 
conductivity model at mid-mantle depths is obtained by 
inverting matrix Q-responses. Wherever possible, large-
scale regional 3-D conductivity models in the full depth 
range are obtained by joint inversion of MT tippers and 
global-to-local transfer functions. As for oceanic regions, 
one can decipher local one-dimensional (1-D) conductiv-
ity profiles beneath island observatories. The final step of 
the discussed approach is a compilation of the retrieved 
global, regional and local models in a global multi-res-
olution model, for instance, as done by (Alekseev et  al. 
2015).

So far we discussed the work utilizing only magnetic 
field data, and confined to onshore observations as 
ground-based data. However, as discussed earlier, there 
is an overall deficiency of geomagnetic data in oceanic 
regions. Data from sea-bottom long-term (with meas-
urement period from a few months to a few years), 
large-scale MT surveys (Baba et  al. 2010, 2017; Suet-
sugu et  al. 2012, among others) can fill, at least partly, 
this spatial gap. A rather exhaustive summary of avail-
able sea-bottom MT data sets is presented in (Guzavina 
2020). From these data one can estimate and invert both 
MT responses (impedance and tipper) and “daily band” 
global-to-local TFs. It is noteworthy that with sea-bot-
tom long-term MT data it is possible to estimate not 
only “vertical magnetic” global-to-local TFs, but also TFs 
relating SH expansion coefficients with local horizon-
tal electric and magnetic fields (Guzavina 2020). Finally, 
sea-bottom MT data generally comprise detectable tidal 
signals (Schnepf et  al. 2014) which also can be used for 
constraining conductivity distribution in the lithosphere 
and upper mantle (Zhang et al. 2019).

In addition one can expand the database for EM sound-
ing of the deep Earth with long-period MT data from a 
few continental-scale MT projects, such as EarthScope 
(Schultz 2010), AusLAMP (Chopping et  al. 2016) and 
SinoProbe (Dong and Li 2010).
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Finally, multi-year continuous observations of electric 
field, number of which around the world is constantly 
growing (Blum et  al. 2017; Fujii et  al. 2015; Wang et  al. 
2020) is another promising source of data for the probing 
deep structures of the Earth.
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Appendix A: Conventional local transfer functions 
used in GDS
Following Appendix H of (Kuvshinov and Semenov 2012) 
frequency-domain EM field at the surface of the 1-D 
Earth can be written as

Here Zn is an impedance of underlying 1-D section, 
�ra = (a−,ϑ ,ϕ) and a− means that r tends to the surface 
of the Earth, r = a , from below. Hereinafter we will omit 
but imply the dependence of the fields and responses 
on ω and σ . Also we note that Zn depends on r; thus we 
explicitly write in the above equations that it is calculated 
on the surface of the Earth. Zn is connected with the Cn

-response as

Cn has a dimension of length and real part of Cn reflects 
the depth of penetration of EM field into the Earth (Wei-
delt 1972). Eqs. (56)–(58) allows us to obtain formulas 
used in Geomagnetic Depth Sounding 

1	 If the source is described by a single spherical har-
monic Ym

n  and m  = 0 (and the Earth’s model is 1-D), 
then—as it is seen from Eqs. (57)–(58)—the Cn

-response can be estimated from the local measure-
ments of magnetic field as 

 or/and 

2	 If—along with the magnetic field—the electric field 
is measured, then —as it is seen from Eqs. (56) and 
(58)—the Cn-response can be estimated as 

(56)

�EH (�ra,ω; σ) =−
1

µ0

∑

n,m

2n+ 1

n+ 1
εmn (ω)

iωµ0aZn(a,ω; σ)

iωµ0a− nZn(a,ω; σ)
er ×∇⊥Y

m
n (ϑ ,ϕ),

(57)

Br(�ra,ω; σ) =
∑

n,m

(2n+ 1)nεmn (ω)

Zn(a,ω; σ)

iωµ0a− nZn(a,ω; σ)
Ym
n (ϑ ,ϕ),

(58)

�BH (�ra,ω; σ) =−
∑

n,m

2n+ 1

n+ 1
εmn (ω)

iωµ0a

iωµ0a− nZn(a,ω; σ)
∇⊥Y

m
n (ϑ ,ϕ).

(59)Zn = −iωµ0Cn.

(60)Cn =
a

n(n+ 1)

∂P
|m|
n

∂ϑ

P
|m|
n

Br

Bϑ

,

(61)Cn =
1

sin ϑ

ima

n(n+ 1)

Br

Bϕ

.

http://creativecommons.org/licenses/by/4.0/
https://earth.esa.int/web/guest/swarm/data-access
https://earth.esa.int/web/guest/swarm/data-access
ftp://ftp.nerc-murchison.ac.uk/geomag/Swarm/AUX_OBS/hour/
ftp://ftp.nerc-murchison.ac.uk/geomag/Swarm/AUX_OBS/hour/
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 or/and 

3	 Formulas (60)–(63) can be useful, for example, when 
EM field variations due to (ionospheric) Sq source 
are investigated. Recall that daily Sq variations are 
assumed to be periodic, and thus they can be rep-
resented via their time harmonics with frequencies 
ωp = 2πp

P , p = 1, 2, ... , where P = 24 hours. For p-th 
time harmonic the dominant source term is Y p

p+1 (cf. 
Schmucker (1999)), and thus from the local measure-
ments of Sq field one can estimate Cp+1 at frequen-
cies ωp.

4	 If the source is described by a single spherical har-
monic Ym

n  , but m = 0 , then Bϕ = 0 , and thus only 
formulas (60) and (62) are valid. In particular, when 
the source is described via harmonic Y 0

1 ≡ cosϑ then 
Eq. (60) degenerates to 

5	 If the source is described via a number of spherical 
harmonics then measuring EM field at a single site is 
not sufficient to determine the Cn response(s). In this 
case the least squares fitting of Br and one or both 
components of horizontal magnetic field �BH at a 
number of sites (observatories) allows for estimating 
the responses (Schmucker 1999).

6	 If we assume that Zn depends weakly on the degree n 
and —to a first approximation—is equal to Z1 , and if, 
in addition to magnetic field the tangential gradients 
of the magnetic field are measured (or estimated), 
then even in the case when the source is described 
by a number of spherical harmonics the C1-response 
can be estimated from single site measurements of 
magnetic field and their gradients as 

 where ∇⊥· is an angular part of divergence operator. 
To obtain Eq. (65), we used the following equations 

(62)Cn = −
1

iω

Eϕ

Bϑ

,

(63)Cn =
1

iω

Eϑ

Bϕ

.

(64)C1 = −
a

2
tan ϑ

Br

Bϑ

.

(65)C1 = −a
Br

∇⊥ · �BH

,

(66)

Br ≈Z1(a,ω)
∑

n,m

(2n+ 1)nǫmn (ω)
1

iωµ0a− nZn(a)
Ym
n (ϑ ,ϕ),

(67)

∇⊥ · �BH =
∑

n,m

(2n+ 1)nǫmn (ω)
iωµ0

iωµ0a− nZn(a)
Ym
n (ϑ ,ϕ).

 The latter equation is obtained using equality 

 where ∇2
⊥ is an angular part of Laplacian operator.

7	 Finally, the continuity of magnetic field through the 
Earth’s surface allows us to relate “global” Cn (at the 
surface of the Earth) and Qn . By equating Eqs. (57) 
and (11), the latter with r = a , we obtain 

 and 

Appendix B: Q‑responses for two simplistic 
conductivity models of the Earth
It is instructive to explore the behavior of Qn for the 
Earth’s model of uniform conductivity

It can be shown (Parkinson 1983) that for this Earth’s 
model Qn is given by

where Jp is Bessel’s function of p-th order, and (propaga-
tion) constant k is

Let us look at the behavior of Qn for large k. Due to Eq. 
(73) this gives us an information how Qn behaves at high 
frequencies or/and for high conductivity of the Earth. 
Using asymptotic for spherical Bessel functions for large 
value of argument (Abramowitz and Stegun 1964) one 
obtains

By substituting Eq. (74) into Eq. (11) we have

Note that the latter result is valid for a sphere of any 
radius, and thus one can obtain an expression for Qn for 
the following simplistic 1-D conductivity Earth’s model 
which consists of insulating “mantle” of thickness h and 
perfect conductor underneath

(68)∇⊥ ·
(

∇⊥Y
m
n

)

= ∇2
⊥Y

m
n = −n(n+ 1)Ym

n ,

(69)Cn =
a

n+ 1

1− n+1
n Qn

1+ Qn
,

(70)Qn =
n

n+ 1

a− (n+ 1)Cn

a+ nCn
.

(71)
σ ≡ σu.

(72)Qn(ω; σ) = −
n

n+ 1

Jn+3/2(ka)

Jn−1/2(ka)
,

(73)k =
√

iωµ0σu.

(74)Qn ≈
n

n+ 1
,

∣

∣ka
∣

∣ ≫ 1.

(75)Br = 0,
∣

∣ka
∣

∣ ≫ 1.
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Using the fact that Eq. (11) is now valid for r ≥ a− h , and 
that Br = 0 due to Eq. (75) one obtains that

From the latter equation it follows that for the model 
described by Eq. (76), Qn is a real-valued quantity which 
does not depend on ω . This, in particular, means that in 
time domain the inducing and induced coefficients are 
related as

This model is in a routine use by external field research-
ers since it allows them to account for EM induction in 
a rather simple manner. Note that in case of any Earth’s 
model with finite 1-D conductivity distribution the rela-
tion between the inducing and induced coefficients in 
time domain reads as a convolution, i.e.,

The reader can find more details on time-domain mod-
eling of magnetic fields and responses in Grayver et  al. 
(2020).

Appendix C: Constructing adjoint source 
to calculate the misfit gradient
The content of this and the next appendix closely follows 
material presented in (Püthe and Kuvshinov 2013).

In this appendix we are interested in estimating gradi-
ent of the misfit (53) with respect to model parameters. 
Taking the total derivative of the data misfit in Eq. (53) 
yields

Since Qlm,pred
kn  is given by Eq. (25), the only term left to 

derive is dQlm,pred
kn  . We first note that, by taking the deriv-

ative of Eq. (25), we obtain

(76)σ ≡

{

0 a > r > a− h
∞ 0 < r < a− h

(77)Qn =
n

n+ 1

(a− h

a

)2n+1
.

(78)
gmn (t) = Qnq

m
n (t)

hmn (t) = Qns
m
n (t).

(79)

gmn (t; σ) =

t
∫

−∞

Qn(t − τ ; σ)qmn (τ )dτ

hmn (t; σ) =

t
∫

−∞

Qn(t − τ ; σ)smn (τ )dτ .

dφd(m) = 2 Re

{ N3D
∑

i=1

∑

k ,l

∑

n,m

[

Q
lm,pred
kn (ωi,m)− Q

lm,exp
kn (ωi)

]∗

[

δQ
lm,exp
kn (ωi)

]2
dQ

lm,pred
kn (ωi,m)

}

.

where we define

The critical element in Eq. (80) is the total derivative of 
the radial component of the magnetic field, dBm

n,r . To 
investigate this element, let us first define the opera-
tor Gej(�jext) as the “electric field solution” of Max-
well’s equations (1)–(2) for the current source �jext , i.e., 
�E ≡ �Ej = Gej(�jext) . Analogously, the operator Gbj(�jext) 
represents the “magnetic field solution” of Maxwell’s 
equations (1)–(2). Note that these operators are universal 
and do not depend on the type of code solving the for-
ward problem.

In a similar way, we can define the operator Geh(�hext) as 
the electric field solution of an alternative formulation of 
Maxwell’s equations,

where �hext describes a distribution of magnetic dipoles. 
Pankratov and Kuvshinov (2010a) showed that this for-
mulation can be transformed into the more common rep-
resentation of Maxwell’s equations with a current source, 
cf. Eqs. (1)–(2). The formulation given by Eqs. (82)–(83) 
is however convenient in context of the adjoint approach, 
as will become clear later. An important property of the 
operators Gej , Geh and Gbj are their reciprocity relations 
(Pankratov and Kuvshinov 2010b):

where

(80)dQ
lm,pred
kn = clk

∫

�

dBm
n,rY

l∗

k (ϑ ,ϕ)d�,

(81)clk =
1

(k + 1)
∥

∥

∥
Y l
k

∥

∥

∥

2
.

(82)
1

µ0
∇ × �Bh = σ �Eh,

(83)∇ × �Eh = iω�Bh + µ0
�hext,

(84)
〈

Gej(�a), �b
〉

=
〈

�a,Gej(�b)
〉

,

(85)
〈

Geh(�a), �b
〉

=
〈

�a,Gbj(�b)
〉

,

(86)��a, �b� =

∫

R3

�a(�r) · �b(�r)dv
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denotes a complex-valued bilinear scalar product. In a 
spherical coordinate system,

Let us now consider Maxwell’s equations (1)–(2) in an 
Earth’s model with infinitesimally changed conductivity 
σ + dσ , yielding electric and magnetic fields �E + d�E and 
�B+ d�B , respectively

Further, subtracting Eqs. (1)–(2) from Eqs. (88)–(89) we 
obtain

Using the operators defined above, we can rewrite Eq. 
(90) as

Note that we neglected the second order quantity dσd�E . 
Eqs. (92) and (91) constitute a set of Maxwell’s equa-
tions for the infinitesimal fields d�E and d�B excited by the 
“source” dσGej(�jext) . Using the operator representation a 
second time, we obtain an expression for d�B

So far, we did not make any assumptions about the exter-
nal source current �jext . We are interested in magnetic 
fields excited by elementary spherical harmonic source 
described by Eq. (24). This yields the special case of Eq. 
(93),

Making use of reciprocity relation (85) and the defini-
tions above, Eq. (80) can be rewritten in operator form:

(87)��a, �b� =

∫

R3

(

arbr + aϑbϑ + aϕbϕ
)

dv.

(88)
1

µ0
∇ × (�B+ d�B) =(σ + dσ)(�E + d�E)+�jext,

(89)∇ × (�E + d�E) =iω(�B+ d�B).

(90)
1

µ0
∇ × d�B =(σ + dσ)d�E + dσ �E,

(91)∇ × d�E =iωd�B.

(92)
1

µ0
∇ × d�B = σd�E + dσGej(�jext).

(93)d�B = Gbj
(

dσGej(�jext)
)

.

(94)d�Bm
n = Gbj

(

dσGej(�jmn )
)

.

where

is a fictitious magnetic source, consisting of radial mag-
netic dipoles distributed along Earth’s surface with 
weights that are equal to clkY

l∗

k .
Substituting the last line of Eq. (95) into Eq. (80) yields

with

With the definition of the bilinear scalar product (87), we 
can use Eq. (97) to obtain the elements of the data misfit 
gradient

Here �Eumn = Geh(�umn ) and �Em
n = Gej(�jmn ) , or in other 

words, �Eumn  and �Em
n  are the “electric field” solutions of 

Maxwell’s equations (82)–(83) and (26)–(27), respec-
tively. This representation implies a model built from 
elementary volume cells Vj each having a piece-wise con-
stant conductivity σj . The last term in Eq. (99), ∂σj/∂ms , 
depends on the model parameterization (cf. Pankratov 
and Kuvshinov (2010a)); note that the Einstein summa-
tion convention is implied for j. If the model parameters 

(95)

dQ
lm,pred
kn =clk

∫

S

dBm
n,r(a,ϑ ,ϕ)Y

l∗

k (ϑ ,ϕ)ds

=clk

∫

R3

d�Bm
n (�r)�er(�r)Y

l∗

k (ϑ ,ϕ)δ(r − a)dv

=

∫

R3

Gbj
(

dσGej(�jmn )
)

�hlk(�r)dv

=
〈

Geh(�hlk), dσG
ej(�jmn )

〉

,

(96)�hlk(�r) = clkY
l∗

k (ϑ ,ϕ)�er(�r)δ(r − a)

(97)

dφd(m) = 2 Re

{

N3D
∑

i=1

∑

n,m

〈

Geh(�umn ), dσG
ej(�jmn )

〉

}

,

(98)�umn =
∑

k ,l

[

Q
lm,pred
kn (ωi,m)− Q

lm,exp
kn (ωi)

]∗

[

δQ
lm,exp
kn (ωi)

]2
�hlk .

(99)

∂φd

∂ms
= 2 Re











N3D
�

i=1

�

n,m

�

Vj

(E
umn
r Em

n,r + E
umn
ϑ Em

n,ϑ + E
umn
ϕ Em

n,ϕ)dv











∂σj

∂ms
.
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directly represent the conductivities of each cell, i.e., 
ms = σs , then ∂σj/∂ms = δsj , where δsj is Kronecker’s 
delta. Equation (99) demonstrates the essence of the 
adjoint approach: in order to calculate the gradient of 
the data misfit, only one (per frequency and elementary 
source) additional forward modeling with excitation by 
the adjoint source �umn  is required.

Appendix D: Parametrization of the inversion 
domain
As we discussed in the main text, the inversion domain 
is divided into Nr layers of possibly variable thicknesses; 
Nr is not necessarily equal to nr (i.e., the number of later-
ally heterogeneous layers relevant for forward modeling), 
as we might only be interested in recovering the distribu-
tion of conductivity in specific layers. However, the layer 
boundaries coincide with those of the forward modeling 
domain.

The conductivity of each cell is first normalized as

where ca > 0 and cb > 0 are chosen such that s ∈ [−1, 1] 
based on assumptions about minimum and maximum 
conductivities in the mantle. Solving Eq. (100) for σ yields

We then expand s for each layer by spherical harmonics,

The model vector m is accordingly composed of the coef-
ficients of the SH expansion

Its constituents can be derived from Eq. (102) by making 
use of the orthogonality of the spherical harmonics, i.e.,

(100)s(ri,ϑi,ϕi) =
log10 σ(ri,ϑi,ϕi)− cb

ca
,

(101)σ(ri,ϑi,ϕi) = 10s(ri ,ϑi ,ϕi)ca+cb .

(102)

s(ri,ϑi,ϕi) = c00(ri)+

L
∑

l=1

c0l (ri)P
0
l (cosϑi)

+

L
∑

l=1

l
∑

m=1

[cml (ri) cosmϕi

+ dml (ri) sinmϕi]P
m
l (cosϑi).

(103)

m = [c00(r1), c
0
1(r1), ..., c

L
L(r1), d

L
L(r1),

c00(r2), c
0
1(r2), ..., c

L
L(r2), d

L
L(r2), ...

c00(rNr ), c
0
1(rNr ), ..., c

L
L(rNr ), d

L
L(rNr )]

⊤
.

(104)

cml (ri) =
1

∥

∥Pm
l

∥

∥

2

∫

�

s(ri,ϑ ,ϕ)P
m
l (cosϑ) cosmϕ d�,

where 
∥

∥Pm
l

∥

∥

2 is the squared norm of the associated Leg-
endre polynomial Pm

l .
In Appendix C, we presented a formula (Eq.  99) to 

compute the partial derivative of the data misfit φd with 
respect to the model parameters. The equation includes 
the factor ∂σk/∂mj (note that different subscripts are 
used here in order to avoid confusion) and for spherical 
harmonic parametrization, this term is calculated as

Note that mj on the left-hand side of Eq. (108) denotes a 
model parameter, while on the right-hand side, it denotes 
the order of the spherical harmonic for this model 
parameter.
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