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Nonlinear wave growth theory 
of whistler‑mode chorus and hiss emissions 
in the magnetosphere
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Abstract 

Nonlinear processes associated with the generation process of whistler-mode chorus emissions are summarized. 
The nonlinear dynamics of energetic electrons interacting with a coherent whistler-mode wave and the formation of 
electromagnetic electron holes or hills in the velocity phase space are described. The condition for resonant electrons 
to be free from the anomalous trapping at low pitch angles is obtained. In the presence of the inhomogeneity due 
to the frequency variation and the gradient of the magnetic field, the electron holes or hills result in resonant cur-
rents generating rising-tone emissions or falling-tone emissions, respectively. After formation of a coherent wave 
at a frequency of the maximum linear growth rate, triggering of the nonlinear wave growth takes place when the 
wave amplitude is above the threshold amplitude. The wave grows to a level close to the optimum wave amplitude 
as an absolute instability near the magnetic equator. The nonlinear growth rate at a position away from the equator 
is derived for a subtracted Maxwellian momentum distribution function with correction to the formulas in the past 
publications. The triggering process is repeated sequentially at progressively higher frequencies in the case of a rising-
tone emission, generating subpackets forming a chorus element. With a higher plasma density as in the plasmas-
phere, the triggering of subpackets takes place concurrently over a wide range of frequency forming discrete hiss ele-
ments with varying frequencies. The mechanism of nonlinear wave damping due to quasi-parallel propagation from 
the equator is presented, which results in the formation of a gap at half the electron cyclotron frequency, separating a 
long rising-tone chorus emission into the upper-band and lower-band chorus emissions. The theoretical formulation 
of an oblique whistler mode wave and its interaction with energetic electrons at the n-th resonance is also presented 
along with derivation of the inhomogeneity factor.
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1  Introduction
Whistler-mode chorus emissions have been studied for 
more than half a century, and their generation mecha-
nism has not been clarified completely yet. However, 
there has been a substantial progress in our under-
standing of whistler-mode chorus emissions, thanks 
to successful reproduction of rising-tone and falling-
tone emissions by particle simulations where nonlinear 

dynamics of resonant electrons are solved by combining 
Maxwell’s equations and relativistic equations of motion 
for many energetic electrons (Katoh and Omura 2007, 
2013; Katoh et al. 2018; Hikishima et al. 2009; Tao 2014; 
Ke et  al. 2017; Lu et  al. 2019; Nogi et  al. 2020). While 
chorus emissions grow from thermal noise with the lin-
ear growth rate driven by high temperature anisotropy, 
triggered rising-tone emissions are excited by a coherent 
wave packet injected into the equatorial magnetosphere 
(Omura et  al. 1991). The rising-tone emissions show 
nearly the same features of chorus emissions, and they 
have been reproduced by particle simulations (Hikishima 
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et al. 2010; Hikishima and Omura 2012). A set of equa-
tions describing the frequency sweep rate and the non-
linear growth rate from the analysis of resonant currents 
formed by the nonlinear trapping potential of a coherent 
wave (Omura et al. 2008, 2009) have been derived. Non-
linear wave growth as an absolute instability becomes 
possible when the wave amplitude is higher than the 
threshold wave amplitude. The simple integration of the 
equations cannot reproduce some features of chorus 
emissions. Close examination of chorus emissions has 
revealed that a chorus rising-tone element with a wide 
frequency variation consists of many sub-packets with 
short and intense rising-tone emissions (Santolik et  al. 
2014). It is found that the resonant current parallel to 
the wave magnetic field also plays an important role in 
inducing variation of the frequency from that of the trig-
gering wave (Omura and Nunn 2011). The wave growth is 
due to the frequency variation, which is controlled by the 
wave amplitude. The optimum wave amplitude has been 
derived based on the optimum condition for the nonlin-
ear wave growth. Waves cannot grow much beyond the 
optimum wave amplitude.

Fine structure consisting of short rising and falling 
tones is also found in plasmaspheric hiss (Summers et al. 
2014). There have been two different scenarios of the 
generation process. One is to assume external source of 
waves in the form of chorus emissions generated outside 
the plasmasphere (Bortnik et al. 2008). This mechanism 
was necessary to compensate for the small linear growth 
rate in the plasmasphere. The linear growth rates are too 
small to account for the large amplitude of the hiss emis-
sions. It has not been explained, however, how the dis-
crete chorus elements turn into the nearly continuous 
waves with very dense spectra filling the plasmasphere. 
As shown in Summers et al. (2014) and Nakamura et al. 
(2016, 2018), hiss emissions have fine structure with clear 
polarization, ellipticity, and wave normal angles close to 
those of the parallel propagation. The nonlinear wave 
growth theory for chorus emissions is applied to explana-
tion of the fine structure, and a good agreement is found 
between the theory and the observation (Omura et  al. 
2015a) regarding the frequency ranges and wave ampli-
tudes of hiss emissions.

Chorus emissions generated near the equator propa-
gate to higher latitudes and their wave normal angles 
deviate to oblique directions. In the oblique propaga-
tion, there occurs the Landau resonance, and nonlinear 
trapping of energetic electrons takes place in addition to 
the cyclotron resonance trapping. Especially, trapping of 
energetic electrons due to the Landau resonance occurs 
effectively near half the cyclotron frequency, where the 

group velocity and the phase velocity become equal in 
the quasi-parallel propagation (Omura et al. 2009, 2019). 
Along with the gradient of the background magnetic 
field, the trapped electrons are accelerated by the paral-
lel and perpendicular electric fields of the wave, while 
the waves near half the cyclotron frequency undergo 
damping giving energy to the electrons. This results in 
the formation of a gap separating chorus elements into 
the lower-band and upper-band emissions. Another fac-
tor to separate the lower-band and upper-band chorus is 
the propagation effect. There exists the Gendrin angle, at 
which the group velocity of oblique whistler-mode waves 
becomes parallel to the background magnetic field, for 
the lower band, while the Gendrin angle does not exist 
for the upper-band. Therefore, the propagation paths of 
the lower-band and upper-band chorus emissions are 
different.

This article is not intended to review all recent devel-
opments of studies on chorus and hiss emissions. Review 
papers on chorus emissions (Tao et al. 2020) and on con-
trolled excitation of nonlinear wave-particle interactions 
(Golkowski et al. 2019) were published recently. Thanks to 
these comprehensive review papers, I can focus on provid-
ing a consistent summary of the nonlinear wave growth 
theory developed in recent years in an attempt to under-
stand results of simulations and observations of whistler-
mode chorus and hiss emissions. Section 2 summarizes the 
dynamics of resonant electrons interacting with whistler-
mode waves propagating parallel to the parabolic magnetic 
field near the magnetic equator. The condition for reso-
nant electrons to be free from the anomalous trapping at 
low pitch angles is also derived. Derivation of the nonlinear 
growth rate, threshold wave amplitude, and optimum wave 
amplitude for chorus and hiss emissions are presented in 
Sect. 3. Some inconsistencies of formulas found in the pre-
vious papers are corrected. The nonlinear growth rate at a 
position away from the equator is first obtained for a sub-
tracted Maxwellian momentum distribution function. The 
dynamics of electrons interacting with an oblique whistler 
mode wave is described in Sect. 4. The inhomogeneity fac-
tor Sn for the n-th resonance is also obtained for the first 
time as a function of the frequency sweep rate and the gra-
dient of the background magnetic field. Section  5  gives a 
summary and discussion.

2 � Dynamics of resonant electron interacting 
with parallel whistler‑mode waves

2.1 � Coherent waves
We assume a whistler-mode wave propagating parallel 
to the static magnetic field B0 . Its property as a wave is 
given by an amplitude Bw and the phase ψ . Based on the 
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derivatives in space and time, we define the wave number 
and the frequency as

and

where h is a distance along the magnetic field line. We 
define the magnetic equator at h = 0 . The frequency and 
and the wave number satisfy the dispersion relation of 
whistler-mode wave propagating in the parallel direction, 
which is given for a cold plasma as (e.g., Stix (1992))

Here, c, �e , and ωpe are the speed of light, electron cyclo-
tron frequency, and electron plasma frequency of the 
background cold plasma with a density nc , respectively. 
We simplify the dispersion relation by introducing the 
dimensionless parameters ξ and χ (> 0) satisfying the fol-
lowing relations:

and

Then, the dispersion relation (3) is written as

The phase velocity is conveniently expressed by a simple 
relation:

The group velocity is also given by

From the definitions of k and ω given by (1) and (2), we 
have

Taking partial derivative of (3) in time and using (8) and 
(9), we obtain

(1)k = −∂ψ

∂h
,

(2)ω = ∂ψ

∂t
,

(3)c2k2 = ω2 +
ωω2

pe

�e − ω
.

(4)ξ2 = ω(�e − ω)

ω2
pe

,

(5)χ2 = 1− ω2

c2k2
.

(6)χ2 = 1

1+ ξ2
.

(7)Vp = ω

k
= cχξ .

(8)Vg =
∂ω

∂k
= cξ

χ

[

ξ2 + �e

2(�e − ω)

]−1

.

(9)
∂k

∂t
= −∂ω

∂h
.

This equation implies that the wave frequency is con-
stant in the frame of reference moving with the group 
velocity. Therefore, the frequency of a wave packet does 
not change through propagation (Omura et al. 2008). As 
we will see later, the wave frequency only changes at the 
time of new wave packet formation through the absolute 
instability that takes place near the magnetic equator.

Figure 1 shows variation of the phase velocity Vp and 
the group velocity Vg as functions of frequency. At 
ω = 0.5�e , both velocities become equal. Namely, in 
the frame of reference moving with the group veloc-
ity, the wave phase becomes stationary. This property 
is very important for wave-particle interaction through 
Landau resonance, resulting in formation of upper-
band and lower-band chorus emissions as discussed in 
Sect. 4.

2.2 � Wave particle interaction with a coherent wave
For simplicity, we assume only a single wave packet 
whose wave phase as observed by a particle is smoothly 
changing in space and time. We can call the wave as 
coherent, and under the coherent wave with a finite 
wave amplitude, the trajectories of resonant electrons 
undergo nonlinear motion as described by the relativis-
tic equations of motion:

(10)
∂ω

∂t
+ Vg

∂ω

∂h
= 0.

Fig. 1  Variation of Vg , Vp , and VR . Group velocity Vg in black solid line, 
phase velocity Vp in magenta, and resonance velocities VR in dashed 
line for different energies K = 10 keV (black), 100 keV (blue), 500 keV 
(green), and 2 MeV (red) as functions of frequency ω with the plasma 
frequency ωpe = 4�e
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where m0 is the electron rest mass, and γ is the Lorentz 
factor given by

We have assumed an electron moving along the 
h-axis parallel to the background magnetic field B0 
with a parallel velocity v‖ and a perpendicular veloc-
ity �v⊥ = v⊥exp(iφ) , where a complex number is used to 
represent the phase of the perpendicular velocity vec-
tor v⊥ in the transverse plane. The background magnetic 
field satisfies ∇ · B0 = 0 , which is written in cylindrical 
coordinates with the axis at the center of the cyclotron 
motion of an electron:

where r is a radial distance from the center of the 
cyclotron motion, and the cyclotron radius is given by 
rc = γ v⊥/�e . Integrating (13) from 0 to rc , we obtain a 
radial component of the background magnetic field at the 
position of the particle:

We assume the wavenumber vector k is in the same 
direction as the background magnetic field B0 , and the 
wave becomes a purely transverse wave with Ew� = 0 
and Bw� = 0 . We decompose v , Bw , and Ew , into compo-
nents parallel and perpendicular to B0 as v = [v�, v⊥eiφ] , 
Bw = [0,Bwe

iψ ] , and Ew = [0,Ewei(ψ−π/2)] , respectively. 
We have expressed the vectors perpendicular to B0 by 
complex numbers. Inserting these elements of vectors 
into (11), we have

where ζ = φ − ψ.
Noting that the amplitude Ew of the wave electric field 

is expressed by the amplitude Bw of the wave magnetic 
field as Ew = (ω/k)Bw , the equation of motion (15) is 
rewritten as

(11)m0
d(γ v)

dt
= −e[Ew + v × (B0 + Bw)],

(12)γ =
[

1−
v2� + v2⊥

c2

]−1/2

.

(13)
1

r

∂(rBr)

∂r
+ ∂B0

∂h
= 0,

(14)Br = − rc

2

∂B0

∂h
.

(15)m0
d(γ v�)
dt

= −e(−v⊥Bw sin ζ − v⊥Br),

(16)

m0
d(γ v⊥eiφ)

dt
= −e

[

(v�Bw − Ew)(sin ζ + i cos ζ )

+v�Br − iv⊥B0

]

eiφ ,

where we normalize the wave magnetic field as 
�w = eBw⊥/m0 . Separating the real and imaginary parts 
of (16) divided by eiφ , we obtain

and

2.3 � Resonance conditions
We take a time derivative of the relative phase angle 
ζ = φ − ψ between the perpendicular velocity v⊥ of a 
particle and the wave magnetic field Bw as observed from 
a frame of reference moving with the parallel velocity v‖ 
of the particle. From (1) and (2), we have

The resonance condition between the wave and the elec-
tron is given by

Solving for VR , we have

When v� = VR , the electron is at the cyclotron resonance 
with the wave, and it undergoes strong deviation from 
the adiabatic orbit, giving energy to the wave, or receiv-
ing energy from the wave. We have plotted the variation 
of resonance velocities for different energies in Fig.  1. 
The resonance velocity is also calculated by specifying 
the resonance energy K = (γ − 1)511 keV, which is also 
a function of VR . For a specific value of the perpendicu-
lar velocity v⊥ , we can express VR as an explicit function 
from (7), (12) and (21) as

where ω̃ = ω/�e , ṼR = VR/c , ṽ⊥ = v⊥/c , and 
Ṽp = Vp/c = χξ.

Substituting (19) and (21) into (20), we obtain

(17)
d(γ v�)
dt

= v⊥�w sin ζ − γ v2⊥
2�e

∂�e

∂h
,

(18)
d(γ v⊥)

dt
=

(ω

k
− v�

)

�w sin ζ + γ v�v⊥
2�e

∂�e

∂h
,

(19)
dφ

dt
= 1

γ v⊥

(ω

k
− v�

)

�w cos ζ + �e

γ
.

(20)
dζ

dt
= dφ

dt
− ω + kv�.

(21)ω − kVR = �e

γ
.

(22)VR =
(

1− �e

γω

)

Vp.

(23)

ṼR =
ω̃2 −

√

ω̃4 + (ω̃2 + Ṽ 2
p )(1− ω̃2 − ṽ2⊥)

ω̃2 + Ṽ 2
p

Ṽp,
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where θ = k(v� − VR) . For electrons near the cyclotron 
resonance, θ varies with the order of the trapping fre-
quency ωtr , which is derived later as ωtr = χ

√

kv⊥�w/γ  . 
Since χ ∼ 1 and θ ∼ ωtr , we rewrite the equation as

Using (22), we obtain the following condition

which ensures that we can neglect the first term on the 
right-hand side of (24). The resonance velocity VR takes 
a negative value for electrons with energy less than 100 
keV, and it changes its sign for higher energies, approach-
ing to Vp in the relativistic energy range, as shown in 
Fig.  1. The condition (26) is well satisfied in the case of 
chorus wave generation due to energetic electrons of 
10 ∼ 100 keV with temperature anisotropy ( T⊥ > T� ) 
and in the case of electron acceleration to MeV energy in 
the magnetosphere, because VR approaches Vp with MeV 
energy. We thus obtain

When θ ≃ 0 , i.e., v� ≃ VR , the first-order phase variation 
becomes very small, and this is the first-order cyclotron 
resonance condition.

When electrons with small pitch angles such as those 
precipitating into the loss cone interact with a very 
large amplitude wave, (26) is not satisfied, resulting in 
anomalous trapping of the electrons transporting them 
from the loss cone to larger pitch angles (Kitahara and 
Katoh 2019). When relativistic electrons at small pitch 
angles interact with electromagnetic ion cyclotron 
(EMIC) waves, effective scattering to lower pitch angles 
and into the loss cone takes place because of the same 
mechanism (Kubota and Omura 2017). The large pitch 
angle scattering is due to variation of the perpendicular 
velocity v⊥ as indicated by (18). Taking into account the 
variation of v⊥ , Yoon and Bellan (2020) have made an 
elaborate analysis on dynamics of electrons interacting 
with a large amplitude wave with a constat frequency in 
a uniform magnetic field. They found significant scat-
tering takes place for particles at low pitch angles near 
a specific gyrophase, which is due to the first terms on 
the right-hand sides of (18) and (19). The scattering at 
low pitch angles, however, does not contribute much 

(24)
dζ

dt
= 1

γ kv⊥

(

�e

γ
− θ

)

�w cos ζ + θ ,

(25)
dζ

dt
≃ ωtr

[

(

�w

�e

)1/2(
γ kv⊥
�e

)−3/2

cos ζ + 1

]

.

(26)
(

�w

�e

)1/2

≪
(

v⊥
Vp − VR

)3/2

,

(27)
dζ

dt
= θ .

to the formation of the resonant currents exciting cho-
rus emissions. In the following analysis, we assume the 
perpendicular velocity v⊥ is constant for simplicity. 
It should be noted that variation of the perpendicular 
velocity is taken into account in the test particle sim-
ulations (Hiraga and Omura 2020; Hsieh and Omura 
2017, 2018) and all self-consistent simulaitons of cho-
rus and hiss emissions.

Assuming θ = v� − VR ≃ 0 , we take the second-order 
derivative of the relative phase angle ζ as

The first term on the right hand side of (28) is expanded 
using the equation of motion (17) as

The second term of (28) is the time variation of the reso-
nance velocity as observed by a particle moving with a 
parallel velocity v‖:

Using the phase relation ∂k/∂t = −∂ω/∂h and the wave 
equation (10), we can expand the time derivative of the 
wave number k in the last term of (30) as

We differentiate the dispersion relation (3) by h to obtain

We have defined the parameter � to incorporate 
the inhomogeneous cold electron density model 
Ne(h) along the background magnetic field line as 
Ne(h) = Ne0�e(h)/�e0 , where Ne0 and �e0 are the cold 
electron density and the electron cyclotron frequency 
at the equator, respectively. We have � = ω/�e for the 
inhomogeneous model (Omura et al. 2009), while � = 1 
for the constant cold electron density model (Omura 
et al. 2008). From (10), (30), (31), and (32), we obtain

(28)
d2ζ

dt2
= k

(

dv�
dt

− dVR

dt

)

.

(29)
dv�
dt

= �wv⊥
γ

sin ζ − v�
γ

dγ

dt
− v2⊥

2�e

∂�e

∂h
.

(30)

dVR

dt
= 1

k

(

dω

dt
− v�

γ

∂�e

∂h
+ �e

γ 2

dγ

dt

)

− 1

k2

(

ω − �e

γ

)

dk

dt
.

(31)
dk

dt
= 1

Vg

∂ω

∂t
+ v�

∂k

∂h
.

(32)
∂k

∂h
= 1

Vg

∂ω

∂h
−�

χω

2cξ(�e − ω)

∂�e

∂h
.

(33)

dVR

dt
= �e

kγ 2

dγ

dt
+ 1

k

(

1− VR

Vg

)(

1− v�
Vg

)

∂ω

∂t

− v�
γ k

[

1+�
χ2(�e − γω)

2(�e − ω)

]

∂�e

∂h
,
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where we have used the wave equation (10). The variation 
of the Lorentz factor can be estimated from the variation 
of the kinetic energy K of an electron

From the formula of the relativistic kinetic energy 
K = m0c

2(γ − 1) and Maxwell’s equation Ew = (ω/k)Bw , 
we obtain

where �w is a wave amplitude normalized by the electron 
cyclotron frequency, and it is given by �w = eBw/m0 . 
Substituting (29), (33), and (35) into (28), we obtain the 
second-order nonlinear ordinary differential equaiton of 
the phase angle as seen from the electron:

The secular term S is the inhomogeneity factor given by

where

and

Here we have defined the trapping frequency 
ωt =

√
kv⊥�w . In the non-relativistic limit of γ = 1 and 

χ = 1 ( Vp ≪ c ), electrons trapped in the wave poten-
tial oscillate with ωt near the stable equilibrium point of 
(ζ , θ) = (π , 0) in a homogeneous medium with S = 0.

We rewrite (27) and (36) as a set of equations describing 
nonlinear motion of a resonant electron under a coherent 
wave as

(34)
dK

dt
= −ev⊥Ew cos

(

ζ + π

2

)

= ev⊥Ew sin ζ .

(35)
dγ

dt
= ω�wv⊥

kc2
sin ζ ,

(36)
d2ζ

dt2
= ω2

t χ
2

γ
(sin ζ + S).

(37)S = − 1

s0ω�w

(

s1
∂ω

∂t
+ cs2

∂�e

∂h

)

,

(38)s0 =
χv⊥
ξc

,

(39)s1 = γ

(

1− VR

Vg

)2

,

(40)

s2 =
1

2ξχ

{

γω

�e

(v⊥
c

)2
−

[

2+�
χ2(�e − γω)

�e − ω

]

VRVp

c2

}

.

(41)
dζ

dt
= θ ,

(42)
dθ

dt
= ω2

tr(sin ζ + S),

where ωtr = ωtχ/
√
γ  . When the right-hand side of (41) 

is zero, i.e., dζ/dt = 0 , the first-order resonance condi-
tion is satisfied. In addition, when the right-hand side of 
(42) is zero, i.e., dθ/dt = d2ζ/dt2 , the second-order reso-
nance condition is satisfied. When |S| ≤ 1 , the second-
order resonance condition is satisfied at two phase angles 
ζ0 closer to π and ζ1 closer to 0. The point (ζ0, 0) in the 
ζ − θ phase space is a stable equilibrium point around 
which resonant electrons rotate with the angular fre-
quency ωtr , as shown in Fig. 2. The other point (ζ1, 0) is 
an unstable equilibrium point called a saddle point. The 
separatrix between trapped and untrapped resonant elec-
trons originates from this saddle point. Eliminating the 
time variable t from (41) and (42) and integrating them 
by ζ and θ , we obtain

which is the equation for trajectories in the ζ − θ plane. 
Substituting the values at the saddle point into (43), we 
obtain an equation for the separatrix

for ζ1 < ζ < ζ2 , where ζ2 is the phase of the separatrix 
crossing θ = 0 . The size of the trapping potential changes 
as a function of S (−1 ≤ S ≤ 1) . In terms of the parallel 
velocity v‖ , electrons near the resonance velocity VR can 
be trapped and oscillate around VR with the maximum 
width of the trapping velocity given by Vtr = 2ωtr/k for 
S = 0.

The separatrix between the trapped electrons and 
untrapped electrons plays a critical role in determining 
the wave growth and damping. The trapped electrons with 
S = 0 oscillate around (ζ , θ) = (π , 0) forming trajectories 
symmetric around the wave magnetic field. The symmet-
ric trajectories indicate that the trapped electrons received 

(43)θ2 + 2ω2
tr(cos ζ − Sζ ) = C ,

(44)θs = ±ωtr

√

2[cos ζ1 − cos ζ + S(ζ − ζ1)]

Fig. 2  Nonlinear trapping potential. Trajectories of electrons 
surrounding the nonlinear trapping potential in the velocity phase 
space (ζ , θ) . L = 4.5 , Q = 0.5 , τ = 0.5 , and nh/nc = 2× 10−3 (after 
Omura et al. (2008))
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no net energy on average which can be understood by the 
following equations. The kinetic energy K of an electron is 
given by

We can calculate its variation by taking dot products of v 
and both sides of (11) as

Under the purely transverse electromagnetic wave propa-
gating parallel to the static magnetic field B0 , we obtain

When resonant electrons trapped by the wave poten-
tial are located in the phase range 0 < ζ < π , they are 
accelerated. Since the center of the trapping potential is 
given by the second-order resonance condition, we have 
sin ζ = −S , and (47) is rewritten for trapped resonant 
electrons as

When chorus emissions with a rising-tone frequency are 
generated at the equator and propagate toward higher 
latitudes, we find S < 0 as we see in (37). Therefore, 
trapped electrons are accelerated under most of cho-
rus emissions except for falling-tone emissions near the 
equator, where S can be positive because of a negative 
sweep rate ∂ω/∂t < 0.

3 � Evolution of wave field due to formation 
of resonant currents

3.1 � Distribution functions of energetic electrons
As the velocity distribution function of energetic elec-
trons, we often assume a bi-Maxwellian with Gaussian 
functions of velocity components v‖ and v⊥ which go to 
±∞ . When we consider the relativistic energy range, 
the definition of the velocity distribution as the bi-Max-
wellian becomes inconvenient because of the limitation 
by the speed of light c. To avoid the inconvenience, we 
use a momentum defined by u = γ v in place of a veloc-
ity v . The range of the momentum is not limited, while 
the dimension is the same as the velocity v because the 
Lorentz factor γ = (1− c2/v2)−1/2 is dimensionless. To 
implement the loss cone distribution of energetic elec-
trons trapped by the Earth’s dipole magnetic field, we 
assume a subtracted Maxwellian distribution function at 
the equator given by

(45)K = m0c
2(γ − 1).

(46)
dK

dt
= m0v ·

d(γ v)

dt
= −eE · v.

(47)
dK

dt
= eEwv⊥ sin ζ .

(48)
dK

dt
= −eEwv⊥S.

where ρ ( 0 ≤ ρ ≤ 1 ) and β ( 0 < β < 1 ) specify relative 
height and width of a momentum distribution subtracted 
from a Maxwellian distribution, respectively. With ρ = 1 , 
a complete loss cone is realized. Summers et  al. (2012) 
showed that a bi-Maxwellian distribution function at 
the equator can keep the shape of the bi-Maxwellian dis-
tribution function at a distance away from the equator. 
Therefore, we assume a subtracted Maxwellian distribu-
tion function as a distance h from the equator as

From Liouville’s theorem, we have

Preservation of the first adiabatic invariant and energy 
conservation of an electron give

Substituting (52) and (53) into (51), we obtain

Comparing (50) and (54), and assuming 
Bh = B0(1+ ah2) , we have

(49)

f (u�,u⊥) =
N0

(2π)3/2Ut�U2
t⊥(1− ρβ)

exp

(

−
u2�
2U2

t�

)

·
[

exp

(

− u2⊥
2U2

t⊥

)

− ρ exp

(

− u2⊥
2βU2

t⊥

)]

,

(50)

fh(u�h,u⊥h) =
Nh

(2π)3/2Ut�hU2
t⊥h(1− ρβh)

exp

(

−
u2�h
2U2

t�h

)

·
[

exp

(

− u2⊥h

2U2
t⊥h

)

− ρ exp

(

− u2⊥h

2βhU
2
t⊥h

)]

.

(51)
fh(u�h,u⊥h) = f [u�(u�h,u⊥h, h),u⊥(u�h,u⊥h, h)].

(52)u2⊥ = B0

Bh
u2⊥h,

(53)u2� = u2�h + (1− B0

Bh
)u2⊥h.

(54)

fh(u�h,u⊥h) =
N0

(2π)3/2Ut�U2
t⊥(1− ρβ)

exp

(

−
u2�h
2U2

t�

)

·
{

exp

[

−
(

1− B0/Bh

2BhU
2
t�

+ B0

2BhU
2
t⊥

)

u2⊥h

]

− exp

[

−
(

1− B0/Bh

2BhU
2
t�

+ B0

2βBhU
2
t⊥

)

u2⊥h

]}

.

(55)Ut�h = Ut�,

(56)Ut⊥h = WhUt⊥,
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where

and

For the analysis of the nonlinear trapping and associated 
wave growth at a distance h, a simplified distribution 
function ft(u�,u⊥) with the following form is assumed.

Assuming the total density of the energetic electrons is 
the same with the two distribution functions, we have

Substituting (61) into (62), we obtain

We also assume the equality of the perpendicular 
momentum

Substituting (50) and (61) into (64), we obtain

Using (65), (63), and (58), we can rewrite (61) as

3.2 � Resonant currents and wave evolution
Resonant electrons v� ∼ VR are divided into two groups. 
One is trapped resonant electrons inside the nonlinear 

(57)βh =
[

1+ W 2
h

1+ ah2

(

1

β
− 1

)

]−1

,

(58)Nh = W 2
h

1− ρβh

1− ρβ
N0,

(59)Wh =
(

1+ ah2

1+ ah2
A0

)−1/2

,

(60)A0 =
U2
t⊥

U2
t�

− 1.

(61)ft(u�,u⊥) = K exp

(

−
u2�

2U2
t�h

)

δ(u⊥ − U⊥h).

(62)

∫

ft(u�,u⊥)2πu⊥du⊥du� =
∫

f (u�,u⊥)2πu⊥du⊥du� = Nh.

(63)K = Nh

(2π)3/2Ut�hU⊥h
.

(64)

∫

u⊥ft(u�,u⊥)2πu⊥du⊥du� =
∫

u⊥f (u�,u⊥)2πu⊥du⊥du�.

(65)U⊥h =
(π

2

)1/2 1− ρβ
3/2
h

1− ρβh
Ut⊥.

(66)

ft(u�,u⊥) =
Nh

(2π)3/2Ut�hU⊥h
exp

(

−
u2�

2Ut�h

)

δ(u⊥ − U⊥h).

wave potential described above. The other is those outside 
the nonlinear potential. The shape of the trapping poten-
tial in ζ − θ phase space changes as a function of S as we 
have seen above. Trajectories of trapped and untrapped 
resonant electrons become very different because of the 
variation of the resonance velocity, by which the trapped 
electrons are guided, while the untrapped electrons fol-
low adiabatic motion except for the moment crossing the 
resonance velocity. The difference in the number densi-
ties of the trapped and untrapped resonant electrons give 
rise to a resonant current JR , which is decomposed into JB 
and JE parallel to the wave magnetic field and electric field, 
respectively. These currents are calculated by

where f (u�, ζ ,u⊥) is the momentum distribution func-
tion of energetic electrons representing the phase space 
density in the three-dimensional momentum space. The 
cold electrons supporting the wave propagation is not 
included in the distribution.

From Maxwell’s equations and the equations of motion 
of cold and energetic electrons, we can obtain a set of equa-
tions describing the evolution of electromagnetic wave 
field (Omura et al. 2008).

where µ0 is the magnetic permeability in vacuum. The 
resonant current JE contributes to the variation of the 
wave amplitude, i.e., wave growth or damping, while JB 
changes the dispersion relation of the wave as a nonlinear 
term that changes the wave frequency. These resonant 
currents are initially formed by a triggering wave packet 
with the frequency ω0 and the wave number k which sat-
isfy (3). Namely, we have

Since the spatial structure of the wave phase is imposed 
by the wave packet of the triggering wave, the wave 
number k or the wavelength does not change in a short 
time scale, while the rate of the wave phase variation in 
time or the wave frequency changes in the presence of 

(67)

JB =
∫ ∞

0

∫ 2π

0

∫ ∞

−∞
[−ev⊥ cos ζ ]f (u�, ζ ,u⊥)u⊥du�dζdu⊥,

(68)

JE =
∫ ∞

0

∫ 2π

0

∫ ∞

−∞
[ev⊥ sin ζ ]f (u�, ζ ,u⊥)u⊥du�dζdu⊥,

(69)
∂Bw

∂t
+ Vg

∂Bw

∂h
= −µ0Vg

2
JE,

(70)c2k2 − ω2 −
ωω2

pe

�e − ω
= µ0c

2k
JB

Bw
,

(71)c2k2 = ω2
0 +

ω0ω
2
pe

�e − ω0
.
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JB . Denoting the frequency deviation from ω0 as δω , i.e., 
ω = ω0 + δω and assuming δω ≪ ω0 , we expand (70) 
around ω0 to obtain

Differentiating (71) with respect to ω0 , we have

From (72) and (73), we obtain

As we have analyzed the nonlinear motion of resonant 
electrons, the magnitude of the perpendicular veloc-
ity controls the width of the trapping potential and the 
period of the trapping motion. For simplicity of the anal-
ysis, we integrate the distribution function in u⊥ in the 
calculation of the resonant currents by assuming the dis-
tribution is expressed by the following form:

The average perpendicular momentum U⊥0 is calculated 
by

Substituting (75) into (68), and replacing p(u⊥) with a 
Dirac delta function δ(u⊥ − U⊥0) , we obtain

To realize a loss cone distribution function, we often 
assume a subtracted Maxwellian distribution function 
given by

The average perpendicular momentum U⊥0 is obtained 
from (76) as

Under the assumption that u⊥ ∼ U⊥0 , formation of the 
resonance current JE and JB is described by the struc-
ture of g(u‖, ζ ) . Since the dynamics of trapped resonant 

(72)

{

2ω0 +
�eω

2
pe

(�e − ω0)2

}

δω = −µ0c
2k

JB

Bw
.

(73)2c2k
∂k

∂ω0
= 2ω0 +

�eω
2
pe

(�e − ω0)2
.

(74)δω = −µ0Vg

2

JB

Bw
.

(75)f (u�, ζ ,u⊥) = g(u�, ζ )p(u⊥).

(76)U⊥0 =
∫∞
0 u⊥p(u⊥)2πu⊥du⊥
∫∞
0 p(u⊥)2πu⊥du⊥

.

(77)JE = eγ−1U2
⊥0

∫ 2π

0

∫ ∞

−∞
g(u�, ζ ) sin ζdu�dζ .

(78)

p(u⊥) =
1

1− ρβ

[

exp

(

− u2⊥
2U2

t⊥

)

− ρ exp

(

− u2⊥
2βU2

t⊥

)]

.

(79)U⊥0 =
√

π

2

(

1− ρβ3/2

1− ρβ

)

Ut⊥.

electrons is much different from that of untrapped elec-
trons, there occurs a distinct difference in the distri-
bution of trapped electrons. Representing the initial 
distribution of trapped electrons by gt(u‖, ζ ) , we express 
the total distribution function of resonant electrons by

where g0(u‖) is a unperturbed distribution function, and 
Q is the depth of an electron hole due to depletion of 
trapped resonant electrons in the velocity phase space. 
Assuming that gt(u�, ζ ) = G inside the trapping region 
and that gt(u�, ζ ) = 0 outside the trapping region, we 
rewrite (77) as

Similarly we obtain

where

The constants e and m0 are the absolute value of charge 
and the rest mass of an electron, respectively. The expres-
sion of J0 is slightly different from that in Omura et  al. 
(2008). This is because we have assumed the distribution 
function (75) in momentum rather than in velocity. The 
value G in Omura et  al. (2008) is in velocity, while the 
same G is used as in momentum in Omura et al. (2009) in 
deriving the nonlinear growth rate and the optimum and 
threshold wave amplitudes, which resulted in different 
powers of the Lorentz factor γ in these expressions. The 
nonlinear growth rates and the threshold wave amplitude 
are derived consistently based on the momentum distri-
bution function in the followings.

In evaluating G, we assume the simplified momentum 
distribution function (66) at the magnetic equator as

where U⊥0 = γV⊥0 , and Ut‖ is the thermal momentum 
in the parallel direction. We have normalized the distri-
bution to the density of hot electrons N0 at the magnetic 
equator. Integrating f over u⊥ , we obtain G of the unper-
turbed distribution function g0(u‖) at the resonance 
velocity VR as

(80)g(u�, ζ ) = g0(u�)− Qgt(u�, ζ ),

(81)

JE = −J0

∫ ζ2

ζ1

[cos ζ1 − cos ζ + S(ζ − ζ1)]1/2 sin ζdζ .

(82)

JB = J0

∫ ζ2

ζ1

[cos ζ1 − cos ζ + S(ζ − ζ1)]1/2 cos ζdζ ,

(83)J0 = (2e)3/2(m0k)
−1/2γ−1χQGU

5/2
⊥0 B

1/2
w .

(84)

f (u�,u⊥) =
N0

(2π)3/2Ut�U⊥0
exp

(

−
u2�
2U2

t�

)

δ(u⊥ − U⊥0),
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To evaluate G at a distance h from the equator, we replace 
N0 with Nh given by (58) and use U⊥h given by (65) in 
place of U⊥0 , respectively. It should be noted that Ut⊥ and 
β vary as functions of h as denoted by Ut⊥h and βh in (56) 
and (57), respectively, while Ut‖ is a constant as indicated 
by (55).

We evaluate the integrals in (81) and (82) numerically, 
and we plot the normalized currents −JE/J0 and −JB/J0 
as functions of S for −1 < S < 0 in Fig.  3. The maxi-
mum value of −JE/J0 is 0.975 at S = −0.413 , which gives 
JB = −1.3J0 . Since the negative JE causes wave growth, 
we can expect the maximum wave growth at S = −0.4 , 
which can be realized at the equator when we have the 
frequency increase as indicated in (37). Since the nega-
tive JB causes a frequency increase, as shown in (74), we 
can assume an optimum condition for the nonlinear wave 
growth. Namely, when the frequency increase δω takes 
place because of gradual formation of JB over a time TN , 
we have a frequency sweep rate on average specified by

We call the time TN as the nonlinear transition time, and 
compare it with the nonlinear trapping time Ttr by intro-
ducing a parameter τ = TN/Ttr , where the nonlinear 
trapping time is given by

Setting ∂�e/∂h = 0 and S = −0.4 in (37), we have the 
optimum frequency sweep rate for the nonlinear wave 
growth at the equator as

(85)G = N0

(2π)3/2Ut�U⊥0
exp

(

−γ 2V 2
R

2U2
t�

)

.

(86)
∂ω

∂t
= δω

TN
.

(87)Ttr =
2π

ωtr
= 2π

χ

(

m0γ

kV⊥0eBw

)1/2

.

The relation between the frequency sweep rate ∂ω/∂t and 
the wave amplitude �w (88) has been confirmed by the 
simulation shown in Fig. 5 and observations (Kurita et al. 
2012; Foster et al. 2017).

3.3 � Role of linear growth rates
To initiate the nonlinear wave growth process, we need a 
triggering wave with a finite amplitude greater than the 
threshold amplitude for nonlinear wave growth. The trig-
gering wave can be generated naturally from the thermal 
fluctuation of electromagnetic field if the linear growth 
rates of whistler mode waves are positive in the presence 
of energetic electrons. We assume a subtracted Max-
wellian distribution function of the energetic electrons 
given by (49). With non-relativistic electrons, the paral-
lel and perpendicular components Ut‖ and Ut⊥ of thermal 
momentum can be regarded as the parallel and perpen-
dicular components of thermal velocity as defined in the 
dispersion solver KUPDAP (Sugiyama et al. 2015). With 
a momentum distribution function of subtracted Max-
wellian distribution function including the bi-Maxwellian 
distribution function as a special case of ρ = 0 with a 
temperature anisotropy Ut⊥ > Ut� , we find the linear 
growth rate becomes positive over a range of frequency 
and corresponding wave number in the quasi-parallel 
direction with its maximum value with the wave number 
vector purely parallel to the background magnetic field, 
as shown in Fig.  4. We assumed a typical plasma fre-
quency as ωpe = 4�ce . With energetic electrons higher 
than 30 keV, the linear growth rate ŴL takes positive val-
ues only in the range below half the cyclotron frequency. 
In the presence of the temperature anisotropy, unstable 
wave modes grow from the thermal fluctuation level. 
Waves near the maximum linear growth rates grow with 
the linear growth rates initially. The mode with the maxi-
mum linear growth rate forms a coherent wave attaining 
a largest wave amplitude, and it suppresses the growth of 
adjacent wave modes. The coherent wave becomes a trig-
gering wave for the nonlinear wave growth process.

3.4 � Nonlinear growth rate
The nonlinear wave growth is due to the formation of res-
onant currents through phase organization of resonant 
electrons in the presence of nonlinear trapping potential 
of a coherent triggering wave. The potential is formed by 
the Lorentz force −eV⊥0 × Bw acting on electrons with 
parallel velocities close to the cyclotron resonance veloc-
ity VR . Although a large U⊥0 makes the trapping potential 
large, the temperature anisotropy of energetic electrons 

(88)
∂ω

∂t
= 0.4s0ω

s1
�w.

1.3

Fig. 3  Resonant currents as function os S. Variation of resonant 
currents JE in solid line and JB in dashed line as functions of 
the inhomogeneity factor S. At S = −0.413 , JE = −0.975J0 and 
JB = −1.3J0 as indicated by dotted lines
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is not directly required for the nonlinear wave growth. 
This is very different from the linear growth rate which 
requires the temperature anisotropy T⊥ > T� . Even with 
a condition of the negative linear growth rate, we can 
have nonlinear wave growth in the presence of large 
amplitude wave. The source of energy for the nonlinear 
growth comes from the perpendicular kinetic energy of 
resonant electrons as expressed by (68) for JE . Under a 
coherent triggering wave, resonant electrons are organ-
ized in gyrophase ζ , resulting in a negative JE . Because 
JR · Ew < 0 , the transfer of energy from the resonant 
electrons to the wave field takes place.

We define the nonlinear growth rate based on the 
wave equation (69) describing the evolution of the wave 

amplitude. In a frame of reference moving with the 
group velocity Vg , (69) is rewritten as

where

Assuming an electron hole shown in Fig.  2, we can 
find the maximum value of −JE with S = −0.4 . Since 
−JE/J0 = 0.975 ∼ 1 , we have from (83)

Substituting JE,max with JE in (90), and using (85) for 
the distribution function (84), we obtain the nonlinear 
growth rate

(89)
dBw

dt
= ŴNBw,

(90)ŴN = −µ0Vg

2

JE

Bw
.

(91)JE,max = −(2e)3/2(m0k)
−1/2γ−1χQGU

5/2
⊥0 B

1/2
w .

Fig. 4  Linear dispersion relation. Linear dispersion relation of 
a plasma consisting of cold electrons, cold ions, and minor hot 
electrons ( nh/nc = 2× 10−3 ). A subtracted Maxwellian for the 
energetic electrons is assumed with β = 0.3 , ρ = 1.0 , Ut� = 0.25c , 
and Ut⊥ = 3.0c . The frequencies and linear growth rates for different 
wave normal directions θ = 0, 15, 30, 45, 60, 75 degrees are shown in 
the same colors, respectively

Fig. 5  Chorus simulation. Electron hybrid simulation of 
whistler-mode chorus emissions. a Dynamics spectra of transverse 
electric field. b Spatial and temporal evolution of wave amplitudes 
Bw of chorus emissions in the early period of the simulation run 
indicated by red arrows. Solid lines show location of the critical 
distance ±hc(t) from the equator, where hc(t) is evaluated from the 
wave amplitude Bw(h, t) averaged over h = −10 ∼ 10c�−1

e0  (after 
Katoh and Omura (2011))
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The parameter ωph is the plasma frequency of hot elec-
trons given by ω2

ph = Nhe
2/(m0ǫ0) , where ǫ0 is the vac-

uum permittivity, and Nh and U⊥h are functions of h 
evaluated by (55) ∼ (60) and (65). The nonlinear growth 
rate is evaluated at a distance h from the equator by (92). 
The Lorentz factor γ is calculated for the trapped reso-
nant electrons from (12) with v� = VR and v⊥ = U⊥h/γ.

(92)

ŴN =
Qω2

phVg

2γUt�

(

ξ

ω�w

)1/2(
χU⊥h

πc

)3/2

exp

(

−γ 2V 2
R

2U2
t�

)

.
The nonlinear growth rate is a function of the wave 

amplitude �w(= eBw/m0) , while the linear growth rate 
is a constant for a specific set of parameters regardless 
of the wave amplitude. In Fig. 6a, both linear and non-
linear growth rates are plotted for three different cold 
plasma densities as specified by the plasma frequen-
cies ωpe/�e = 2, 4, 8 , while the density of energetic 
electrons is assumed to be constant as ωph = 0.1789 
corresponding to nh/nc = 2× 10−3 in the case of 
ωpe = 4�e . The energetic electrons form a subtracted 
Maxwellian distribution functions given by (49) with 
β = 0.3 , ρ = 1.0 , Ut� = 0.25c , and Ut⊥ = 0.3c . The non-
linear growth rates are calculated for optimum ampli-
tudes in solid lines and for threshold amplitudes in 
dashed lines, which are plotted in Fig. 6a. Derivations 
of threshold and optimum amplitudes are given in the 
following subsections. The linear growth rates plot-
ted in dash-dot lines are much smaller than the non-
linear growth rates. Peaks in both linear and nonlinear 
growth rates shift to the lower frequency ranges with 
higher plasma densities.

3.5 � Absolute instability
As we have seen in (10), the frequency of the wave 
packet is constant in the frame of reference moving 
with the group velocity. The frequency only changes 
near the equator where we can have large −JB/Bw 
inducing the frequency deviation δω given by (72). 
The wave amplitude Bw should increase to form a new 
wave packet. Expressing the derivative dBw/dt in (89) in 
terms of temporal and spatial derivatives and normal-
izing the wave amplitude, we have

To have the wave growth locally, i.e., an absolute instabil-
ity, we need ∂�w/∂t > 0 . We obtain from (93)

where we have assumed that the chorus wave packet 
propagates in the positive h direction, i.e., Vg > 0.

Frequency variation is only possible at the time of 
localized wave generation before the wave number struc-
ture in space is formed over a distance much greater than 
a spatial scale of the nonlinear resonant current. Once 
the wave number structure is given it becomes difficult 
to change the frequency from the value determined by 
the cold plasma dispersion relation. Therefore, the chorus 
emission with substantial frequency variation is only pos-
sible by the localized absolute instability rather than the 
convective instability.

(93)
∂�w

∂t
+ Vg

∂�w

∂h
= ŴN�w.

(94)
ŴN

Vg
�w >

∂�w

∂h
,

Fig. 6  Nonlinear wave growth theory. a Linear growth rates (dash–
dot lines) and nonlinear growth rates at the threshold amplitudes 
(dashed lines) and the nonlinear growth rates at the optimum 
amplitudes (solid lines). A subtracted Maxwellian for the energetic 
electrons is assumed with β = 0.3 , ρ = 1.0 , Ut� = 0.25c , and 
Ut⊥ = 3.0c . b Optimum and threshold amplitudes in solid and 
dashed lines for different values of the plasma frequency. ωpe = 2, 
4, 8 �e in blue, green, and red, respectively. The plasma frequency 
of hot electrons is kept constant as ωph = 0.1789 corresponding to 
nh/nc = 2× 10−3 for ωpe = 4�e
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3.6 � Optimum wave amplitude
As the wave grows at a frequency of the largest linear 
growth rate, the wave becomes coherent suppressing the 
growth of other waves around the frequency. Once the 
wave amplitude exceeds a threshold amplitude for an 
absolute nonlinear instability, the wave amplitude grows 
with frequency increasing monotonically at the equator 
(Omura et  al. 2009). The nonlinear wave growth stops 
near the optimum wave amplitude (Omura and Nunn 
2011) and then decreases gradually to the level of the 
threshold amplitude, resulting in a short subpacket of a 
chorus wave element.

We evaluate JB expressed by (82) with S = − 0.4 for the 
maximum JE , which gives JB = −1.3J0 , as shown in Fig. 3. 
Namely, we have

Substituting (95) into (74), and using (85) and (87), we 
calculate the frequency sweep rate δω/TN due to forma-
tion of JB over the nonlinear transition time given by (87).

Equating (86) and (88), we obtain an amplitude at which 
the optimum condition for nonlinear wave growth is sat-
isfied. Solving for Bw , we obtain the normalized optimum 
wave amplitude �̃op as

where �̃op = �op/�e0 = Bw/B0 , ω̃ph = ωph/�e0 , 
Ũt� = Ut�/c , and Ṽp = Vp/c = χξ . We can apply the 
same logic to derive the optimum amplitude for the non-
linear wave growth due to an enhancement of trapped 
resonant electrons forming a positive JB producing a fall-
ing tone emission (Omura et al. 2015a). We represent an 
electron enhancement forming an electron hill by a nega-
tive value of Q . Therefore, we use the absolute value of Q 
in (97).

Using the optimum wave amplitude, we can rewrite the 
nonlinear transition time in a normalized form

Over the period of TN a subpacket grows and then damps 
out over nearly the same period of TN . The subpacket 

(95)JB = −1.3(2e)3/2(m0k)
−1/2γ−1χQGU

5/2
⊥0 B

1/2
w .

(96)

δω

TN
= 1.3QVg

4τUt�
π−5/2

(

ωphU⊥0χ

γ c

)2

exp

(

−γ 2V 2
R

2U2
t�

)

.

(97)

�̃op =0.8π−5/2 |Q|ṼpṼg

τ ω̃

Ũ⊥0

Ũt�
ω̃2
ph

·
(

1− ṼR

Ṽg

)2

exp

(

−γ 2Ṽ 2
R

2Ũ2
t�

)

,

(98)TN�e0 = 2πγ τ

(
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propagates away from the equator interacting with coun-
ter streaming resonant electrons in the downstream of 
the wave propagation. The gyro-phases of the resonant 
electrons are modulated by the wave with frequencies 
higher than that of the original triggering wave. The 
phase-modulated resonant electrons carry the informa-
tion of the new wave packet by forming spatial structure 
with wavenumber k of the newly generated wave. The 
electrons move upstream, and generate a new triggering 
wave with the higher frequency in the upstream from the 
equator. The new wave triggers another cycle of the non-
linear wave growth, which is repeated to produce succes-
sive subpackets. Through the repetition of the subpacket 
formation, the wave frequency gradually increases, form-
ing a rising-tone chorus element consisting of a series of 
subpackets.

An example of simulations generating chorus emis-
sion is shown in Fig. 5. This is a simulation by an elec-
tron hybrid code where cold electrons are treated as a 
fluid and hot energetic electrons are treated as parti-
cles undergoing cyclotron motion under a dipole mag-
netic field (Katoh and Omura 2006). Figure  5a shows 
the frequency spectra of the wave electric field and 
the theoretical sweep rate, in black solid line, obtained 
from (88) with instantaneous wave amplitude in the 
simulation.

3.7 � Critical distance
Near the magnetic equator, the inhomogeneity factor S is 
determined by the frequency sweep rate, which is nearly 
constant through propagation of the wave packet away 
from the equator. Since the dipole magnetic field is approx-
imated by a parabolic function �e = �e0(1+ ah2) with 
a = 4.5/(LRE)

2 , where LRE represents the distance from 
the center of the Earth in the equatorial plane. The gradient 
of the magnetic field increases as a linear function of the 
distance h. We define the critical distance hc at which the 
first term and the second term of S given by (37) become 
equal (Omura et  al. 2009). Equating the two terms and 
using (88), we obtain

The black solid lines in Fig.  5b indicate the critical dis-
tances in the simulation by Katoh and Omura (2011). The 
critical distance varies as a function of the wave ampli-
tude �w0 at the generation region near the equator. Inside 
the critical distance, triggering of nonlinear wave growth 
due to frequency variation is possible, and the region 
within the critical distance can be regarded as the gen-
eration region of subpackets forming chorus emissions. 
The critical distance is used in identifying the dominant 

(99)hc =
s0ω�w0

5cas2�e0
.
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term of the inhomogeneity factor S as discussed in the 
following subsection.

3.8 � Convective wave growth
As a chorus sub-packet propagates away from the equa-
tor, it undergoes convective wave growth due to formation 
of an electron hole. At a distance much greater than hc in 
the downstream, we can neglect the first term on the right-
hand side of equation (37). Assuming the optimum wave 
growth condition S = −0.4 , we obtain

The ideal condition for convective wave growth can be 
realized if the wave amplitude increases as a linear func-
tion of h. Assuming the optimum condition is maintained 
even at a shorter distance h ( h < hc ), we find the gradi-
ent of the wave amplitude

The gradient of the wave amplitude is a condition for the 
optimum convective wave growth. The convective wave 
growth reaches a saturation when the flux of resonant 
electrons decreases as the absolute value of resonance 
velocity |VR| increases.

More quantitative evaluation of the wave growth in space 
may be made by finding a steady state solution of (93). 
Assuming ∂�w/∂t = 0, we have

where we define the convective nonlinear growth rate 
ŴN/Vg . From (92), we have

where ω2
ph = Nhe

2/(m0ǫ0) and other variables are func-
tions of h. Since the group velocity decreases in the fre-
quency rage above 0.25 �e , as shown in Fig. 1, waves at 
higher frequencies undergo larger convective growth.

3.9 � Threshold wave amplitude
Substituting the gradient of the wave amplitude (101) to 
the condition for the absolute instability (94), we obtain 
the condition for the absolute instability, i.e., triggering of 
the nonlinear wave growth process as

where
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(104)�̃w0 > �̃th,

where s2 is given by (40) with v⊥/c = Ũ⊥0/γ . The param-
eters with tilde are normalized values as used in (97). The 
parameter of the parabolic magnetic field is normalized 
as ã = ac2/�2

e0 . The wave amplitudes and frequencies 
are normalized by �e0 as �̃th = �th/�e0 and ω̃ = ω/�e0 . 
The velocity and momentums are normalized by the 
speed of light c as ṼR = VR/c and Ũ⊥0 = U⊥0/c . In 
Fig.  6b, we plot the optimum wave amplitude in solid 
lines and the threshold amplitude in dashed lines for 
different values of the plasma frequency ωpe/�e = 2 
(blue), 4 (green), and 8 (red) with the same parameters 
of energetic electrons assumed in the linear and nonlin-
ear growth rate calculation in Fig. 6a. The optimum wave 
amplitude becomes higher in the lower frequency range 
with higher plasma frequencies.

When a triggering wave with a constant frequency ω0 
and with an amplitude greater than the threshold ampli-
tude (105) is present at the equator, there occurs an elec-
tron hole forming the resonant current JB (< 0) causing 
an frequency increase by δω given by (72). The frequency 
increase makes the electron hole asymmetric with a finite 
S, resulting in the resonant current JE (< 0) causing wave 
growth at a fixed position, i.e., an absolute instability. The 
wave amplitude grows locally with the increased frequency 
forming a new wave packet detached from the triggering 
wave. The amplitude reaches the optimum wave ampli-
tude (97). The wave amplitude cannot grow much greater 
than the optimum value, because the nonlinear growth 
rate becomes smaller with a larger amplitude. The dynam-
ics of the resonant electrons also causes saturation of the 
nonlinear wave growth because of entrapping of reso-
nant electrons into the wave potential filling the electron 
hole. When the wave amplitude is growing locally there 
occurs efficient entrapping of resonant electrons because 
of enlargement of the trapping wave potential. The trapped 
electrons contribute to saturation of the wave amplitude 
by receiving energy from the wave. After the saturation, 
the wave amplitude gradually decreases, because the phase 
organized untrapped electrons move to an opposite phase 
resulting in a positive JE . The subpacket with an increased 
frequency ω0 + δω propagates to the downstream under-
going the efficient convective wave growth.

3.10 � Chorus equations
The nonlinear growth process as an absolute instabil-
ity can be described by the following set of equations 
obtained by normalizing the wave amplitude at the equa-
tor �w0 in (88) and the frequency ω in (93) as in (97).

(105)

�̃th = 100π3γ 4ξ

ω̃ω̃4
ph(χŨ⊥0)5
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and

where s0, s1, and s2 are calculated from (38), (39), and (40) 
with v⊥/c = Ũ⊥0/γ , respectively. We call these equations 
as “chorus equations”, and we tried a simple numeri-
cal integration of the equations, as presented in Fig.  6 
of Omura et  al. (2009). We find a monotonic increase 
of the wave amplitude and frequency, in which the fre-
quency increases rapidly like an exponential function 
contrary to observed chorus emissions. As it has been 
reported by Santolik et  al. (2014), chorus wave packets 
consist of many subpackets. An example of a chorus ris-
ing-tone emissions is shown in Fig. 7. A rising-tone ele-
ment of Fig.  7a is expanded in time, and instantaneous 
amplitudes and frequencies calculated from wave forms 
of the perpendicular wave magnetic field are plotted in 
Fig.  7b, c. We simulated the variation the wave ampli-
tude and frequency using the chorus equations, as shown 
in Fig. 8. We integrated the equations using the param-
eters used in the calculation of the linear and nonlinear 
growth rates in Fig. 6. When the wave amplitude reached 
the optimum wave amplitude, we reversed the sign of 
the first term of (107) which corresponds to the resonant 
current JE . As the wave amplitude damps to a level below 
�th + 0.3(�w0 −�th)(rand) , where (rand) is a uniform 
random number ( 0 ∼ 1 ), we reversed the sign again, 
and the wave starts to grow. The process of wave growth 
and damping is repeated until the frequency reaches 
0.65�e . We have introduced some randomness assum-
ing that there exist fluctuations of the electromagnetic 
fields which are radiated from counter-streaming ener-
getic electrons, which are modulated in their wave phases 
through interaction with foregoing waves. The result is 
plotted in Fig. 8. The observed wave amplitudes of sub-
packets in Fig.  7a are greater than those of the mod-
eled wave amplitudes shown in Fig. 8b. This is probably 
because of the convective wave growth from the source 
to the spacecraft. 

3.11 � Formation of chorus element
In the model of nonlinear wave growth presented 
above, we assumed nonlinear wave growth takes place 
at the equator. As we find in Fig.  5b, formation of 
each subpacket takes place at different places around 
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2γ Ũt�

�

ξ�̃w0

ω̃

�1/2�

χŨ⊥0
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the equator. A wave packet produced by the trigger-
ing of the nonlinear wave growth is relatively short 
and the frequency increase is only by a small incre-
ment given by δω , i.e., the frequency ω1 = ω0 + δω . 
The wave packet propagates away from the triggering 
point with a wave number k1 undergoing the convec-
tive nonlinear wave growth due to the electron hole 
in the velocity phase space. The wave packet with k1 
interacts with counter streaming resonant electrons 
going around the electron hole as untrapped resonant 
electrons. The amplitude of the wave packet reaches a 
substantially large amplitude. The counter streaming 
untrapped resonant electrons going though the elec-
tron hole are organized in phase with the wave number 
of the wave packet k1 . It is noted that the frequency of 
a wave packet moving with the group velocity does not 
change in the absence of the resonant current as indi-
cated by (10). The group of electrons in resonance with 
the wave packet are strongly modulated in gyro-phase 
with a wave number k1 . The phase-modulated electrons 
move to the upstream region keeping the information 
of the new wave number k1 . These electrons can work 
as an antenna which can radiate a helical wave with a 
new frequency ω1 that satisfies the local dispersion rela-
tion with the wave number k1 . The helical wave works 
as a new triggering wave for the next cycle of the non-
linear wave growth. The triggering process is repeated 
sequentially with slightly different frequencies. A model 
of the subpacket formation has been proposed based on 
the chorus equations integrated repeatedly at slightly 
different positions moving to the upstream region 
gradually. The model has reproduced the observed fea-
ture that the wave frequency drops between subpack-
ets (Hanzelka et  al. 2020). The tendency for points of 
the subpacket formation to shift to the upstream from 
the equator is often found in the simulation suggesting 
the sequential triggering as suggested by the model, but 
this is not always the case in the particle simulations, as 
presented in Fig. 3 of Hikishima et al. (2009).

In each process of the nonlinear wave growth, the 
wave amplitude saturates around the optimum wave 
amplitude. Therefore the spectrum of the chorus emis-
sion near the equator follows the profile of the optimum 
wave amplitude as a function of frequency. The opti-
mum amplitude decreases at higher frequencies. When 
the optimum amplitude becomes less than the threshold 
amplitude, the nonlinear wave growth cannot take place. 
The frequency range of chorus emissions is determined 
from the relation of the optimum and threshold ampli-
tudes. Since the threshold amplitude also decreases at 
higher frequency in most cases, the highest frequency 
of chorus elements is determined by another mecha-
nism such as the cyclotron damping near the electron 
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cyclotron frequency. The formation process suggested 
above is confirmed by an observation of chorus emissions 
by THEMIS spacecraft (Kurita et al. 2012). The process is 
also confirmed by simulation studies, as shown in Fig. 6 
of Katoh and Omura (2013), and Fig.  3 of Katoh and 
Omura (2016).

3.12 � Plasmaspheric hiss
The threshold amplitude �th for the nonlinear wave 
growth strongly depends on the gradient of the mag-
netic field as we find a2 in (105). Katoh and Omura (2013) 
studied the effect of the gradient of the magnetic field on 
generation process of chorus and broadband hiss-like 

Fig. 7  Chorus observation. Chorus emissions and sub-packet structures of a single element observed by Van Allen Probe A (after Foster et al. 
(2017))
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emissions. For the small gradient case, the threshold 
amplitude becomes very low, and there arises a big gap 
between the optimum and threshold amplitudes allowing 
the nonlinear wave growth process occurs in wide range 

of the amplitudes and frequencies. In the simulations by 
the electron hybrid code (Katoh and Omura 2007), we 
find broadband hiss-like emissions for the small gradient 
case, in which we find many rising-tone emissions and 
some falling-tone emissions with shorter duration peri-
ods being generated. With larger gradient, the threshold 
amplitude becomes greater than the optimum amplitude, 
and generation of rising-tone emissions are suppressed.

The generation of these emissions with frequency vari-
ation is due to a coherent wave that modify the velocity 
distribution function F(v‖) with its wave potential formed 
at the cyclotron resonance velocity VR as we studied in the 
previous sections. Depending on the numbers of trapped 
and untrapped resonant electrons, we have either an elec-
tron hole or an electron hill as shown in Fig.  9a. When 
we have depletion of trapped electrons, an electron hole 
is generated, and we find more resonant electrons in the 
direction of the wave magnetic field vector Bw , which 
gives rise to a negative JB inducing the frequency increase 
as indicated by (74). As the frequency increases, the abso-
lute value of the resonance velocity decreases shifting to 
the higher density part of the velocity distribution func-
tion making the hole deeper. Because of the rising-tone 
frequency, the shape of the electron hole is distorted, as 
shown in Fig. 9b, which make the perpendicular velocities 
of the untrapped resonant electrons gathered in the direc-
tion of the wave electric field vector Ew , resulting in a nega-
tive JE for the wave growth. On the other hand, when we 
have enhancement of trapped electrons, an electron hill is 
formed, and we find more resonant electrons in the oppo-
site direction of Bw giving rise to a positive JB inducing the 
frequency decrease. As the frequency decreases, the abso-
lute value of the resonance velocity increases shifting to the 
lower density part of the distribution function. The elec-
tron hill formed by the trapped resonant electrons is more 
enhanced with a less number of untrapped resonant elec-
trons outside the trapping wave potential. Because of the 
distortion of the trapping potential due to the frequency 
decrease, the perpendicular velocities of trapped electrons 
are in the direction of Ew forming a negative JE for the wave 
growth. Therefore, the velocity distribution function F(v‖) 
is unstable in the presence of the coherent wave both for 
rising-tone and falling-tone triggered waves. As we have 
studied the convective wave growth, rising-tone emis-
sions have a better chance of the wave growth because of 
the increasing gradient of the magnetic field in the down-
stream from the equator.

In the plasmasphere, the ratio of the electron plasma 
frequency ωpe to the electron cyclotron frequency �e is 
much increased to 15–25, while the ratio is 2–5 outside the 
plasmasphere. The ratio controls the frequency range over 
which the nonlinear wave growth takes place, as shown 

Fig. 8  Chorus model. Formation of sub-packets of a single chorus 
emission at the equator with V⊥0 = 0.45c and Ut� = 0.25c
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in Fig. 10a. The frequency range over which the optimum 
amplitude (solid line) is greater than the threshold ampli-
tude (dashed line) shifts to the lower frequency range as 
the plasma frequency increases ( ωpe/�e = 5, 15, 25 ). We 
plot frequencies in Hz assuming the electron cyclotron 
frequency fce = 9 kHz. The large ωpe/�e makes the fre-
quency ranges of the nonlinear wave growth much lower 
(< 0.1�e) . As we have seen in the case of hiss-like emis-
sions, we can have formation of many sub-packets at the 
same time and the same position, when the threshold 
amplitude is much smaller than the optimum wave ampli-
tude. The nonlinear transition time for formation of the 
resonant currents, which is calculated from the optimum 
wave amplitude, becomes shorter as the plasma frequency 
increases, as shown in Fig.  10b. This suggests the time 
scales of the generation of hiss waves are shorter than those 
of chorus emissions.

Initially we may need a seed wave that may grow from 
the linear instability or external sources such as whistlers or 
chorus coming from the outside of the plasmasphere. Once 
the nonlinear wave growth is initiated by a triggering wave, 
triggering of short wave packet expands over the entire fre-
quency range over which the optimum amplitude is greater 
than the threshold amplitude. Because of the concurrent 
triggering, the wave frequency spectra look like noisy inco-
herent waves. The frequencies of these sub-packets are 
usually well separated each other so that their wave poten-
tials do not overlap in the velocity phase space. Using the 
cyclotron resonance condition (21), we can calculate the 
minimum frequency separation �ω corresponding to twice 
of the trapping velocity Vtr as

From the resonance condition (21), we have

Using Vtr = 2ωtr/k and (109), we obtain

When the frequencies of two wave packets adjacent in 
frequency are separated much greater than �ω , which 
we call the separability condition, the resonant interac-
tion of each of the waves with energetic electrons is not 
affected by other waves. The interaction is the same as in 
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Fig. 9  Triggering of rising and falling tone emissions. Velocity 
distribution function unstable to a coherent triggering wave. a 
Variation of resonance velocities of rising-tone and falling tone 
emissions. b Electron hole and hill in the velocity phase space giving 
growth to rising-tone and falling-tone emissions (after Omura et al. 
(2015a))
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the case of a single wave interacting with energetic elec-
trons. Using the optimum wave amplitude, we calculated 
�ω for different ωpe/�e , as plotted in Fig. 10c. The band-
width in Fig.  3b of Omura et  al. (2015a) was calculated 
with the threshold wave amplitude, showing that the sep-
arability condition is well satisfied at the moment of trig-
gering of the nonlinear wave growth.

3.13 � Particle simulation of hiss emissions
A particle simulation has been conducted by using a 
particle code that was studied for chorus simulations 
(Hikishima et  al. 2009) with the plasma frequency 
ωpe = 15�e0 (Hikishima et  al. 2020). The simulation 
reproduced the generation process of hiss emissions, 
as shown in Fig.  11. The simulation was started with 
electromagnetic thermal noise due to limited num-
ber of super particles representing the dense cold elec-
trons and energetic hot electrons with the density ratio 

Fig. 10  Properties of hiss emissions based on nonlinear wave 
growth theory. a Optimum (solid lines) and threshold (dashed 
lines) amplitudes, b nonlinear transition time TN with τ = 0.5 , and 
c bandwidth as coherent waves for different cold plasma densities 
specified by the electron plasma frequency fpe normalized by the 
cyclotron frequency fce = 9 kH

Fig. 11  Particle simulation of hiss emissions. a Dynamics frequency 
spectra of waves propagating forward in the direction of the 
magnetic field at positions h = −100, 0, 50, 100 c�−1

e0  at the initial 
phase of the simulation ( t = 0 ∼ 8× 104 �−1

e0  ). The equator is 
at h = 0 . b Spatial and temporal evolution of transverse wave 
amplitudes Bw of waves propagating forward (right panel) and 
backward (left panel) along the magnetic field line for an short time 
interval t = 4.35 ∼ 4.60× 105 �−1

e0  (after Hikishima et al. (2020))
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nh/nc = 4 × 10−4 . Hot electrons have a temperature ani-
sotropy given by thermal momentums Ut� = 0.25c and 
Ut⊥ = 0.4c with β = 0.3 for the subtracted-Maxwellian 
distribution at the equator. The transverse waves in the 
simulations are separated into forward and backward 
waves based on their spatial helicity as whistler-mode 
waves. Figure 11a shows the initial phase of the genera-
tion process where waves are gradually excited because 
of the positive linear growth rate and subsequent non-
linear wave growth process with frequency variations. 
Small scale structures with rising-tone and falling-tone 
frequencies grow concurrently at different frequencies. 
At a position h = 100c�−1

e0  away from the equator, the 
nonlinear convective growth makes the wave packet 
significantly larger than those near the equator. The 
generation of the wave packets, which we call hiss ele-
ments, continues for a long time, as shown in Fig. 11b. 
The spatial and temporal profile of hiss elements during 
a relatively short period of 4.35 ∼ 4.60× 105�−1

e0  . We 
find many discrete hiss elements propagating with differ-
ent group velocities corresponding to different wave fre-
quencies. We can understand that hiss emission consists 
of many discrete wave packets (hiss elements), which of 
them are undergoing the nonlinear wave-particle inter-
action as we find in the generation process of chorus 
emissions.

3.14 � Coherency and incoherency
Coherency is defined in different ways in different cases. 
In the case of a wave particle interaction, the interaction 
is called coherent when particles interact with a wave 
having a smooth variation of the amplitude and the wave 
phase. Even with two waves whose resonance veloci-
ties are well separated in the velocity phase space as we 
assumed in the separability condition of hiss elements, 
the interaction is coherent when the particles interact 
with one of the waves at a time. Particles interacting with 
a single wave undergo nonlinear trapping motion when 
the parallel velocity of a particle is within the range of 
trapping velocity from the resonance velocity

The velocity range shown above is the width of the trap-
ping wave potential in the velocity phase space, which 
we call the trapping region. When |v� − VR| ≫ Vtr , a 
particle hardly feels the effect of the wave, undergoing 
an adiabatic motion with very small perturbation. When 
resonance velocities of the two waves are close to each 

(111)VR − Vtr < v� < VR + Vtr.

other, the trapping regions of the waves overlap. The par-
ticle motion becomes chaotic when it is under the direct 
influences of two waves with different frequencies. The 
particle motion becomes incoherent with the wave struc-
tures. In this case, we describe the wave-particle inter-
action as incoherent, when there occurs overlapping of 
trapping potentials in the velocity phase space. The trap-
ping velocity Vtr of a whistler mode waves in the paral-
lel propagation depends on both wave amplitude Bw and 
perpendicular velocity of a resonant electron v⊥ , because 
the trapping potential is formed by the Lorentz force 
−ev⊥ × Bw . Therefore, the coherency of the cyclotron 
wave-particle interaction also depends on the particle 
property v⊥ . In the quasi-linear diffusion theory, many 
waves forming a band of wave spectra are assumed, and 
the waves are incoherent for resonant electrons because 
of overlapping of trapping potentials of the waves.

4 � Oblique whistler mode wave‑particle interaction
4.1 � Dispersion relation and group velocity of oblique 

whistler‑mode wave
As the wave packet propagates away from the equa-
tor, the wave normal angle becomes gradually oblique 
because of the curvature of the magnetic field. The cold 
plasma dispersion relation of an oblique whistler mode 
wave is given from the Appleton–Hartree equation 
(e.g., Helliwell (1993)) as

where X = ω2
pe/ω

2 , Y = �e/ω , and θ is the angle between 
the background magnetic field and the wave vector. We 
take the direction of the ambient magnetic field in the 
z-direction, keeping the wave number vectors in the 
plane formed by x and z axes, as shown in Fig. 12a. We 
assume that the plasma density and the magnetic field are 
constant in time, namely, ∂X/∂t = 0 , and ∂Y /∂t = 0 . In 
the absence of nonlinear resonant currents, we assume 
D(ω, kz , kx) = 0 is always satisfied for all combina-
tions of ω , kz , and kx . In observing chorus emissions at a 
fixed position in space, we find ∂ω/∂t  = 0 , then we have 
∂kz/∂t  = 0 and ∂kz/∂t  = 0 to make propagation of the 
wave possible with D = 0 . Therefore, we have

(112)

D(ω, kz , kx) =
c2(k2z + k2x )

ω2
− 1

+ 2X(1− X)

2(1− X)− Y 2 sin 2θ ± Y
√

Y 2 sin 4θ + 4(1− X)2 cos 2θ
= 0,
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Noting that ω , kz,  and   kx are defined as derivatives of 
the wave phase ψ as ω = ∂ψ/∂t , kz = −∂ψ/∂z , and 
kx = −∂ψ/∂x , respectively, we find by changing the 
order of differential operations

Multiplying (113) by ∂ω/∂D , and substituting (114), we 
obtain

We define the parallel and perpendicular components of 
the group velocity V g as Vg‖ and Vg⊥ . Since the frequency 
is constant in the frame of reference moving with the 
group velocity, we have

(113)
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Comparing (115) and (116), we obtain

The lengthy derivatives of D in (117) are presented in 
Appendix A of Hsieh and Omura (2017), where “ YYω ” 
in Equation A21 needs to be replaced by “ 2YYω ”. Using 
(117), we can calculate θgB , angle of group velocity V g 
with respect to the background magnetic field, as a func-
tion of frequency ω for different wave normal angles θ , as 
plotted in Fig. 13a.

4.2 � Decomposition of oblique wave
We can write down an oblique whistler-mode wave 
by the following vector relations (Bell 1984; Nunn and 
Omura 2015; Omura et al. 2019). The wave electric field 
is expressed by

and the wave magnetic field is given by

(116)
∂ω

∂t
+ Vg�

∂ω

∂z
+ Vg⊥

∂ω

∂x
= 0.

(117)

Vg� = − ∂D

∂kz

(

∂D

∂ω

)−1

, Vg⊥ = − ∂D

∂kx

(

∂D

∂ω

)−1

.

(118)Ew = exE
w
x sinψ − eyE

w
y cosψ + ezE

w
z sinψ ,

Fig. 12  Vector relations of oblique whistler-mode wave. a 
Configuration of vectors of the oblique whistler mode waves 
interacting with a resonant electron. b Wave vectors of right-hand 
circularly polarized wave (in red) and left-hand circularly polarized 
wave (in blue) in a plane perpendicular to the background magnetic 
field (after Omura et al. (2019))

Fig. 13  Properties of oblique whistler-mode waves. a Angles of 
group velocity vector Vg as functions of frequency for different wave 
normal angles [after Hsieh and Omura (2017)]. b Difference of phase 
velocity and group velocity as functions of frequency ω and the wave 
normal angle θkB (after Hsieh and Omura (2018))
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where ex , ey , and ez are unit vectors in the directions of x, 
y, and z, axes, respectively. We assume Ew

x  , Ew
y  , Ew

z  , Bw
x  , 

Bw
y  , and Bw

z  are positive amplitudes of the electromag-
netic wave fields in the x, y, and z directions, which satisfy 
the cold plasma dispersion relation. These amplitudes 
are expressed as functions of the wave magnetic field 
amplitude Bw as derived in the Appendix B of Hsieh and 
Omura (2017). The wave phase ψ is given by

where ω , kx , and kz are the angular frequency, perpendic-
ular wave number, and parallel wave number of the wave, 
respectively. The signs of the components of the wave 
field are determined based on Maxwell’s equations:

where k = (kx, 0, kz) . From (121), we obtain the relations 
among each component of the wave field as

These relations satisfy the equation:

We calculate the Poynting flux P = Ew × Bw/µ0 to find 
the flow direction of the wave energy. Each component of 
P = (Px,Py,Pz) is given by

Since Pz > 0 , the Poynting vector is directed toward the 
positive direction of the background magnetic field. The 
sign of Px changes depending on the wave normal angle 
θ and the wave phase ψ . Averaging over the one cycle of 
the wave phase, Px takes a finite value that depends on θ , 
while Py becomes zero on average over ψ . This is consist-
ent with the fact that the group velocity remains on the 

(119)Bw = exB
w
x cosψ + eyB

w
y sinψ − ezB

w
z cosψ ,

(120)ψ = ωt − kxx − kzz + const.,

(121)k × Ew = ωBw,

(122)Bw
x = kz

ω
Ew
y ,

(123)Bw
y = 1

ω
(kzE

w
x − kxE

w
z ),

(124)Bw
z = kx

ω
Ew
y .

(125)Ew · Bw = 0

(126)Px =
[

Ew
y B

w
z cos

2ψ − Ew
z B

w
y sin

2ψ

]

/µ0,

(127)Py =
[

(Ew
z B

w
x + Ew

x B
w
z ) sinψ cosψ

]

/µ0,

(128)Pz =
[

Ew
x B

w
y sin

2ψ + Ew
y B

w
z cos

2ψ

]

/µ0.

plane formed by the wave magnetic field and the wave 
normal vector.

The perpendicular fields  of the  electromagnetic wave 
at an oblique angle represented by Ew⊥ and Bw⊥ defined 
above are decomposed into two circularly polarized waves 
as shown in Fig. 12b. The amplitudes of the two circularly 
polarized waves are given by

The field vectors of the R-mode wave are given by

while the vectors of the L-mode are given by

Both (ER,BR) and (EL,BL) satisfy (121) and (125). From 
the variation of the wave phase ψ , we can understand 
ER and BR are a circularly polarized wave rotating in 
the same direction of electron cyclotron motion, and 
they can be in resonance with electrons with the effect 
of Doppler shift and the relativistic effect that makes the 
frequency of the cyclotron motion smaller.

To express all electromagnetic field components in 
terms of the wave magnetic field, we define the ratios of 
the wave electric field to the wave magnetic field as

Using (121) and (135), we solve for the parallel compo-
nent Ew

z  and Bw
z  , and we obtain

where Vp� = ω/kz.
An oblique whistler-mode wave is decomposed into 

three electromagnetic waves, i.e., a circularly polar-
ized R-mode wave (ERei(ψ−π/2),BRe

iψ) , and a circularly 

(129)Ew
R =

Ew
x + Ew

y

2
, Ew

L =
Ew
y − Ew

x

2
,

(130)Bw
R =

Bw
x + Bw

y

2
, Bw

L =
Bw
x − Bw

y

2
.

(131)ER = Ew
R [ex sinψ − ey cosψ],

(132)BR = Bw
R [ex cosψ + ey sinψ],

(133)EL = Ew
L [ex sin (−ψ)− ey cos (−ψ)],

(134)BL = Bw
L [ex cos (−ψ)+ ey sin (−ψ)].

(135)UR = Ew
R /B

w
R , UL = Ew

L /B
w
L .

(136)Ew
z = kz

kx

[

(UR − Vp�)Bw
R − (UL − Vp�)Bw

L

]

,

(137)Bw
z = kx

ω
(URB

w
R +ULB

w
L ),
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polarized L-mode wave (ELe
i(−ψ−π/2),BLe

−iψ) , and 
another wave (Ew

z sinψ ,−Bw
z cosψ) in the parallel 

direction.

4.3 � Oblique wave‑particle interaction
Substituting these waves into the right hand sides of the 
equations of motions (15) and (16), we obtain

where ζR = φ − ψ and ζL = φ + ψ . When the wave 
amplitudes Bw

R  and Bw
L  are much smaller than the back-

ground magnetic field B0 , (140) is simplified as

The wave phase ψ observed by an electron with a phase φ 
is given by

where ψB is the wave phase at the center of the cyclotron 
motion given by ψB = ωt − kzz + const. , rc is the cyclo-
tron radius given by rc = γ v⊥/�e , and β = kxrc . Because 
of the perpendicular wave number kx , the wave phase 
changes through the cyclotron motion around the guid-
ing center. We expand the relative phase variation using 
the Bessel functions Jn(β).

Shifting the index n+ 1 to n in the summation and taking 
the imaginary parts, we have

Similarly we have

(138)d(γ v�)
dt

= e

m0

[

v⊥Bw
R sin ζR + v⊥Bw

L sin ζL − Ew
z sinψ

]

− γ v2⊥
2B0

dB0

dz
,

(139)d(γ v⊥)
dt

= e

m0

[

(UR − v�)Bw
R sin ζR + (UL − v�)Bw

L sin ζL
]

+ γ v⊥v�
2B0

dB0

dz
,

(140)dφ

dt
= e

γm0

[

UR − v�
v⊥

Bw
R cos ζR + UL − v�

v⊥
Bw
L cos ζL − Bw

z cosψ + B0

]

,

(141)
dφ

dt
= �e

γ
.

(142)
ψ = ωt − kzz − kxrc sin φ + const. = ψB − β sin φ,

(143)eiζR = ei(φ−ψB)eiβ sin φ = ei(φ−ψB)
∞
∑

n=−∞
Jn(β)e

inφ =
∞
∑

n=−∞
Jn(β)e

i(n+1)φ−ψB .

(144)sin ζR =
∞
∑

n=−∞
Jn−1(β) sin (nφ − ψB).

Substituting (144), (145), and (146) into (138) and (139), 
we obtain

where

and ζn is the generalized phase defined by ζn = nφ − ψB , 
which plays an important role in the nonlinear theory 
of the oblique whistler mode wave-particle interaction. 
Using the approximated equation (141), we take the time 
derivative of the generalized phase:

(145)sin ζL = −
∞
∑

n=−∞
Jn+1(β) sin (nφ − ψB),

(146)sinψ = −
∞
∑

n=−∞
Jn(β) sin (nφ − ψB).

(147)
d(γ v�)
dt

= 1

kz

∞
∑

n=−∞
ω2
t,n sin ζn −

γ v2⊥
2B0

dB0

dz
,

(148)
d(γ v⊥)

dt
= 1

kz

∞
∑

n=−∞
ω2
s,n sin ζn +

γ v⊥v�
2B0

dB0

dz
,

(149)

ω2
t,n = ekz

m0

[

v⊥Bw
R Jn−1(β)− v⊥Bw

L Jn+1 + Ew
z Jn

]

,

(150)

ω2
s,n = ekz

m0

[

(UR − v�)Bw
R Jn−1 − (UL − v�)Bw

L Jn+1

]

,

(151)
dζn

dt
= n

dφ

dt
− dψB

dt
= n�e

γ
− ω + kzv�.
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The first-order resonance condition dζn/dt = 0 gives the 
resonance velocity for the n-th order resonance:

We can rewrite (151) as

We calculate the second-order time derivative of ζn to 
analyze the nonlinear orbit of an electron nearly satisfy-
ing the first order resonance condition v� ∼ VR,n.

where we have assumed the first order resonance con-
dition v� = VR,n . To obtain the derivatives on the right 
hand side of (154), we calculate the variation of kinetic 
energy K of an electron as

where we expanded the phases by (144), (145), and (146). 
We obtain the time derivative of the Lorentz factor γ

where

4.4 � Nonlinear dynamics at n‑th resonance
We focus on the dynamics of an electron in the n-th 
resonance with the wave, i.e., v� ∼ VR,n , and the wave 
amplitude is not extremely large so that the effects of 
the adjacent resonances n± 1 are negligible. Since most 
of the variations of the kinetic energy are due to the n-th 
order resonance, we have from (147) and (156)

Similarly we obtain from (148)

(152)VR,n = ω

kz

(

1− n�e

γω

)

.

(153)
dζn

dt
= kz(v� − VR,n).

(154)
d2ζn

dt2
= kz

(

dv�
dt

− dVR,n

dt

)

,

(155)

dK

dt
= −eE · v = −e(Ew

z v� sinψ − Ew
R v⊥ sin ζR − Ew

L v⊥ sin ζL)

= e

∞
∑

n=−∞

[

v�Ew
z Jn(β)+ v⊥Ew

R Jn−1(β)− v⊥Ew
L Jn+1(β)

]

sin ζn,

(156)
dγ

dt
=

∞
∑

n=−∞
�d,n sin ζn,

(157)

�d,n = e

c2m0

[

v�Ew
z Jn(β)+ v⊥Ew

R Jn−1(β)− v⊥Ew
L Jn+1(β)

]

.

(158)
dv�
dt

= 1

γ

(

ω2
t,n

kz
− v��d,n

)

sin ζn −
v2⊥
2�e

d�e

dz
.

We decompose the time variation of the n-th resonance 
velocity into several derivatives of variables in (152) as

We assume quasi-parallel propagation sin2� ≪ 1 , where 
� is a wave normal angle given by � = tan−1(kx/kz) , 
under which the cold plasma dispersion relation remains 
basically the same as that of the parallel propagation. We 
have

From (32) and (10), we obtain

Substituting (156), (158), (160), (161), and (162) into 
(154), and setting v� = VR,n , we obtain the second-order 
derivative of the phase ζn as

where

Kinetic energy variation of energetic electrons trapped 
by the wave through the n-th resonance is given by the 

(159)

dv⊥
dt

= 1

γ

(

ω2
s,n

kz
− v⊥�d,n

)

sin ζn +
v�v⊥
2�e

d�e

dz
.

(160)

dVR,n

dt
= 1

kz

(

dω

dt
− nv�

γ

∂�e

∂z
+ n�e

γ 2

dγ

dt

)

− 1

k2z

(

ω − n�e

γ

)

dkz

dt
.

(161)
dω

dt
=

(

1− v�
Vg�

)

∂ω

∂t
.

(162)

dkz

dt
= 1

Vg�

(

1− v�
Vg�

)

∂ω

∂t
− �v�χω

2cξ(�e − ω)

∂�e

∂z
.

(163)d2ζn

dt2
= �2

t,n(sin ζn + Sn),

(164)�2
t,n = 1

γ
(ω2

t,n − ω�d,n),

(165)

Sn =− 1

�2
t,n

{

(

1− VR,n

Vg�

)2
∂ω

∂t

+
[

ωv2⊥
2�eVp�

− n

γ
VR,n

(

1+ �χ2[�e − (γ /n)ω]
2(�e − ω)

)

]

∂�e

∂z

}

.
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following equation obtained from (155) and (165) under 
the second-order resonance condition sin ζn + Sn = 0.

For all possible resonances with the oblique whistler 
mode wave ( n = −∞ ∼ ∞ ), this equation is valid as far 
as |Sn| ≤ 1 , while most of the acceleration is due to reso-
nances with n = −1 ∼ 2 as presented in test particle sim-
ulations by Hsieh and Omura (2017). This is also because 
the term in Sn containing n/γ becomes large for a large 
number n except for relativistic electrons with a large 
γ . The energy variation of resonant electrons trapped 
by the wave potential is due to the frequency variation 
∂ω/∂t and the gradient of the magnetic field. Compar-
ing simulation runs between purely parallel propagation 
and gradual oblique propagation, there occur significant 
differences in the trajectories of energetic electrons espe-
cially with energies greater than several hundred keV. 
As shown by numerical Green’s functions (Omura et al. 
2015b) in Fig. 14, we find that the acceleration efficiency 

(166)
dKn

dt
= −m0c

2�d,nSn.

of Landau resonant ( n = 0 ) electrons is very high in com-
parison with the cyclotron resonant ( n = 1 ) electrons. 
However, most of the acceleration is due to the perpen-
dicular electric field rather than the parallel electric field 
even in the Landau resonance (Hsieh and Omura 2017; 
Omura et al. 2019). The Green’s function is calculated by 
tracing dynamics of 28,800 electrons in a chorus wave 
model with frequency variation from 0.2�e to 0.5�e . In 
the oblique propagation the wave normal angle gradually 
changes from 0 to 60 degrees as the chorus wave packet 
propagates from the equator to higher latitudes.

4.5 � Nonlinear damping at half the cyclotron frequency
In the case of quasi-parallel propagation, the group 
velocity and the phase velocity become equal near half 
the cyclotron frequency, in which the Landau resonance 
becomes significant because both waves and resonant 
electrons see stationary phases and the wave amplitude. 
Using (112) and (117), we calculate �V = |Vp� − Vg�| 
as a function of frequency ω and wave normal angle 
θkB . When �V ∼ 0 , the wave phase in the wave packet 

Fig. 14  Trajectories of trapped resonant electrons. Acceleration of electrons through nonlinear trapping by a chorus wave with the wave normal 
angle parallel (a, c) and oblique (b, d) to the background magnetic field. In a, b, resonance velocities for n = 0, 1, 2 resonances are plotted in 
dash-dot lines ( ω = 0.5�e ) and dotted lines ( ω = 0.2�e ). Going through the resonances, colors of the trajectories changes from black to blue, red, 
and green, corresponding to n = 0, 1, 2 resonances. The numbers next to the branches of the Green’s functions represent the n-th resonances (after 
Hsieh and Omura (2018))
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becomes stationary, and electrons moving with velocities 
close to the parallel phase velocity Vp‖ can be trapped by 
the wave potential. Therefore, a very effective wave-par-
ticle interaction can take place for the Landau resonance 
near half the cyclotron frequency. We assume a chorus 
wave packet generated near the equator and propagat-
ing to higher latitudes. The wave normal angle of chorus 
waves is nearly zero near the equator, and it gradually 
becomes oblique through propagation because of the 
curvature of the background magnetic field. Hsieh and 
Omura (2018) has conducted test particle simulations to 
find formation of resonant current through Landau res-
onance, and found JR · Ew > 0 . The resonant current is 
due to nonlinear trapping of Landau resonant electrons 
in a wave potential formed by the parallel electric field 
component Ew‖ and v⊥ × BR . Because of the frequency 
sweep rate ∂ω/∂t > 0 and the gradient of the background 
magnetic field ∂�e/∂z > 0 in (165), we have a negative 
inhomogeneity factor Sn < 0 , which distorts the wave 
potential shifting the stable equilibrium point to a phase 
giving −eER · v⊥ > 0 for a stably trapped resonant elec-
tron. The trapped electrons are accelerated effectively 
especially at half the local cyclotron frequency where the 
phase velocity and the group velocity are nearly equal 
for the quasi-parallel propagation. The wave packet 
with a frequency close to half the cyclotron frequency 
gives energy to the resonant electrons, undergoing the 
decrease of the wave amplitude. Since the damping 
takes place locally at half the cyclotron frequency along 
the magnetic field line, the frequency of the most effec-
tive  damping increases as the wave packet moves away 
from the magnetic equator. The damping along the mag-
netic field line results in formation of a gap between the 
lower-band and upper-band chorus emissions. The for-
mation of the gap is schematically illustrated in Fig. 2 of 
Yagitani et al. (2014).

As another possible mechanism to generate upper-
band chorus emissions, a nonlinear wave process called 
the lower band cascade has been studied by observations, 
simulation, and theory (Gao et al. 2018). When the wave 
amplitudes of the lower-band chorus emissions become 
very large, the proposed nonlinear process may take 
place, while the nonlinear damping process at half the 
cyclotron frequency takes place as far as a coherent wave 
propagates obliquely with a small wave normal angle.

5 � Summary and discussion
The following topics have been clarified along with the 
derivation of the formulas that have not been published 
previously.

•	 The condition for resonant electrons to be free from 
the anomalous trapping at lower pitch angles is given 
by (26).

•	 The adiabatic variation of a subtracted-Maxwellian 
momentum distribution function is described by 
(54)–(60), which can be applied for the calculation of 
the nonlinear growth rate at a position away from the 
equator.

•	 The inhomogeneity factor Sn given by (165) for the 
n-th resonance in the oblique propagation is derived 
under the assumption of quasi-parallel propagation. 
The formula of Sn contains the frequency sweep rate 
as observed at a fixed point and the gradient of the 
magnetic field. Along with the second-order reso-
nance condition, we have obtained the formula for 
acceleration of trapped resonant electrons through 
the n-th resonance.

•	 The nonlinear growth rates, optimum wave ampli-
tude, threshold wave amplitude, and chorus equa-
tions in the previous publications contained incon-
sistent powers of the Lorentz factor γ , and these 
formulas are corrected.

The theoretical developments presented in this paper are 
based on our analyses of simulations reproducing cho-
rus and hiss emissions, and they are mostly confirmed by 
the observations. In the simulations Maxwell’s equations 
are solved along with the calculation of particle dynam-
ics under the self-consistent electromagnetic fields. 
Principles of these electromagnetic processes are sim-
ple, and the nonlinear dynamics of resonant particles in 
a coherent wave potential is well understood. However, 
the combination of the nonlinear trajectories of energetic 
particles and the generation process of new wave fields 
with varying frequency and wave numbers involves rapid 
variation of the wave phase and amplitudes, and they are 
still difficult to be understood completely. In this respect, 
some of the equations that we obtained, such as the cho-
rus equations, are still phenomenological, and they do 
not describe the detailed physical processes of the wave 
generation.

The gradient of the background magnetic field controls 
the threshold wave amplitude, and the size of the non-
linear interaction region around the magnetic equator. 
A very efficient convective wave growth occurs with a 
balance of the growing wave amplitude and the increas-
ing gradient of the magnetic field. The mechanism works 
for electron holes with depletion of trapped resonant 
electrons in the velocity phase space, which originally is 
formed at the moment of wave packet generation with 
rising-tone frequency. Therefore, we have more observa-
tions of rising tone emissions in the magnetosphere. We 
occasionally observe falling-tone emissions which are 
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generated by an electron hill formed by trapped electrons 
in the velocity phase as demonstrated by simulations 
(Nunn and Omura 2012; Nogi et al. 2020). However, we 
have not obtained the threshold wave amplitude for the 
generation of falling-tone emissions.

One of the elements that makes the analyses difficult is 
the electromagnetic fluctuations in the simulation as well 
as in the real plasma environment in the magnetosphere. 
Since the nonlinear wave growth process is induced by a 
finite amplitude wave above the threshold level, the wave 
growth from the thermal fluctuations to the threshold 
amplitude should be evaluated properly. However the 
level of electromagnetic fluctuations is also contributed 
by energetic electrons being injected. Studies on the ther-
mal fluctuations in simulations and in the real plasma 
environment are necessary. In the magnetosphere, exter-
nal waves such as whistlers and those from VLF trans-
mitters on the ground, or waves from other parts of the 
magnetosphere may work as triggering waves for the 
nonlinear process. Active wave transmission from space-
craft near the magnetic equator would be very ineresting 
and useful for better understanding of the nonlinear trig-
gering process of chorus emissions.

Chorus emissions are generated by electrons with 
energy of 10 - 100 keV in the Earth’s magnetosphere, pre-
cipitating them into the polar atmosphere, while electrons 
at higher energy ranges are accelerated efficiently to MeV 
energy contributing to rapid formation of the outer radia-
tion belt (Omura et  al. 2015b; Kubota and Omura 2018; 
Hsieh et al. 2020). These interesting physical processes of 
relativistic electron acceleration are not included in the 
present paper. Rapid variations of the radiation belts are 
also due to occurrence of  EMIC emissions with rising-
tone frequency variations (Omura and Zhao 2012, 2013). 
The mechanism of the EMIC emissions is nearly the same 
as chorus emissions (Omura et al. 2010; Shoji and Omura 
2013). A summary report on nonlinear processes of rela-
tivistic electrons and EMIC waves is left as a future work.
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