
Zorin et al. Earth, Planets and Space            (2020) 72:9  
https://doi.org/10.1186/s40623-020-1133-4

FULL PAPER

Validity of the dispersion relations 
in magnetotellurics: Part I—theory
Nikita Zorin1,2, Elena Aleksanova1, Hisayoshi Shimizu2*   and Denis Yakovlev1

Abstract 

Application of the dispersion relations (DR) in magnetotellurics (MT) is an efficient tool of post-processing and quality 
assessment of broadband field data. The main limitation of the approach is that it requires the observed transfer func-
tions to be causal and minimum-phase (MP), which is formally secured only for 1-D and some types of 2-D imped-
ances. As a consequence, many MT practitioners involuntarily restrict the DR application to apparent resistivity curves 
acquired in relatively simple geological conditions. In the present research, we show how an inherently non-MP or 
non-causal transfer function could be recognized, and propose a universal technique, which makes it possible to cor-
rectly apply the DR virtually to any set of field MT data.
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Application of the DR in magnetotellurics
Introduction
Magnetotellurics (MT) is a passive geophysical method 
used to infer the Earth’s resistivity structure from the 
measurements of the natural electric (telluric) and mag-
netic field components either at Earth’s surface or at the 
seafloor (Simpson and Bahr 2005). This task is inherently 
unstable with respect to small errors in the initial data, 
hence its immediate solution may yield results far from 
reality. As a consequence, in order to get any reliable and 
meaningful results out of MT measurements it is essen-
tial to use a priori information (Berdichevsky and Dmit-
riev 2002).

Application of a priori knowledge to constrain the 
inverse problem is not limited to reliance on known geo-
logical, geophysical or other background information 
when inverting MT data. In fact, it begins already at the 
stage of the time-series processing. Indeed, mere under-
standing of MT signals’ usual behavior helps an expe-
rienced geophysicist to find the least noisy part of the 
record; prior knowledge of real data distribution models 

allows implementation of advanced algorithms of data 
processing (Chave 2017); the smoothness property of MT 
curves validates using smoothing splines for their robust 
estimation (Berdichevsky and Dmitriev 2002); and so on. 
In this paper, we discuss the applicability of the disper-
sion relations (DR) in magnetotellurics—a powerful but 
highly controversial a priori assumption, widely used 
for detection and elimination of noisy/biased MT data 
(Berdichevsky and Dmitriev 2008). Our ultimate goal is 
to make the DR technique practically applicable to any 
given broadband magnetotelluric measurement.

Causal and minimum‑phase functions
To begin with, we note that all available analytic con-
clusions concerning the DR validity in magnetotellurics 
(viz., Weidelt 1972, 2003; Weidelt and Kaikkonen 1994; 
Berdichevsky and Pokhotelov 1997) are derived using the 
methods of the theory of functions of a complex variable. 
The main idea of this approach is to regard the frequency 
as a complex variable Ω = ω + iz and consider the prop-
erties of transfer functions not only at real frequencies 
ω , but in the whole Ω-plane. For clarity, here we restrict 
ourselves by listing the main properties of physically real-
izable response functions to be used in the further analy-
sis. For more details on the subject, the reader is referred 
to the classic treatises of Bode (1945), Chapters  2, 7, 
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13–14); Titchmarsh (1948), Chapter 5); Landau and Lif-
shitz (1958), section 122; Landau and Lifshitz 1960, sec-
tion  62); Nussenzweig (1972), Chapter  1) and others. A 
brief review of the problem with regard to electromag-
netic prospecting methods could also be found in Zorin 
and Alekseev (2018).

Let F(ω) = |F(ω)|ei arg [F(ω)] = Re[F(ω)]+ iIm[F(ω)] 
be the Fourier spectrum of a real-valued signal f (t) . The 
first property of F(Ω) is that it is well-behaved (analytic) 
in the whole Ω-plane except of some singular points, 
where it takes on infinite values. Such points are called 
“poles” and their exclusive nature lies in the fact that 
they almost entirely (to within a constant) determine 
the behavior of F(Ω) at all other frequencies. Another 
important points called “zeros” are defined as those 
where F(Ω) = 0.

The second property of F(Ω) to be noted is the reflec-
tion symmetry, i.e.,

This equation says that F(Ω) takes complex conjugate 
values at two points of the Ω-plane which are mirror 
images of each other across the imaginary axis. In par-
ticular, since the complex conjugate of an infinite number 
is also infinite, and complex conjugate of 0 is also 0, all 
the poles and zeros of F(Ω) located at either right or left 
half (ω  = 0) of the complex plane turn out to be reflected 
to the other half (Fig. 1a).

Now assume that f (t) is not just an arbitrary signal, but 
a physically realizable response function observed at the 
output of a linear, passive, time-invariant system (“black 
box”), which is excited by the Dirac delta impulse δ(t) . 
According to the principle of causality (an effect cannot 
occur before its cause), f (t) = 0 for any t < 0 . For the 
harmonic time factor eiωt used in the paper, this state-
ment is equal to the requirement that all the poles of 

(1)F
(
−Ω∗) = F∗(Ω).

F(Ω) are restricted to be either in the upper half-plane 
( z > 0 ) or at the real frequency axis ω ( z = 0 ). As a con-
sequence, the causality concept could be translated into 
the frequency domain using the following definition: the 
transfer function F(ω) is called “causal” if F(Ω) has no 
poles in the lower half-plane (Fig. 1b).

Another concept widely employed in the theory of 
the dispersion relations is that of the minimum phase. 
The function F(ω) is called “minimum-phase” (MP) 
if F(Ω) has neither poles nor zeros in the lower half-
plane (Fig.  1c). From this definition follows the two 
major properties of MP functions. The first one lies 
in the fact that every MP function is causal (while not 
every causal function is MP), and the second one indi-
cates that if F(ω) is MP, then its complex logarithm 
ln F(ω) = ln |F(ω)| + i arg [F(ω)] has no poles in the 
lower half-plane and, hence, is also a causal function.

Dispersion relations of the two kinds
Depending on the given field of study and the particular 
mathematical representation form, an integral relation 
between the components of a complex function may be 
referred to in the literature as the dispersion relation, 
Kramers–Kronig relation, Bode relation, Sokhotski–Ple-
melj formula and the Hilbert transform (Zorin and Alek-
seev 2018). Following Berdichevsky and Dmitriev (2008), 
in this paper, we make the distinction between the dis-
persion relation of the first kind (DR-I), which connects 
the real and imaginary parts of a causal function:

and the dispersion relation of the second kind (DR-II), 
which connects the phase and logarithmical amplitude of 
a minimum-phase (MP) function:

(2a)Im[F(ω)] = π

2
· dRe[F ]
d lnω

∗ B(lnω) = DR[Re[F(ω)]],

Fig. 1  Possible locations of poles and zeros in the complex frequency plane for: a spectrum of a real-valued signal; b causal transfer function; c MP 
transfer function
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where the asterisk denotes the convolution operation, 
and the Bode kernel

is normalized in such a way that its integral over infinite 
limits is equal to one (Bode 1945).

Note that since one can always switch polarity of a 
measured signal without changing its form and ampli-
tude, the DR-II is generally correct only up to within an 
additive constant π . It is also essential to bear in mind 
that for the proper use of the dispersion relations in the 
MT method one should carefully choose their target 
functions. Though this issue is described in more detail 
further, it would be appropriate to underline here a trivial 
but important fact that any DR is originally supposed to 
be valid within one given complex function. For instance, 
provided that the causality and MP conditions are satis-
fied, Eq.  (2) may immediately be applied to the compo-
nents of the impedance tensor Ẑ , admittance tensor 
Ŷ = 1/Ẑ and Wiese–Parkinson (tipper) matrix Ŵ  , mag-
netic tensor M̂ and telluric tensor T̂  , frequency-normal-
ized tensors Ĉ = Ẑ/iωµ0 and Ẑn = Ẑ/

√
iωµ0 , etc. The 

same naturally holds for the complex apparent resistivity 
functions ρxy = Z2

xy/iωµ0 and ρyx = −Z2
yx/iωµ0 . How-

ever, the traditional MT practice is based on considera-
tion of the apparent resistivity amplitude along with the 
impedance phase, i.e., the spectral components of two 
different functions. Immediate application of the DR-II to 
such data requires Eq. (2b) to be modified as follows:

Another practical issue arises if one decides to apply 
the DR-I (Eq.  2a) to the impedance tensor components 
without their frequency normalization. As opposed to 
the dispersion relation of the second kind, the DR-I appli-
cation implies linear vertical scaling of the considered 
functions, which is substantially undescriptive for the 
components of Ẑ . The main reason is that 

∣∣∣det Ẑ(ω)
∣∣∣ is a 

rapidly ( ∼ ω over a half-space) increasing function on the 
whole domain of its definition, which effectively conceals 
the influence of the underlying geoelectric medium on 
the Ẑ components reviewed on a lin-log plot. On the 
other hand, tensor Ĉ = Ẑ/iωµ0 turns out to be 

(2b)

arg [F(ω)] = π

2
· d ln |F |
d lnω

∗ B(lnω) = DR[ln |F(ω)|],

(3)B(u) = 2

π2
ln coth

|u|
2

(4a)arg
[
Zxy(ω)

]
= π

4
·
d ln

∣∣ρxy
∣∣

d lnω
∗ B(lnω)+ π

4
,

(4b)arg
[
Zyx(ω)

]
= π

4
·
d ln

∣∣ρyx
∣∣

d lnω
∗ B(lnω)− 3π

4
.

“overnormalized” in this sense—its determinant ampli-
tude decreases as fast as ω over a half-space, and its com-
ponents appear to be equally useless for the DR-I 
application as those of the impedance tensor. A natural 
way out is to employ Basokur’s normalization 
Ẑn = Ẑ/

√
iωµ0 , which ensures that any observed fre-

quency dependence is only due to geoelectric structures 
and makes the presented data informative (Basokur 
1999). Indeed, as seen from Fig. 2, the real and imaginary 
parts representation of Zn

xy is much more descriptive than 
that of Zxy or Cxy , and qualitatively resembles the conven-
tional ( ρxy amplitude and Zxy phase) representation of the 
same MT data. Similarly, should the DR-I be applied to 
the admittance tensor Ŷ  , it better be applied to 

Ŷ n = 1/Ẑn = Ŷ
√
iωµ0 instead. Note that 

∣∣ρij
∣∣ =

∣∣∣Zn
ij

∣∣∣
2
 , 

hence all the components of Ẑn has the units of 
√
Ω ·m , 

while the components of Ŷ n are measured in 
√
S/m . Ten-

sors M̂ , T̂  , Ŵ  , and all other relative (and thereby unitless) 
MT transfer functions do not require frequency normali-
zation prior to the DR-I application to their components.

Physical meaning of the dispersion relations
The DR formulation could be manifold—for more details 
and examples as applied to MT problems the reader is 
referred to the papers of Weidelt (1972), Kunetz (1972), 
Boehl et  al. (1977), Fischer and Schnegg (1980), Mar-
cuello et al. (2005), and others. However, the ones given 
above have several useful advantages, among which we 
should highlight their simplicity both in formalism and 
practical application for smooth functions of lnω , as 
well as the presence of an illustrative physical meaning. 
Indeed, since the Bode kernel (Eq. 3) represents an infi-
nite symmetric averaging filter (Fig.  3), Eq.  (2a) implies 
that the imaginary part of a causal function is equal 
to the smoothed derivative of its real part on a log-fre-
quency plot times π/2 . Similarly, from Eq.  (2b) follows 
that the phase of a MP function is proportional with the 
same coefficient to the smoothed derivative of its ampli-
tude plotted on log–log scale.

From Fig.  3 it is also seen that the effective width of 
the Bode kernel is about one decade of frequency: ~ 74% 
of its weight lies within the region [ − ln

√
10; ln

√
10 ] 

and ~ 92%—within the region [ − ln 10; ln 10 ]. As soon as 
any geophysical measurement is essentially bounded by 
some finite frequency range, two major conclusions fol-
low. On the one hand, the boundary values of imaginary 
part (phase) constrains the behavior of the corresponding 
real part (amplitude) up to roughly half of a decade out-
side the measured frequency band (Fig. 4), which clearly 
substantiates the advantage of the combined ampli-
tude + phase (or real + imaginary parts) data inversion 
methods. On the other hand, within the inner section of 
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the frequency band the imaginary part (phase) contains 
no unique information and could be fully recovered from 
the real part (amplitude) of the same function, which may 
be effectively used to improve the quality of measured 
data or check their self consistency, as shown below.

Improving the data quality
The transfer function estimation routine in magneto-
tellurics could generally be divided into two steps. The 
first one consists of automatic processing of raw MT 
data (time series) with the help of one or another robust 
statistical algorithm and is described in detail else-
where (see Chave 2012, 2017 for a review). This step 
generally requires the measured electric and/or mag-
netic time series at one or several MT sites, frequency 

Fig. 2  The DR application to a given transfer function Zxy expressed in the form of (from top to bottom): apparent resistivity ρxy and impedance 
phase arg

[
Zxy

]
 ; real and imaginary parts of Zxy ; real and imaginary parts of Cxy = Zxy/iωµ0 ; real and imaginary parts of Znxy = Zxy/

√
iωµ0

Fig. 3  Bode kernel function. The areas of the highlighted sections are 
given as percentage of the total area under the red curve
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characteristics (calibrations) of the equipment used, and 
some a priori assumptions regarding the distribution 
and noise contamination of raw data. At the output of 

the procedure one obtains a set of independent estima-
tions (less often—a single estimation) of a given transfer 
function and the corresponding errors at each frequency. 
Most of the MT data used in the present research were 
processed with the help of either the classic commercial 
software package SSMT-2000 (Phoenix Geophysics Ltd., 
Canada) or the modern Epi-Kit software (Nord-West 
Ltd., Russia), which employs several advanced estimation 
procedures described in Epishkin (2016).

The second step, usually referred to as post-processing, 
consists of finding the best way to approximate the sepa-
rate estimations obtained earlier with smooth MT curves 
and appears to be a perfect candidate for the DR appli-
cation (Boehl et al. 1977; Fischer and Schnegg 1980). In 
some cases this interactive step requires intervention of 
an experienced specialist, but may significantly suppress 
the influence of noisy data and should be performed with 
all due care. Indeed, the perfect-quality data examples 
similar to that shown on Fig. 4 are rarely encountered in 
real practice—as a rule, many results of data processing 
turn out to be scattered and biased, even when using the 
robust algorithms with a remote reference site (Chave 
2012).

An example of such data is given in Fig. 5, which consid-
ers a 4-day MT measurement C-02 (Additional file 1) taken 
in December, 2012 as part of the cooperative Russian–
Ukrainian academic project at Baryatinskaya anomaly of 
crustal conductivity (Kulikov et al. 2018). The survey site is 
located in densely populated Western part of Russia, right 

Fig. 4  An illustration of how the DR-II constrains the behavior of 
an MT transfer function outside the measured frequency band. The 
apparent resistivity extrapolations plotted with dashed and dotted 
lines are found to be inconsistent with the available phase data

Fig. 5  Post-processing of long-period MT data acquired in Western Russia
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between the DC-electrified sections of Moscow–Minsk and 
Moscow–Kiev railways, which is responsible for the nota-
ble upward bias at periods about 3–5 s and longer. In addi-
tion, at short periods the amplitude estimations are biased 
downwards due to increased sensor noise of the employed 
magnetic coils (MTC-50 by Phoenix Geophysics Ltd.) at 
the given frequencies. Application of the DR-II helps to 
find and remove the biased data estimations, thus greatly 
improving the resulting quality of the obtained impedance 
function (Fig. 5). In this procedure it could also be useful 
to consider several data processing methods, susceptible 
to different biases, together. Brown dots in Fig. 5 represent 
the results of the conventional “Remote H” data process-
ing scheme, which effectively suppresses the bias caused 
by noise in electric channels (Chave 2012). The “noise-free” 
magnetic components for such processing were taken from 
the remote reference site at Aleksandrovka geophysical 
field camp (Aleksanova et  al. 2018) located about 80  km 
away from the survey site. Black dots correspond to the 
“Local E” single-station processing scheme which assumes 
the local electric field to be noise-free and may effectively 
suppress the bias caused by noisy magnetic data (Sims et al. 
1971). As seen from Fig.  5, both methods yield virtually 
identical results within the 10−2 s–100 s period range, but 
provide different results for noisy data: “Local E” estima-
tions are naturally more exposed to the industrial electric 
noise, while being less affected by the instrumental noise in 
the magnetic channels.

It is to be noted here that some authors (e.g., Larsen, 
1989; Sutarno and Vozoff 1991; Ernst et al. 2001) propose 
making use of the smoothness and/or DR constraints 
already at the step of automatic data processing. Though 
such algorithms could definitely be effective in many 
practical cases, they also make rather difficult to control 
the actual reliability of the obtained results. For this rea-
son, we are, so far, inclined to employ the MT process-
ing codes yielding independent estimates for each given 
frequency, with the interactive application of the smooth-
ing splines and dispersion relations during the post-pro-
cessing routine (e.g., Fig. 5; see also another one detailed 
example of the procedure given in Appendix 1).

Checking the data consistency
The dispersion relations are found to be useful in many 
other MT applications, such as detection and adjustment 
of improper equipment calibrations, quality control of 
the numerical modeling, checking the consistency of MT 
transfer functions for quantitative interpretation, etc. One 
of the promising areas of the DR application in this regard 
is the issue of the source effect recognition (Shimizu et al. 
2011), which could be briefly described as follows.

The fundamental assumption of the MT method is 
that in the non-conductive upper half-space there exists 

a quasi-uniform source giving rise to plane “waves” nor-
mally incident on the surface of the conductive Earth 
(Simpson and Bahr 2005). Notwithstanding that the 
actual sources of the magnetotelluric signal are in fact 
finite and manifold (Viljanen 2012), the plane-wave 
approximation remains mathematically correct as long as 
the skin depth for the induced currents is much less than 
the spatial scale of the external field variations (Berdi-
chevsky and Dmitriev 2002; Utada 2018), which holds 
for most MT case studies. However, departures from this 
basic assumption are routinely encountered in practice, 
e.g.: in polar and equatorial regions owing to instabili-
ties in the forms of the source fields (Simpson and Bahr 
2005); in some resistive regions of the Earth crust due to 
short spatial scale source fields from Pc3–4 pulsations 
(Murphy and Egbert 2018); in any MT data measured 
at very long periods due to the influence of the diurnal 
Sq variations (Shimizu et al. 2011); etc. In all such cases 
the source effect (provided that it is strong enough to 
significantly affect the data) forces an MT response to 
“switch” at some frequency from being excited by the 
regular plane-wave source to an input signal of some 
other type, which naturally manifests itself by violation 
of the dispersion relations. Since the vertical magnetic 
field component is more sensitive to non-uniform source 
field contributions than horizontal MT components 
(Jones and Spratt 2002; Utada 2018), the tipper function 
Ŵ  appears to be particularly vulnerable to the distorting 
influence of the source effect, as could be seen from two 
following examples.

Figure 6 shows the Wzx component estimated by apply-
ing the EMTF code of Egbert and Booker (1986) to the 
4-week MT measurement taken in September–October, 
2012, at the station IAN-37 in Iowa, USA, as part of the 
EarthScope USArray project (Murphy and Egbert 2018). 
Figure 7 depicts the Wzy component estimated by apply-
ing the BIRRP code of Chave and Thomson (2004) to 
the corrected for the principal Sq signatures 12-month 
data recorded in 2005–2006 at the geomagnetic obser-
vatory CBI in Chichijima, Japan (Shimizu et  al. 2011). 
In both cases the DR-I application confirms the incon-
sistency of the data points (marked with red) within the 
period ranges considered by above authors as being heav-
ily influenced by source effect. Such a result naturally 
prompts one to take some decisive action, e.g., exclude 
the inconsistent data estimations from the regular MT 
inversion (Marcuello et  al. 2005) or implement a more 
realistic source model (Egbert and Booker 1989).

Inverse dispersion relations
The fundamental theory of physically realizable signals 
(Bode 1945; Titchmarsh 1948; Toll 1956) generally pre-
scribes the existence of an equivalent pair of dispersion 
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relations, which may be used not only to calculate the 
imaginary part (phase) from the real part (amplitude 
logarithm) of a causal (MP) spectrum, but also vice versa. 
The “inverse” dispersion relations employed for the latter 
calculation are less popular than the “forward” relations 
considered above since they define the real part (ampli-
tude logarithm) of a transfer function only to within an 
arbitrary constant and are more difficult to implement. 
However, inasmuch as the impedance phase estimations 
are often less biased than those of the amplitude, applica-
tion of the inverse DR-II could also be reasonable (Boehl 
et al. 1977; Sutarno and Vozoff 1991).

As in the case of the forward dispersion relations, the 
inverse DR formalism is manifold (see Bode 1945; Boehl 
et  al. 1977; Fischer and Schnegg 1980; Zorin and Alek-
seev 2018). Here we give the following expressions, which 
apparently have the simplest form:

(5a)Re[F(ω)] = 1

π
Im[F ] ∗ coth (lnω)+ const,

(5b)ln |F(ω)| = 1

π
arg [F ] ∗ coth (lnω)+ const.

In the MT-Corrector software (Nord-West Ltd.) used 
for post-processing and visualization of field MT data 
throughout the paper, the issue of the unknown con-
stants is solved by automatic fitting of the calculated 
curves to the corresponding real part (log amplitude) 
spline.

By way of example, Fig.  8 shows the DR-II of both 
types as applied to the broadband MT (BBMT) data 
from site B-015 considered in Appendix 1. As seen from 
the figure, for the case when the phase is less biased than 
amplitude, the inverse DR-II provides a more intuitive 
insight of how the data should be corrected. At the same 
time, an easier-to-get but essentially equivalent forward 
DR-II apparently allows obtaining the same results, thus, 
for the sake of simplicity, below we will confine ourselves 
by considering only the dispersion relations of the for-
ward type.

Problems and limitations of the approach
So far we tacitly meant that for ideal noise-free data the 
dispersion relations of both kinds must hold or, in other 
words, that the MT transfer functions under considera-
tion are inherently causal and minimum-phase. Though 

Fig. 6  Application of the DR-I to the tipper data acquired at site IAN-37 in Iowa, USA; the data points distorted by Pc3–4 source effect are marked 
with red (modified after Murphy and Egbert 2018)
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Fig. 7  Application of the DR-I to the tipper data acquired at CBI geomagnetic observatory in Chichijima, Japan; the data points distorted by Sq 
source effect are marked with red (modified after Shimizu et al. 2011)

Fig. 8  Forward and inverse DR-II as applied to broadband MT data (cf. Fig. 10)
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some authors (e.g., Yee and Paulson 1988, 1990) origi-
nally argued for the universal validity of these useful a 
priori assumptions, their unsupported statements have 
triggered a fierce controversy (see Egbert 1990; Svetov 
1991; Berdichevsky 1999) as being at best nontrivial, 
and at worst—basically false.

An analytic proof of the DR validity exists for the MT 
impedance measured in isotropic 1-D medium (Wei-
delt 1972; see also Berdichevsky and Pokhotelov 1997; 
Weidelt 2003 for the case of frequency-dependent con-
ductivity) and on the surface of isotropic H-polarized 
(magnetic field along the structures) 2-D medium with 
arbitrary topography (Weidelt and Kaikkonen 1994). 
Numerical simulations carried out by many research-
ers (Fischer and Schnegg 1993; Marcuello et  al. 2005; 
Berdichevsky and Dmitriev 2008; Zorin and Alekseev 
2018; etc.) suggest that MT impedance and tipper are 
minimum-phase on the surface of flat E-polarized 
(electric field along the structures) isotropic 2-D mod-
els as well. Finally, countless academic and commercial 
case studies demonstrate that the DR-II is applicable 
to the major portion of the apparent resistivity curves 
encountered on land.

At the same time, the MT observations also give a 
good deal of high-quality data examples with dramatic 
DR-II violation (Berdichevsky and Dmitriev 2008), 
most  of them associated with the impedance phase 
“rolling out” of its quadrant (Chouteau and Tournerie 
2000). In an attempt to explain the anomalous behavior 
of the observed transfer functions, the numerical simu-
lations carried out in the last decades revealed at least 
three model classes where the DR-II could be violated. 
The first one requires the presence of a highly conduc-
tive 3-D body, whose shape may vary from a simple 
L-form to more exotic O-form, U-form, S-form and oth-
ers (Berdichevsky 1999; Weckmann et al. 2003; Lezaeta 
and Haak 2003; Thiel et  al. 2009; Ichihara and Mogi 
2009; Kaufman et al. 2014). The second one consists of 
strongly anisotropic models (Heise and Pous 2003; Pek 
2009; see also Marti 2014), and the last class considers 
the seafloor measurements in the presence of the coast 
effect, mostly described in MT literature by virtue of E
-polarized 2-D models (Alekseev et  al. 2009; Kapinos 
and Brasse 2011; and others).

As things stand, today we have to admit that even if 
all the fundamental assumptions of the MT method 
(namely, those of the Earth being a linear, passive, time-
invariant system excited by a quasi-uniform source) are 
satisfied, the employed transfer functions do not gener-
ally have to be neither MP nor causal (Zorin and Alek-
seev 2018). This unfortunate fact significantly reduces the 
practical value of the DR application unless the following 
issues are appropriately addressed:

•	 How to distinguish between the DR violations due to 
noisy field data and those due to inherently non-MP/
non-causal behavior of the measured response?

•	 Could the DR still be applied to check the consistency 
and improve quality of non-MP/non-causal MT trans-
fer functions?

The following section is intended to answer both of these 
principal questions.

Validity of the DR in magnetotellurics
Non‑minimum‑phase functions
For solving the stated problems it is necessary to under-
stand how the hypothetic appearance of lower half-plane 
zeros and/or poles in a given transfer function could gener-
ally affect the DR validity between its spectral components. 
The key point for such understanding lies in the concept of 
causal but non-MP functions considered below.

While the DR-I prescribes the existence of a unique 
causal function with given real part, there may exist any 
number of essentially different causal functions with the 
same amplitude. Among them, one can always distinguish 
a “canonical” (MP) function, whose phase and amplitude 
are related by the DR-II. All other transfer functions dif-
fer from the canonical one in that they have at least one 
zero in the lower half-plane. Each of these zeros leads to an 
additional positive phase shift. As a result, from all causal 
transfer functions with given amplitude, the DR-II formally 
highlights the one with minimum phase value (Toll 1956), 
which is responsible for the origin of the term “MP”.

To demonstrate this, let us consider a causal but non-MP 
function an with n zeros in the lower half-plane, i.e., assume 
that for k = 1, n there exist Ωk = |Ωk | exp (−iαk) �= 0 
with αk ∈ (0,π) , such that an(Ωk) = 0 . Then we perform 
the canonical decomposition of an by extracting all of its 
non-MP zeros without changing its amplitude as follows:

Since 
∣∣bn

∣∣ ≡ 1 , the derived function ao has the same 
amplitude as an but no zeros in the lower half-plane, and 
hence is MP. By applying Eq. (2b) to Eq. (6), we may write 
the following relation between the spectral components of 
an:

where θn is the phase of the n-component Blaschke prod-
uct bn:

(6)an(ω) = ao(ω)

n∏

k=1

ω −Ωk

ω −Ω∗
k

= ao(ω)bn(ω).

(7)arg [an(ω)] = DR[ln |an(ω)|]+ θn(ω),

(8)

θn(ω) = arg

[
n∏

k=1

ω −Ωk

ω −Ω∗
k

]
= 2

n∑

k=1

arg [ω −Ωk ].
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Now it becomes clear that the amplitude and phase 
of an arbitrary causal function are in fact related by the 
generalized formula (7), which includes an unknown 
quantity θ ≥ 0 and, hence, is effectively an inequality 
(Bechhoefer 2011). For the present research it is impor-
tant to note that, when applied to a causal but non-MP 
function an , the DR-II (Eq. 2b) turns out to be violated by 
the presence of an additional positive phase lag θn . Let us 
consider its frequency behavior in detail.

According to the reflection symmetry property (Eq. 1), 
if an has a single non-MP zero ( n = 1 ), the latter is 
restricted to lie exactly on the negative imaginary axis, 
namely, at some point Ω1 = −i|Ω1| . In this elementary 
case the non-MP term θ1 is given by

This equation shows that on a log-period scale θ1 
monotonically increases from 0 to π and has the same, 
easily recognizable smooth shape, irrespective of the 
actual |Ω1| value (Fig. 9a). Note that both ω and z values 
at the plot are given in rad/s, hence the dotted semicircle 
|Ω| = 2π corresponds to the regular frequency value of 
1 Hz.

Let us consider a more complex case when an(Ω) has 
a conjugate pair of zeros ( n = 2 ) located at the points 
Ω1 = |Ω1| exp (−iα1) and Ω2 = |Ω1| exp (iα1 − iπ) , 
where α1 ∈ (0,π/2] . Substituting these values into Eq. (8) 

(9)
θ1(ω) = 2 arg [ω + i|Ω1|] = 2 arctan [exp (ln |Ω1| − lnω)].

and making use of the properties of the inverse trigono-
metric and hyperbolic functions (Gradstein and Ryzhik 
2007), we obtain

where arctan2
(
y, x

)
 is the 4-quadrant arctangent func-

tion returning the argument of a complex number x + iy 
within the half-open interval (−π ,π ] . From Eq.  (10) it 
follows that on a log-period scale θ2 increases monotoni-
cally from 0 to 2π , while its shape varies from that of 2θ1 
for α1 = π/2 (zeros coincide at the imaginary axis) to 
an abrupt 360° flip for α1 → 0 (zeros approach the real 
axis), as shown at Fig.  9b. In the general case, an arbi-
trary phase lag θn may be represented as the correspond-
ing sum of functions defined by either Eq. (9) or (10) and, 
hence, monotonically increases with period from 0 to πn.

The above results allow to make the following conclu-
sions. First of all, we note that non-MP behavior should 
be considered as a local (in frequency) rather than global 
attribute of a given function. Indeed, though the DR-II in 
an is formally violated almost everywhere along the fre-
quency axis, the intensity of this violation is highly non-
uniform. For instance, each of the non-MP lags depicted 
at Fig.  9 approaches zero at periods about 10−3  s and 
lower, hence the dispersion relation (Eq. 2b) between the 
amplitude and phase of an turns out to be effectively valid 
everywhere within this interval. Furthermore, since the 

(10)
θ2(ω) = 2 arctan 2[sin α1, sinh (ln |Ω1| − lnω)],

Fig. 9  Possible locations of non-MP zeros in the Ω-plane (left) and the corresponding phase lags (right) due to: a a standalone zero; b a conjugate 
pair of zeros
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DR-II is intrinsically correct up to within an additive con-
stant π , the same holds true at periods of about 103 s and 
higher as well. Generally speaking, the DR-II violation 
caused by any zero located in a point Ωk of the lower half-
plane is ultimate around ω ∼ |Ωk | and negligible for all 
frequencies ω ≪ |Ωk | and ω ≫ |Ωk | . This means that the 
DR-II in its original form (Eq.  2b) is actually applicable 
not only to all MP functions, but also to those non-MP 
causal functions, which could be considered as “effec-
tively MP” at the given frequency interval [ω1,ω2]—that 
is, to any function an , whose lower half-plane zeros Ωk 
satisfy either of the conditions |Ωk | ≪ ω1 or ω2 ≪ |Ωk | 
for each k = 1, n.

Now, let us assume that the zeros of an correspond to the 
measured frequency range. Though this situation would 
force the DR-II in an spectrum to be considerably violated 
by a presence of an unknown phase lag θn (Eq. 8), the lat-
ter must belong to a very specific and easily recognizable 
family of curves shown in Fig. 9. This means that the DR-II 
may be applied to the effectively non-MP causal func-
tions as well—for that one just needs to correctly identify 
the type of the observed non-MP lag θn , define its order n 
(which is equal to the number of “unexpected” 180° phase 
flips) and then make use of the generalized DR-II (Eq. 7) 
with n additional unknowns instead of Eq. (2b).

An attentive reader must have already noticed the 
striking similarity between the phase curves given in 
Fig.  9 and many examples of non-MP data revealed by 
both MT modeling and practice. Running slightly ahead, 
we may say that, indeed, the synthetic impedances with 
rolling-out-of-quadrant phases discussed in, e.g., Berdi-
chevsky (1999), Heise and Pous (2003), Ichihara and 
Mogi (2009), Pek (2009), as well as the vast majority of 
similar MT data observed in the field, are causal trans-
fer functions with just one or two non-MP zeros. This 
makes possible to solve the whole issue of the correct DR 
application to such data merely by using the DR-I (Eq. 2a) 
or generalized DR-II (Eq. 7) instead of the regular DR-II 
(Eq. 2b).

Causality of magnetotelluric transfer functions
Prior to proceeding further, we need to briefly list some 
additional properties of the causal and minimum-phase 
functions on the Ω-plane. Firstly, a product of two causal 
(or minimum-phase) functions is also a causal (or MP) 
function. Secondly, a linear combination of causal func-
tions is causal, while such a combination of MP functions 
could be either minimum-phase or not. Finally, the ratio 
of two causal functions is universally causal only if the 
function in the denominator is MP (otherwise any lower 
half-plane zero of the latter would become a potential 
lower half-plane pole of the whole ratio).

Another important thing to be taken into account is 
that the MT method works with tensor functions (Berdi-
chevsky and Dmitriev 2008). Since conversion of these 
functions from one orthonormal basis to another is a 
linear transformation, the causal behavior of their com-
ponents observed in any given coordinate system would 
be preserved for all other coordinate systems as well, 
and hence could be considered as an intrinsic property 
of the whole tensor. This allows introducing the follow-
ing practical definition: we would call a Cartesian tensor 
“causal” if all its components are causal functions, and 
“non-causal” if this is not the case. Notably, the same def-
inition could not be extended for the (conceptual) mini-
mum-phase property of a tensor, since its validity would 
depend on the employed coordinate system.

Consider the Earth to be a linear (with respect to the 
source field), passive, time-invariant system excited by 
planar quasi-uniform source located far in the non-con-
ducting upper half-space. Then the external source field 
G is related to the horizontal electric E and magnetic H 
field components observed on the surface or inside the 
conductive Earth as follows (hereafter the dependence on 
ω is omitted in equations for simplicity):

The “horizontal electric field tensor” ê and “horizontal 
magnetic field tensor” ĥ describe the respective responses 
of the black-box Earth to an external cause G and, hence, 
are causal by definition. Though for synthetic MT mod-
els these tensors could be estimated either analytically or 
numerically, they could never be derived from the field 
data due to unknown characteristics of the real input sig-
nal. As a result, the magnetotelluric method is limited 
to dealing with “mutual” transfer functions, which relate 
two output signals and hence are not necessarily causal 
(Egbert and Booker 1989; Svetov 1991). The basic MT 
function is the impedance tensor Ẑ defined by:

Comparing Eq. (12) and Eq. (11), we get ê = Ẑĥ , hence 
Ẑ = êĥ−1 , or

where det ĥ =
(
hxxhyy − hxyhyx

)
 is the ĥ matrix determi-

nant. This equation indicates that if the inherently causal 

(11a)E =
[
Ex
Ey

]
=

[
exx
eyx

exy
eyy

][
Gx

Gy

]
= êG,

(11b)H =
[
Hx

Hy

]
=

[
hxx
hyx

hxy
hyy

][
Gx

Gy

]
= ĥG.

(12)E =
[
Ex
Ey

]
=

[
Zxx

Zyx

Zxy

Zyy

][
Hx

Hy

]
= ẐH .

(13)
[
Zxx

Zyx

Zxy

Zyy

]
= 1

det ĥ

[
exx
eyx

exy
eyy

][
hyy
−hyx

−hxy
hxx

]
,
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function det ĥ is also minimum-phase, the impedance 
tensor Ẑ has to be causal and, conversely, non-causal 
behavior of Ẑ is possible only if det ĥ is non-MP. Apply-
ing similar approach to the tipper Ŵ

it is straightforward to show that the conditions of its 
causality are exactly the same. This particular observation 
appears to be of high practical importance, since it shows 
that at every MT survey site characterized by causal 
behavior of the impedance tensor, the tipper components 
must also be causal.

Alternatively, if we consider magnetic tensor M̂

inter-site impedance tensor Q̂ (Kruglyakov and Kuvshi-
nov 2019)

inter-site tipper (Schmucker matrix) Ŝ (Berdichevsky and 
Dmitriev 2008)

or any other transfer function using the horizontal mag-
netic field Hbase from a remote base site instead of H as 
an “input”, the key role in the subject of their causality 
would be naturally transferred from det ĥ to det ĥbase.

As an equivalent alternative to Ẑ , one may also choose to 
employ the admittance tensor Ŷ  (Berdichevsky and Dmit-
riev 2008), defined by:

While the impedance function transforms H into E , the 
admittance does just the opposite, treating the electric field 
as a formal input. Consequently, the causality of Ŷ  does not 
depend on the magnetic field behavior, being fully gov-
erned by the local electric response det ê . Indeed, compar-
ing Eq. (18) and Eq. (12), we get Ŷ = Ẑ−1 = ĥê−1 , or

which makes for another useful observation that the 
admittance tensor could generally be causal even when 
the impedance tensor at the same MT site is not.

(14)Hz =
[
WzxWzy

][Hx

Hy

]
= ŴH ,

(15)

H =
[
Hx

Hy

]
=

[
Mxx

Myx

Mxy

Myy

][
Hbase
x

Hbase
y

]
= M̂H

base,

(16)E =
[
Ex
Ey

]
=

[
Qxx

Qyx

Qxy

Qyy

][
Hbase
x

Hbase
y

]
= Q̂H

base,

(17)Hz =
[
SzxSzy

][Hbase
x

Hbase
y

]
= ŜHbase,

(18)H =
[
Hx

Hy

]
=

[
Yxx
Yyx

Yxy
Yyy

][
Ex
Ey

]
= ŶE.

(19)
[
Yxx
Yyx

Yxy
Yyy

]
= 1

det ê

[
hxx
hyx

hxy
hyy

][
eyy
−eyx

−exy
exx

]
,

Finally, for the telluric tensor T̂

and any other transfer function using the electric field 
E
base from a remote base site as an “input”, the key role in 

the subject of causality is further transferred to det êbase.
From above we conclude that one should expect 

causal behavior to be the rule rather than exception not 
only for Zxy and Zyx , but, in fact, for all components of 
Ẑ , Ŵ  and any other MT tensor which employs horizon-
tal magnetic field as a formal input. Furthermore, even 
if some local tensor X̂  happens to be non-causal, the 
DR could yet be applicable to its inverse X̂−1 . Finally, in 
the unlikeliest but theoretically possible situation when 
both X̂  and X̂−1 are non-causal, the causality would still 
be preserved for any inter-site transfer function meas-
ured at the same location, provided that the base site is 
chosen in relatively “calm” area with regular MT field 
behavior. In other words, this result suggests that by 
careful choice of the appropriate target function and 
kind of relation (Eqs.  2a, 2b or 7) the DR applicability 
may be extended to the data obtained virtually at any 
survey location.

In order to translate the proposed approach into 
practice, it is necessary to know how to distinguish 
between a DR violation caused by noisy field data and 
that being an intrinsic attribute of the measured (non-
MP or non-causal) response. This issue is discussed in 
the following.

Three classes of the DR validity
For brevity, in this subsection we will confine ourselves to 
consideration of the impedance tensor, which happens to 
be the most popular transfer function of the MT method. 
However, all the reasoning and conclusions given below 
could be easily repeated for the other MT tensors as well.

As shown by Eq. (13), any impedance component Zij in 
any given coordinate system may be represented as the 
ratio of two causal (but not necessarily MP) functions dij 
and det ĥ:

From the standpoint of the DR validity this suggests the 
existence of four principal situations:

1.	 Both dij and det ĥ are MP.
2.	 Only det ĥ is MP.
3.	 Only dij is MP.
4.	 Neither dij nor det ĥ is MP.

(20)E =
[
Ex
Ey

]
=

[
Txx

Tyx

Txy

Tyy

][
Ebase
x

Ebase
x

]
= T̂E

base,

(21)Zij =
dij

det ĥ
.
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The 1st case is trivial, since Zij is a MP function and the 
dispersion relations of both kinds between its spectral 
components are valid for all frequencies ω.

In the 2nd case Zij turns out to be a causal but non-MP 
function. As shown above, this fact alone does not neces-
sarily imply a detectable DR-II violation within the meas-
ured frequency range [ω1,ω2] , since Zij may be effectively 
MP on this interval. At the same time, if at least one non-
MP zero of Zij corresponds to the measured frequency 
range, we should expect the DR-II to be violated in a very 
specific and easily recognizable way (Fig. 9). In this situ-
ation one may choose between using the DR-I (Eq.  2a), 
the generalized DR-II (Eq. 7) with n unknown constants, 
or try rotating the coordinate system in order to get rid 
of the non-MP zeros and then apply the regular DR-II 
(Eq. 2b) instead. Though some difficulties in recognizing 
non-MP behavior could be faced if a complex plane zero 
of Zij is found close to some real frequency ω0 ∈ [ω1,ω2] , 
this would also require that ln

∣∣Zij

∣∣ curve would have a 
characteristic “negative cusp” (sharp peak pointing down) 
at ω ≈ ω0 , and application of the DR-I or slight rotation 
of the impedance tensor be preferable anyway.

In the 3rd case Zij is non-causal, while its reciprocal 
Z−1
ij = 1/Zij belongs to the class of causal non-MP func-

tions described above. As a consequence, if all the lower 
half-plane poles of Zij are located far from measured fre-
quencies, both Z−1

ij  and Zij would be effectively MP on the 
interval, and both dispersion relations in Zij be valid. This 
result implies that not only non-MP, but also non-causal 
behavior of an MT transfer function should be regarded as 
its local (in frequency) rather than global attribute. At the 
same time, if m non-causal poles of Zij correspond to the 
measured frequency range, we should expect the DR-II be 
violated exactly by the amount of −θm (i.e., non-causal phase 
lags are inherently negative), and the DR-I “predicting” 
incorrect sign for the actual Im

[
Zij

]
 values (Appendix 2). 

In this situation, for proper use of the dispersion relations, 
one may consider their application to the admittance tensor 
Ŷ = Ẑ−1 or the corresponding inter-site transfer functions 
(e.g., M̂ and Q̂ = M̂Ẑ ) instead of Ẑ . Again, though some dif-
ficulties in recognizing non-causal behavior of Zij could be 
faced if one of its complex plane poles is found close to a real 
frequency ω0 ∈ [ω1,ω2] , this would also initiate a positive 
cusp of ln

∣∣Zij

∣∣ at ω ≈ ω0 , and consideration of the admit-
tance tensor Ŷ  or the corresponding inter-site transfer func-
tions instead of Ẑ would be preferable anyway.

The 4th case represents a combination of the 2nd and 
the 3rd ones and, hence, appears to be the worst from 
the standpoint of its practical identifiability. Indeed, if 
Zij has both poles and zeros in the lower half-plane, the 
associated negative and positive phase lags sum up, and 
the corresponding DR-II violation may lose its character-
istic shape depicted in Fig. 9. Furthermore, if a pole and 

a zero of the same order are located close to some point 
Ω ′ of the lower-half plane, their phase lags would largely 
compensate each other, resulting in only a minor DR-II 
violation at frequencies ω ≈

∣∣Ω ′∣∣. As a consequence, a 
reliable identification of a non-causal tensor may require 
examination of all its components together. An effec-
tive tool for confirmation of non-causal behavior for a 
“suspicious” tensor is gradual rotation of the coordinate 
system. Indeed, since this procedure generally affects dij 
without changing det ĥ , it forces the zeros of Zij to move 
along the Ω-plane, while all the Zij poles retain their orig-
inal position, thus making the DR-II violation more (or 
less) recognizable.

The obtained results allow us to introduce three gen-
eral classes of MT transfer functions:

•	 class 1—MP components of a causal tensor;
•	 class 2—non-MP components of a causal tensor;
•	 class 3—all components of a non-causal tensor.

As applied to an impedance tensor component Zij , 
these 3 classes are described in detail in Table 1, which 
makes it possible to distinguish the intrinsic DR viola-
tions from those caused by noisy data, and appropriately 
apply one or another dispersion relation to the measured 
response. Formulation of similar tables for the other 
MT transfer functions is straightforward. Note that, if 
the harmonic time factor e−iωt is used instead of eiωt , all 
the observed phases would have inverse signs and hence 
demonstrate exactly opposite frequency behavior. A uni-
versal and simple mnemonic rule is that on log-period 
scale the non-MP phase lags drive the phase of Zxy origi-
nating in its regular quadrant away from 0° value, while 
non-causal—towards (and across) it.

Summary
The principal result of our research is that the DR 
applicability to MT data happens to be of much more 
universal nature than it is generally believed. Indeed, 
the dispersion relations of both kinds are in fact appli-
cable to any component of any causal MT tensor: the 
DR-I in its original form (Eq. 2a), and the DR-II—either 
in its original (Eq. 2b) or generalized (Eq. 7 with n  = 0 ) 
forms, where the latter applies only to the functions 
with out-of-quadrant phase values. Moreover, even if 
a tensor in hand happens to be non-causal, it may be 
equivalently represented via some other causal tensors 
from the given response space. As a consequence, the 
dispersion relations could be applied virtually to any 
MT data set by making use of the appropriate target 
function and kind of relation. A key point for success 
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of this procedure is to correctly classify the considered 
transfer functions in terms of the DR validity (Table 1).

Illustrations of the above theoretical conclusions on 
synthetic and field data examples are given in the sec-
ond part of the paper, which is also intended to finally 
answer the old but principal question raised in the con-
troversy between Egbert (1990) and Yee and Paulson 
(1988, 1990): could a non-causal impedance tensor be 
actually encountered in geologically reasonable models 
and, hence, in real MT exploration?
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Appendix
Appendix 1: Post‑processing of MT data
In this appendix we consider a detailed example of the 
post-processing routine as applied to a highly noise-con-
taminated broadband MT (BBMT) measurement.

A 2-day BBMT record B-015 (Additional file 1) was taken 
in June, 2015, during regional investigations in Buryatia, 
Southeastern Russia. The measurement consists of two 
separate parts recorded by different sets of MTU equip-
ment (Phoenix Geophysics Ltd.)—one with audio-fre-
quency magnetic coils AMTC-30 (brown dots at Fig. 10a), 
and another one with low-frequency coils MTC-50 (black 
dots). The survey site is located less than 10  km away of 
Irokinda gold mine, which caused an extensive contami-
nation of the observed data with industrial noise of pre-
dominantly low-frequency nature. Though at a first glance 
the processed data may seem to have rather poor or even 
unsatisfactory quality, in fact they allow obtaining reliable 
and well-defined values of the impedance function for all 7 
decades of frequency, which could be achieved as follows.

Table 1  Classification of the impedance tensor components from the standpoint of the DR validity

Class 1—refers to MP components of a causal tensor, class 2—to non-MP components of a causal tensor, and class 3—to all components of a non-causal tensor

Zij Class 1 Class 2 Class 3

Ẑ causality Causal Causal Non-causal

DR-II validity Valid Violated by the amount of a positive 
monotonic phase lag θn (Eq. 8)

Violated by the amount of a negative monotonic phase lag −θm , 
or a non-monotonic phase lag θn − θm (Eq. 8)

DR-I validity Valid Valid Invalid (unless θn ≡ θm)

Characteristic features of 
arg

[
Zij
]
 on log-period scale

– Rolls out of its quadrant upwards and/or 
rolls in from below

Rolls out of its quadrant downwards and/or rolls in from above at 
least at some angle of Ẑ rotation

Typical features of ln
∣∣Zij

∣∣ – May reveal a negative cusp if Ẑ is rotated May reveal a cusp if Ẑ is rotated

How the DR-II could be applied Directly By using Eq. (7) with n unknowns Consider the DR application to Ŷ = Ẑ−1 or the corresponding 
inter-site tensors insteadHow the DR-I could be applied Directly Directly

https://doi.org/10.1186/s40623-020-1133-4
https://doi.org/10.1186/s40623-020-1133-4
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Fig. 10  Post-processing of a noisy BBMT record acquired in Buryatia, Southeastern Russia: a, b removal of the estimations obtained at frequencies 
characterized by increased sensor noise; c, d removal of the estimations obtained for the time frames (marked with different colors) characterized 
by high data scatter; e, f removal of the outliers and biased data to get smooth curves consistent with the DR-II
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The first step of the procedure is to remove data dis-
torted by instrumental noise. Since the optimal operating 
frequency bands of the employed magnetic coils over-
lap within the region of approximately 3–100  Hz (10−2 
s—3 × 10−1  s), the estimations obtained at frequencies 
characterized by increased sensor noise (those higher than 
100 Hz for MT data and lower than 3 Hz for AMT data) 
and hence increased scatter, could be removed (Fig. 10b). 
The next step is intended to make advantage of the fact 
that though the underground mining and ore milling 
procedures are carried out 24/7, there still must be shift 
changes and other short brakes characterized by drasti-
cally reduced level of industrial noise. For that purpose 
the estimations obtained within each of 20 time frames 
employed in data processing were marked with differ-
ent colors (Fig.  10c) and 5 time frames with the lowest 
estimation scatter were chosen for further consideration 
(Fig. 10d). This procedure significantly improved the data 
quality around the power-line frequency (50  Hz) and at 
longer periods, making removal of the remaining outliers 
and application of spline approximation routine in the next 
step (Fig.  10e) much easier. Involvement of the DR into 
the latter step helps to determine the inconsistent (e.g., 
substantially biased) data estimations. A common reason 
for the bias to appear in the results of automatic MT pro-
cessing is low signal-to-noise ratio (Chave 2012), which 
is often observed at frequencies within the “dead bands”, 
characterized by reduced values of the natural-source 
power spectrum (Simpson and Bahr 2005). The AMT 
dead band is known to be at frequencies about 1–5  kHz 
(Viljanen 2012), which serves as a plausible explanation of 
the discrepancy between the DR-II curve and correspond-
ing phase data in the left part of Fig. 10e. Since the phase 
estimations are generally less biased by random noise in 
raw MT data, sometimes it is sufficient to correct only the 
amplitude (Boehl et al. 1977). However, if the data outside 
the dead band are accurate, one may even remove esti-
mations for both components, since their actual behavior 
inside the dead band could be fully recovered using only 
the DR-II and smoothness constraints (Fig. 10f).

Appendix 2: DR‑I violation in non‑causal functions
Here we shall derive some approximate expressions 
describing the principal behavior of the DR-I violation in 
a non-causal transfer function Am:

which is free of zeros, but has m poles in the lower half of 
the complex frequency plane.

Since Am is free of zeros in the lower half-plane, 
its reciprocal A−1

m = 1/Am is a causal function 
with real Re

[
A−1
m

]
= Re[Am]/|Am|2 and imaginary 

Am = Re[Am]+ iIm[Am] = |Am| · (cosϕm + i sin ϕm),

Im
[
A−1
m

]
= −Im[Am]/|Am|2 parts related by the DR-I 

(Eq. 2a):

At the same time, A−1
m  has m zeros in the lower half-

plane, hence, its amplitude 
∣∣A−1

m

∣∣ = 1/|Am| and phase 
arg

[
A−1
m

]
= −ϕm are related by the generalized DR-II 

(Eq. 7):

where βm = DR[ln |Am|] , and θm is the phase angle of the 
m-component all-pass Blaschke product given by Eq. (8).

Having Eq. (22) and Eq. (23) in hand, we want to estimate 
the real-valued parameter p in the relation:

which would characterize the DR-I violation in Am . For 
this purpose, we make use of the simplified (approximate) 
form of the DR (e.g., Weidelt 1972; Boehl et al. 1977):

In this case Eq. (22) may be first rewritten as

and then as

Combination of Eq. (25) with Eq. (24) yields:

or, after dividing both parts by |Am|:

Then, making an additional assumption that βm is small 
enough to consider sin 2βm ≈ 2βm and cos 2βm ≈ 1 , we 
get

or

Finally, substitution of Eq. (23) into Eq. (26) yields:

(22)− Im[Am]

|Am|2
= DR

[
Re[Am]

|Am|2
]
.

(23)−ϕm = −βm + θm,

(24)DR[Re[Am]] = p · Im[Am],

DR[y] ≈ π

2

dy

d lnω
.

− Im[Am]

|Am|2
≈ π

2
· 1

|Am|4(
dRe[Am]

d lnω
|Am|2 − 2|Am|

d|Am|
d lnω

Re[Am]

)
,

(25)−Im[Am] ≈ DR[Re[Am]]− 2Re[Am]βm.

−Im[Am] ≈ p · Im[Am]− 2Re[Am]βm,

p sin ϕm ≈ 2βm cosϕm − sin ϕm.

p sin ϕm ≈ sin 2βm cosϕm − cos 2βm sin ϕm,

(26)p sin ϕm ≈ sin (2βm − ϕm).
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The obtained result expectedly shows that p ≈ 1 for 
θm ≈ πk ( k = 0,m ), i.e., wherever the DR-II in Am is 
effectively valid, the DR-I holds true as well. More inter-
esting is the value p ≈ −1 observed for θm ≈ πk − π/2 
( k = 1,m ), which shows that at frequencies character-
ized by prominent DR-II violation in Am , the DR-I yet 
provides a reasonable estimation of Im[Am] , but with the 
opposite sign.

While the derived parameter p gives some insight into 
the general relation between Im[Am] and DR[Re[Am]] , it 
takes on unrestrictedly large values for Im[Am] = 0 (for 
βm = θm ) and, hence, could not be used as a practical 
measure of the DR-I violation in Am . For this purpose, it is 
reasonable to use the normalized DR-I violation parameter 
instead:

Substitution of Eq. (25) into Eq. (28) yields:

Again, assuming βm to be relatively small and making use 
of Eq. (23), we obtain

The resulting equation states that the DR-I in Am is to be 
generally violated by no more than ~ 200% of its ampli-
tude, and this maximum violation be observed at each of 
the n frequencies where θm ≈ πk − π/2 ( k = 1,m ), i.e., 
where Re[Am] ≈ 0 and DR[Re[Am]] ≈ −Im[Am].

Though based on a number of simplifying assumptions 
not supposed to be valid in the general case, the above con-
clusions show reasonable agreement with most synthetic 
and field data (presented in the second part of the paper) 
and hence, appear to be of rather broad applicability. How-
ever, there probably exists a more accurate formulation for 
the general behavior of the DR-I violation in non-causal 
functions, which is either yet to be derived or already 
known in some field of expertise we are unfamiliar with.

Received: 15 October 2019   Accepted: 11 January 2020

(27)p ≈ sin (βm + θm)

sin (βm − θm)
.

(28)Ĩm
n
[F ] = Im[F ]− DR[Re[F ]]

|F | .

Ĩm
n

[Am] ≈
2Im[Am]− 2Re[Am]βm

|Am|
= 2(sin ϕm − βm cosϕm).

(29)Ĩm
n
[Am] ≈ 2 sin (ϕm − βm) = −2 sin (θm).
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