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Abstract

ties governs the growth of regular earthquakes.

Slip phenomena on plate interfaces reflect the heterogeneous physical properties of the slip plane and, thus, exhibit a
wide variety of slip velocities and rupture propagation behaviors. Recent findings on slow earthquakes reveal simi-
larities and differences between slow and regular earthquakes. Episodic tremor and slip (ETS) events, a type of slow
earthquake widely observed in subduction zones, likewise show diverse activity. We investigated the growth of 17
ETS events beneath the Kii Peninsula in the Nankai subduction zone, Japan. Analyses of waveform data recorded by

a seismic array enabled us to locate tremor hypocenters and estimate the migration patterns and spatial distribu-
tion of the energy release of tremor events. Here, we describe three major features in the growth of ETS events. First,
independent of their start point and migration pattern, ETS events exhibit patches of high seismic energy release on
the up-dip part of the ETS zone, suggesting that the location of these patches is controlled by inherent physical or
frictional properties of the plate interface. Second, ETS events usually start outside the high-energy patches, and their
final extent depends on whether the patches participate in the rupture. Third, we recognize no size dependence in
the initiation phase of ETS events of different sizes with comparable start points. These features demonstrate that the
cascading rupture of high-energy patches governs the growth of ETS events, just as the cascading rupture of asperi-
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Introduction

Earthquakes feature heterogeneous slip distributions on
fault planes that are characterized by one to several areas
of large slip, or asperities. In general, earthquake hypo-
centers are located outside of asperities (e.g., Yamanaka
and Kikuchi 2004; Mai et al. 2005). The complex growth
and rupture processes of earthquakes are fundamental
features that have fueled a long-running debate on how
and when the eventual size of an earthquake is deter-
mined, specifically the existence of a nucleation phase
(e.g., Ellsworth and Beroza 1995; Ide 2019).
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Recent findings about slow earthquakes have broad-
ened our understanding of subduction dynamics and
the generation of megathrust earthquakes (e.g., Obara
and Kato 2016). In subduction zones, strain on the plate
interface is released by slow slips in slow earthquakes and
high-speed ruptures in regular earthquakes. Interestingly,
the spatial distributions of slow and regular earthquakes
are complementary: slow earthquakes are distributed
around and outside the locked zones that are the source
areas of megathrust earthquakes, both along dip (Obara
and Kato 2016) and along strike (Nishikawa et al. 2019).
Furthermore, a temporal relationship between slow and
regular earthquakes has been proposed. Kato et al. (2012)
reported the occurrence of two slow slip events (SSEs)
from earthquake activities that migrated toward the
future hypocenter of the 2011 Tohoku earthquake before
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the mainshock. The migration speed of those hypocent-
ers, 2-5 km/day, is close to the typical migration speed
of episodic tremor and slip (ETS) events, 10 km/day
(Dragert et al. 2001; Obara 2002). Slow slips preceding a
dynamic rupture have also been reported in laboratory
experiments and numerical simulations (e.g., Dieterich
1979; Ohnaka 1992; Shibazaki and Matsu’ura 1992). Mat-
suzawa et al. (2010) showed that in a numerical simula-
tion, the recurrence interval of SSEs grew shorter in the
time interval preceding a megathrust earthquake. There-
fore, investigating the features of slow earthquakes yields
clues to the generation of megathrust earthquakes in sub-
duction zones.

In some subduction zones, slow earthquakes occur as
short-term SSEs in the form of ETS events, in which tec-
tonic (nonvolcanic) tremor and low-frequency earthquake
(LFE) are synchronized with slip events in time and space
(Rogers and Dragert 2003). The slip areas and slip rates of
ETS events are strongly correlated with tremor epicent-
ers (Hirose and Obara 2010; Bartlow et al. 2011; Michel
et al. 2019a). Thus, tremor and LFE can be used to moni-
tor ETS events (Shelly et al. 2007a; Obara 2010; Houston
et al. 2011; Ghosh et al. 2012; Rubin and Armbruster
2013; Peng et al. 2015), although short-term SSEs are not
always accompanied by tremors (Obara et al. 2011; Wech
and Bartlow 2014; Michel et al. 2019a). Tremor and LFE
amplitudes are also have been used to detect small epi-
sodes of transient aseismic slip hidden in the geodetic
noise (Frank 2016; Frank et al. 2018). The growth process
of ETS events is not simple and is typified by diverse pat-
terns of migration and eventual sizes (Obara et al. 2010),
heterogeneous slip distributions (Hirose and Obara
2010), and brief episodes of secondary slip front in which
tremor migrates faster than the main front: sometimes
in the direction opposite to its overall migration (Hou-
ston et al. 2011). Ghosh et al. (2012) reported the exist-
ence of tremor asperities, areas of high radiated seismic
energy, on the plate interface analogous to the asperities
of regular earthquakes and suggested that tremor asperi-
ties in the transition zone might control the evolution of
slow earthquakes in space and time. Savard and Bostock
(2015) identified the location of five asperities from LFE
epicenters in Cascadia. Hirose and Obara (2010) con-
ducted geodetic inversion and confirmed the existence of
a persistent asperity of slow slip approximately 30 km in
diameter in Shikoku, Japan, that was active during several
different ETS events. In the Nankai subduction zone off
southwestern Japan, the ETS zone can be divided into sev-
eral segments (e.g., Obara 2002) within which ETS events
have similar recurrence intervals, such as 3 or 6 months.
The short recurrence intervals of these ETS events make
the Nankai subduction zone a promising area to elucidate
what controls their growth.
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The moment rate of slow slips is often estimated from
the number, amplitude, or radiated energy of tremors
or LFEs. Ide et al. (2008) demonstrated that the radi-
ated seismic energy rate of tremors in the 2—-8 Hz band
is proportional to the seismic moment rate of very-low-
frequency earthquakes in the Kii Peninsula. Ide and Yabe
(2014) confirmed this proportionality between tremor
energy rate and seismic moment rate of very-low-fre-
quency earthquakes in the entire Nankai subduction
zone. Hirose and Obara (2010) showed that the moment
rate function of an SSE estimated from tiltmeter records
was strongly correlated with the temporal change in the
number of tremors in Shikoku. Maeda and Obara (2009)
found a clear correspondence between the temporal
variation in tilt records and the accumulated seismic
energy from tremor sources for ETS events in Shikoku.
Hawthorne and Rubin (2013) found that the strain rate
is proportional to the amplitude of tremor on time scales
shorter than one day. They interpreted this relation to
mean that the moment rate of slow slip is correlated with
tremor amplitude.

Seismic arrays are a powerful tool for detecting, locat-
ing, and characterizing tremor (Ghosh et al. 2009; Imani-
shi et al. 2011). The Geological Survey of Japan, National
Institute of Advanced Industrial Science and Technology
(GS)), installed a seismic array of 39 sensors on the Kii
Peninsula from February 2011 to November 2016 (Fig. 1),
producing a set of well-recorded waveforms that has
been valuable for examining the detailed growth process
of ETS events from tectonic tremor. Sagae et al. (2021)
applied the MUSIC high-resolution frequency—wave-
number (f—-k) method (Schmidt 1986) to a dataset from
July 2012 to July 2014, revealing a more detailed view of
tremor migration than the conventional envelope cross-
correlation method. We report here the spatio-temporal
distribution of the radiated seismic energy of tectonic
tremor during 17 ETS events between April 2011 and
December 2014. We show that persistent patches of rela-
tively high seismic energy release are located on the plate
interface in the ETS zone, and that the growth process of
ETS events is controlled by cascading ruptures of these
patches.

Data

We analyzed waveform data recorded by the GSJ array
network in the Kii Peninsula from April 2011 to Decem-
ber 2014 (Fig. 1). The array consisted of 39 three-compo-
nent velocity seismographs with a natural frequency of
2 Hz, and the sampling frequency of waveform data was
200 Hz. For semblance analysis, we used the N-S compo-
nent of the seismic data bandpass-filtered between 2 and
4 Hz because the horizontal components yielded higher
semblance value than the vertical component. For the
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Fig. 1 a Location map of southwestern Japan showing the study area (black rectangle; Figs. 5, 6, 7, 8) and the array network (red square). Gray
dots are tremor hypocenters from the NIED hybrid clustering catalog. Contour lines represent the depth of the Moho in the subducting Philippine
Sea plate (Shiomi et al. 2008). Dotted square represents the area shown in (c). b Configuration of stations (triangles) in the seismic array. The

black triangle is the central station. ¢ The distribution of short-term SSEs detected geodetically by GSJ and/or NIED during the study period. Gray
rectangles are surface projections of areas on the fault planes of the short-term SSEs; the black side of each rectangle is the up-dip edge. Yellow
triangle represents a Hi-net station (KRTH) for which tilt data are shown in Fig. 4b. d Space—time plot of tectonic tremors from the NIED hybrid
clustering catalog. Distance along strike or along dip is measured from the corner with a black circle of the black rectangle in (a). Circles represent
hypocenters of tremor clusters for different ETS events analyzed in this study, colored according to their ETS number. ETS events 1, 8,and 11 were
excluded from further analysis. Gray dots are tremor hypocenters that are isolated or belong to small ETS events. Gray vertical bars represent

cluster number

calculation of the seismic energy of tremors, we used all
three components of data between 2 and 8 Hz. We used
the JMA2001 seismic velocity model (Ueno et al. 2002) to
locate tremors.

Method

ETS event durations for semblance analysis

In general, the size and temporal evolution of an ETS
event are correlated with the number of recorded trem-
ors (e.g., Obara 2010). In this study, we treated a con-
centration of tremors in space and time as an ETS event.
Tremor locations were determined by semblance analysis

(Neidell and Taner 1971), in which we estimated the
horizontal slowness vector of coherent signals under
the assumption of a plane-wave incidence, as described
in the next subsection. To estimate the duration of ETS
events from tremor activity for our semblance analy-
sis, we applied the following clustering technique to the
National Research Institute for Earth Science and Disas-
ter Resilience (NIED) hybrid clustering catalog (Obara
et al. 2010), which locates one tremor per hour. We classi-
fied tremor events as hypocenters clustered within 20 km
during a 48-h period. Groups of more than 10 hypocent-
ers were considered to be ETS events. We estimated
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the duration of an ETS event as the time from the start
of the group’s first tremor to the end of its last tremor.
Consequently, we detected 20 ETS events from June 2011
to July 2014 for our semblance analysis, of which 16 had
previously been geodetically detected as short-term SSEs
from analyses of strainmeter, tiltmeter, and/or water-level

Table 1 Duration of each ETS event for semblance analysis
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records (Kitagawa et al. 2011, 2012; Hirose and Kimura
2012; Itaba et al. 2012, 2013a, 2013b, 20144, 2014b, 2015;
Ochi et al. 2015) (Figs. 1c and 1d). The semblance analy-
sis utilized array data from two days before the start to
one day after the end of each ETS event (Table 1).

Locating tremors from semblance analysis

In this study, we used waveform data recorded by the GSJ
array to detect more tremors. Tremor has been shown
to occur mainly on the plate interface (e.g., Shelly et al.

ETS No Start time (YMDH) Endtime ('MDH)  5007b; Ghosh et al. 2012; Suzuki et al. 2018). Thus, we
01 2011061517 2011062011 assigned possible hypocenters to grid points with hori-
02 20110623 10 20110704 11 zontal intervals of 2 km on the plate interface, which is
03 2011091002 20110917 09 5 km shallower than the Moho in the subducting Phil-
04 2011121417 2011122422 ippine Sea plate (Shiomi et al. 2008). We calculated the
05 201202 04 14 201202 1206 slowness of the optimum ray path between each grid
06 20120412 14 2012041710 point and the central station of the array network within
07 2012051212 2012051819 the JMA2001 velocity model (Ueno et al. 2002).
08 2012 06 09 03 201206 15 08 Furthermore, we compensated for the arrival time shift
09 2012 08 09 05 20120817 04 due to the elevation difference between the stations. We
10 2012092708 2012 10 06 00 used eight earthquakes with magnitudes>1.0 and epi-
11 2012111723 2012112323 central distances from the central station of the array net-
12 2012121019 20121214 18 work <10 km from 2011 to 2017 (Fig. 2a). We calculated
13 201212 1406 2012 12 2307 the arrival time differences between the central station
14 20130403 21 201304 13 01 and the other stations from the cross-correlation func-
15 20130721 19 201307 27 06 tion of waveform data using a time window of 1 s around
16 2013 09 04 04 20130913 13 the P-wave arrival time. The arrival time differences are
17 20140107 00 2014011417 correlated positively with the elevation differences for
18 2014 01 20 02 501401 28 07 all earthquakes. We assumed here that P-wave ray paths
19 2014 05 03 05 20140508 13 were vertical directly beneath the array network, so that
20 20140701 16 501407 15 04 the arrival time differences depended only on the eleva-
tion differences. A linear regression line between the
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Fig. 2 aThe distribution of epicenters of regular earthquakes (circles and star) and the location of the array network (red square). The epicenters are
colored according to their depth. b Plot showing the relation between the arrival time differences and the elevation differences for the earthquake
shown by the star in (a). Black line shows a linear regression line determined by the least-squares method with a constraint of passing through the
origin
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arrival time differences and the elevation differences was
determined by the least-squares method constrained to
pass through the origin (Fig. 2b). The slopes of the lines,
as P-wave velocities, were highly variable because of a
large scatter in the data (Additional file 1: Fig. S1). There-
fore, we chose the data of the earthquake that showed the
best fitting (Fig. 2b). As a result, the estimated P-wave
velocity was 3.0 km/s (Fig. 2b), providing a S-wave veloc-
ity of 1.7 km/s with the assumption of Vp/Vs = /3. We
applied this S-wave velocity above sea level for the sem-
blance analysis. We confirmed that the variation (£ 30%)
in this S-wave velocity did not significantly modify the
following results and discussion.

We conducted semblance analysis (Neidell and Taner
1971) of the continuous records to detect and locate
tremors. Compared to the conventional beamforming
and f-k methods, semblance analyses can detect events
with lower signal-to-noise ratios because the method
is based on waveform coherency rather than the sig-
nal power (see the review by Rost and Thomas 2002, for
the advantages and disadvantages of various array tech-
niques). From the waveform data of the N-S component,
bandpass-filtered at 2—4 Hz, we calculated semblance
from the slowness values of the grid cells by

2
z'T=+TW (Zj]\ilﬁ (ti — Tn/’))
MY ST )

SEM (Sys» Suy, T) =

1)
Tyj = Spx - % + Suy - y; — HCyj — SC;, (2)

where SEM is a semblance value, W a time window of
1 min, T the start time of a time window, M the num-
ber of stations for which the maximum cross-correla-
tion value of waveforms for time shifts of —0.3 to+0.3 s
between the central station and the j-th station is greater
than 0.3, f; the waveform data at the j-th station, 7,; the
time difference between the central station and the j-th
station calculated from the horizontal slowness vector
(S Sy of the n-th grid point, and x; and y; are the x
and y coordinates of the j-th station, respectively. HC,, is
the time correction for the elevation difference between
the central station and the j-th station for the horizon-
tal slowness vector of the n-th grid point, and SC; is the
station correction that is estimated to match hypocenters
from the catalog with those from the semblance analysis.

If the maximum semblance value was greater than 0.3
and the number of stations used for the analysis was
greater than 25, the grid point with the maximum sem-
blance value was designated the hypocenter of a tremor.
We estimated the uncertainty of tremor locations by
applying the delete-1 jackknife method (Ueno et al. 2010).
The estimated uncertainty depends on the epicentral
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distance from the array; the typical uncertainty is 2—4 km
for epicentral distances less than 35 km, 4—6 km for dis-
tances of 35-50 km, and 6—10 km and more for distances
greater than 50 km. We also recognize that tremor loca-
tions estimated by the delete-1 jackknife method tend to
be distributed in a region that is elongate along the back-
azimuth direction at epicentral distances greater than
40-50 km.

By applying a clustering procedure to the estimated
hypocenters, we removed isolated events that were
not part of an ETS event. Our criteria for clustering
two hypocenters were an epicentral distance less than
5 km and a time interval shorter than 12 h. We visually
inspected the waveforms of detected tremors to exclude
waveforms of regular earthquakes or impulsive noises.

Estimation of the seismic energy of tremors

We calculated seismic energy from waveforms of three
components at the central station during 1-min time
windows by following the formula (Maeda and Obara
2009)

t+T0/2 27 Vor? pAZ (£ + t;)
t~To/2 exp[—27fcQ 1]

at’, (3)

ER =

where ER is the seismic energy, T, the time window of
1 min, V|, the average S-wave velocity of 3.5 km/s, r; the
hypocentral distance, p the average density of 2700 kg/
m?, A, the square root of the sum of squared velocity
amplitude of the three components in the 2—8 Hz band, ¢;
the travel time as calculated from the hypocenter and the
average S-wave velocity, f, the center frequency of 5 Hz,
and Q the quality factor. We adopted Q values, which
depend on the hypocentral distance, reported by Yabe
and Ide (2014) and corrected for the effect of the free
surface.

Results and discussion
Detectability of tectonic tremor and redefinition of ETS
events
In this study, we typically detected about three times as
many tremor hypocenters as listed in the NIED hybrid
catalog, making it possible to analyze the detailed growth
process of an ETS event. We located 52,776 tremor hypo-
centers during 20 ETS events from our semblance analy-
sis of the array data. The spatio-temporal distribution of
tremors is in overall agreement with the result of Sagae
et al. (2021), which was based on the MUSIC high-reso-
lution f-k method, although their result had a time reso-
lution as fine as 10 s.

Figure 3 shows the space—time plot of tremor in ETS
event number 17 (ETS 17), during 9-14 January 2014.
The temporal variation in tremor activity we observed
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Fig. 3 Space-time plots of tremor hypocenters in event ETS 17 (a)
from this study and (b) from the NIED hybrid catalog. Gray circles
in (a) are isolated events that were determined to not be part of an
ETS event. ¢ Cumulative count of tremor hypocenters (red) from this
study and (blue) from the hybrid catalog
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is consistent with that of the NIED catalog. The large
number of hypocenters enabled us to recognize bilateral
migration of the hypocenters along strike during ETS 17
(Fig. 3). The migration velocity of the main front of trem-
ors is approximately 10 km/day, consistent with the typi-
cal case in the Kii Peninsula (Obara 2010).

It is usually difficult to distinguish whether tremors
belong to an ETS event or are background activity, caus-
ing uncertainty in the spatio-temporal range of an ETS
event. To examine the growth process of an ETS event,
we redefined ETS events on the basis of hypocenter clus-
ters. We defined clusters as sets of tremor events that
occurred within 1 h and 10 km epicentral distance, and
the cluster hypocenter was defined as the centroid of a
cluster comprising more than 10 tremors. The start and
end points of an ETS event were defined as the centroids
of the first and last clusters, and these points in turn
defined the duration of an ETS event (Table 2). Three
ETS events (ETSs 1, 8, and 11) contained too few clusters
with centroids for accurate estimates, and were excluded
from the following analyses and discussion.

As mentioned previously, short-term SSEs were geo-
detically detected in the analyzed period of this study.
Table 3 lists the parameters and Additional file 2: Fig.
S2 shows the locations of faults associated with these
short-term SSEs that were related to the ETS events of

Table 2 Duration and cumulative seismic energy release of ETS events, estimated from hypocenter clusters with more than 10

tremors
ETS No Start time (YMDH) End time (YMDH) Duration (x 10° s) Cumulative seismic Number of clusters with
energy (x 108 )) more than 10 tremors
01 201106 18 00 2011061810 Not analyzed 4
02 201106 25 20 2011070312 0.66 1.64 72
03 2011091201 2011091620 417 1.01 80
04 2011121418 20111221 22 6.23 1.74 103
05 2012020717 2012021101 291 6.31 50
06 20120412 21 2012041707 3.84 6.42 55
07 20120514 11 20120517 21 299 1.53 61
08 2012061323 2012061323 Not analyzed 1
09 201208 11 05 201208 16 05 435 1.14 94
10 201209 29 09 20121004 21 477 1.01 63
1 2012112119 2012112320 Not analyzed 8
12 2012121219 2012121320 0.934 0.147 19
13 2012121805 2012122306 4.39 0.546 64
14 20130405 21 2013041020 4.32 1.80 52
15 2013 07 2400 201307 27 04 277 1.09 64
16 20130907 21 2013091215 4.14 1.23 77
17 201401 09 00 2014011402 444 1.73 117
18 2014012300 2014012718 414 0.546 85
19 2014 05 05 05 20140507 14 2.08 0.274 38
20 201407 0414 2014071222 7.23 2.50 145
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this study (Table 2). The fault parameters for ETSs 2 and
3 have been estimated independently by GS]J (Itaba et al.
2012) and NIED (Hirose and Kimura 2012). Despite the
fact that estimations were constrained to rectangular
faults and uniform slip, for most ETS events the locations
of these faults appeared to be consistent with the distri-
bution and duration of tremor. Geodetic estimations for
ETSs 7, 8, 13, 14, and 20 indicated inconsistent dura-
tion of short-term SSEs with that of ETSs (Tables 2 and
3), although their durations were approximately defined
by the occurrence of tremor within their respective sem-
blance analysis periods (Table 1), except for the third
events of ETS 7. Therefore, the uncertainty may be a con-
sequence of how the start and end times of an ETS event
were defined. For ETS 7, the eastern half of the fault of
the second event and the entire fault of the third event
were outside the area where tremor was detectable. For
the sixth event of ETS 20, GS] detected tremors during
this event to the southwest of the fault of the sixth event
(Itaba et al. 2015), outside the area where we could detect
tremor. It is noteworthy that during ETS 20, the locations
of tremor and fault activity appeared to migrate in similar
trajectories (Fig. 5 and Additional file 2: Fig. S2). The ratio
between the total radiated energy (Table 2) and the geo-
detically estimated seismic moment (Table 3) for the ETS
events ranged from 107! to 10~%, consistent with similar
determinations for very-low-frequency earthquakes (Ide
et al. 2008) and SSEs (Maeda and Obara 2009).

Stationary patches of high seismic energy release

In this study, we used the radiated energy of tremor in
the 2—-8 Hz band as a proxy of the seismic moment of
slow slip in a source region; likewise we used the radi-
ated energy rate as a proxy of the seismic moment rate.
Figure 4 plots our estimates of the cumulative energy of
tremor during ETS 3 along with tilt records at Hi-net
station KRTH during ETS 3 as reported by Hirose and
Kimura (2012). Tidal effects and atmospheric pressure
response were corrected with BAYTAP-G (Tamura et al.
1991) and detrended. The slope of the cumulative energy
is gentle from 12 to 13 September, steep from 14 to the
middle of 15 September, and gentle afterward. The same
pattern is evident in the tilt records. This consistency
between the two observations suggests that the energy
released during tremor events may be associated with the
slip rate during SSEs (Maeda and Obara 2009), and that
the radiated energy rate of tremor can be used as a proxy
of the moment rate of slow slip (Ide et al. 2008; Rubin
and Armbruster 2013). Kano et al. (2018) reported that
the slip rate of slow slip and the radiated energy rate of
tremor vary in tandem in western Shikoku. If this rela-
tionship also exists in the entire Nankai subduction zone,
then the areas of high tremor energy release found in this
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Fig. 4 Plots showing (a) the evolution of energy release in ETS 3
and (b) detided and detrended tiltmeter records during ETS 3 at
Hi-net tiltmeter station KRTH (Hirose and Kimura 2012); location
shown in Fig. 1c. Lines labeled KRTH N (blue) and KRTH E (green)
denote tilt components down to the north and east, respectively.
Vertical dashed lines in (b) mark the start and end of the ETS episode
estimated from tiltmeter records (Hirose and Kimura 2012) (Table 3)

study could be interpreted as areas of high slip during
SSEs, i.e., areas of high seismic moment release. The con-
sistency of the large temporal changes in both cumula-
tive energy and tilt records in this study also suggests that
most of the slow-slip seismic moment release occurred
in areas of relatively high energy release. The strong spa-
tial correlation between typical energy release rates of
tremor and cumulative slip of SSEs in the Kii Peninsula
(Yabe and Ide 2014) supports our use of radiated energy
as a proxy of the seismic moment of slow slip in the study
region.

On the other hand, previous works have noted that
slip may occur without tremor during a short-term SSE
(Obara et al. 2011; Wech and Bartlow 2014; Michel et al.
2019a). If tremorless slip had been dominant in the ETS
events we analyzed, then energy release by tremor could
not be a proxy for slow slip during the ETS events. How-
ever, the close correspondence of large tilt changes with
energy release by tremor, as shown for example in Fig. 4,
implies that tremorless slip neither dominated the seis-
mic moment release by slow slip nor strongly influenced
the growth process of most of the ETS events in this
study.

Figure 5 depicts the migration of tremor hypocenter
clusters and the distribution of the cumulative seismic
energy of tremors for three ETS events with different
growth patterns (the other 14 ETS events are shown in
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Fig. 5 Examples of three ETS events with contrasting histories. (upper) The migration of tremor hypocenter clusters from their starting point (red
star). The red square is the seismic array location. (lower) The spatial distribution of cumulative seismic energy release. Black rectangles indicate the

Additional file 3: Fig. S3). ETS 3 displayed unilateral
migration from the southern end, ETS 20 displayed
unilateral migration from the northern end, and ETS 9
displayed bilateral migration starting from the central
part (upper panels in Fig. 5). All three events displayed
patches with relatively high cumulative seismic energy
release (‘high-energy patches’ hereafter) that appeared
consistently in the same locations, regardless of the start-
ing location and the migration direction (lower panels in
Fig. 5). Therefore, the location of these patches appears
to be controlled by physical or frictional properties of
the fault plane that are inherent to the plate interface.
The existence of asperities that rupture repeatedly dur-
ing multiple ETS events is consistent with the presence
of such asperities estimated from geodetic inversion in
Shikoku (Hirose and Obara 2010) and documented in
LFE epicenters in northern Cascadia (Savard and Bostock
2015).

Velocity structure heterogeneities may cause tremor
to concentrate in certain locations. Among hypocent-
ers determined by seismic tomography by Matsubara
et al. (2019), those determined within a one-dimensional
velocity structure differ from those determined within a
three-dimensional structure by 1 km on average, and by
as much as 8 km for hypocenters at depths of 0-50 km

in this region (M. Matsubara, personal communication).
This difference among hypocenters is small relative to
the size of the high-energy patches. The effect of a het-
erogeneous velocity structure on the tremor locations
in this study would be comparable to that of Matsubara
et al. (2019). It is therefore unlikely that a heterogeneous
velocity structure accounts for the observed high-energy
patches.

Ghosh et al. (2009) reported that the cumulative
moment of tremor in an ETS event in Cascadia was spa-
tially heterogeneous and characterized by several patches
of high moment release. The distribution of these patches
reported by Ghosh et al. (2009) appeared to be comple-
mentary to the slip surfaces of regular earthquakes, sug-
gesting that inherent properties on the plate interface
control the patch distribution.

Relationship between start point, rupture extent,

and high-energy patches

Figure 6 shows relationships between the location of
high-energy patches, start points, and along-strike rup-
ture extent (defined by tremor cluster hypocenters) of
the 17 ETS events (see also Additional file 3: Fig. S4).
It is notable that nearly all of the start points are out-
side the high-energy patches. This feature is similar to
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Fig. 6 (upper) Plot showing the rupture extent along the strike
direction (black bars) and the start point (red stars) of each ETS event.
(bottom) The spatial distribution of cumulative seismic energy release
of all ETS events and the start point of each ETS event (red stars).
Black rectangles indicate the location of high-energy patches

the relationship between hypocenters and asperities of
regular earthquakes (e.g., Yamanaka and Kikuchi 2004;
Mai et al. 2005) and suggests that the rupture of an ETS
event initiates in a low-strength area. This implies that
the higher-energy patches are areas with relatively high
frictional strength. It is also notable that start points tend
to be on the deeper, down-dip side of the plate inter-
face, whereas the high-energy patches are on the up-dip
side, implying a depth-dependent variation in frictional
strength on the plate interface (Obara et al. 2010; Sweet
et al. 2019). The down-dip concentration of the start
point is consistent with the observations of major trem-
ors in the Kii Peninsula reported by Yabe and Ide (2014).
Moreover, the along-strike distribution of start points
appears to be heterogeneous. Some start points are con-
centrated on the northeastern side of patch A. This con-
centration, together with the rupture of patches A and
B, causes the dominantly southwestward migration of
tremor in the analyzed area (Obara 2010).

Focusing on the rupture extent of ETS events, we found
that ETS events tended to terminate in or around high-
energy patches. This suggests that patches have relatively
high frictional strength. In that case, the complete rup-
ture of a high-energy patch would extend the growth of
an ETS event. On the other hand, the termination of the
rupture in or around a patch would prevent the further
growth of an ETS event.

We have mentioned the role of high-energy patches,
or tremor asperities (Ghosh et al. 2012), in the rupture
propagation of ETS events. It may appear unlikely that
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tremor asperities actively influence the growth of ETS
events because the total seismic moment of tremors and
LFEs is orders of magnitude smaller than the seismic
moment of a contemporaneous SSE (Kao et al. 2010), and
tremor and LFEs are generally interpreted as a passive
manifestation of underlying slow slip. However, some
studies have argued for an active role of tremor or LFEs
in the propagation of slow slip. Shelly (2015) found that
on the deep San Andreas fault, tremor propagates most
effectively through regions of abundant tremor pro-
duction, and does not propagate through large gaps in
tremor production, implying an active role for tremor in
slip propagation under the interpretation of rapid tremor
migration as a self-regulating cascade of seismic ruptures
along the fault. Rubin and Armbruster (2013) suggested
that tremor could influence the evolution of slow slip at
small scale lengths in their analysis of radiated energy
rates and tremor migration in a secondary slow slip front
in a 10 km? area of concentrated tremor in Cascadia.
These studies restricted the active role of tremor to the
small-scale propagation of slow slip.

However, tremor may play an active role not only in
small-scale slow slip propagation, but also during entire
ETS events. Yabe and Ide (2014) compared the migra-
tion pattern and seismic energy release rate of tremor,
which they referred to as the strength of tremor patches,
in the Nankai, Cascadia, Jalisco, and South Chile sub-
duction zones and suggested that tremor does control
the occurrence of SSEs to some extent. They proposed
a qualitative model, an expansion of the model of Ando
et al. (2012) which used the spatial distribution of vari-
ations in the strength of tremor patches to explain the
behavior of slow earthquakes and tremor. For regions of
heterogeneous tremor-patch strength, such as the Kii
Peninsula, Yabe and Ide (2014) suggested that the rup-
ture of weak tremor patches transfers the stress accu-
mulated by tectonic loading to strong tremor patches,
and that strong tremor patches serve as switches that
initiate large SSEs. This model explains the observed
characteristics of the ETS events in this study: their ini-
tiation outside high-energy patches, their termination
in and near high-energy patches, and their cascading
growth discussed below. The role of tremor asperities
in the growth of SSEs was also examined by the simu-
lation studies of Luo and Ampuero (2014, 2017), who
developed mechanical models consisting of friction-
ally unstable asperities embedded in a frictionally sta-
ble fault zone matrix. Luo and Ampuero (2017) used
numerical simulations to investigate two end-member
models, the SSE-driven-tremor model and the tremor-
driven-SSE model, and concluded that although both
models quantitatively reproduce the observed charac-
teristics, the latter model is more plausible because it
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is based on a more conventional friction law and bet-
ter reproduces the observed characteristics of SSE and
tremor without fine-tuning of the model parameters.
These studies suggest that high-energy patches can play
an active role in the growth of the ETS events reported
in this study.
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Relationship between rapid tremor reversal

and high-energy patches

Figure 7 shows two examples of rapid tremor reversal
(RTR) (Houston et al. 2011) observed in this study. Dur-
ing ETS 2, the main front of tremor propagated from
patch A to patch B and then propagated back to patch
A. During ETS 20, the main front of tremor propagated
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from patch B to patch C, then back to patch B. It appears
in both cases that a high-energy patch was reruptured
when RTR occurred. Our observations show clearly that
the patches release a large portion of their seismic energy
in the first rupture and a smaller portion in the second
rupture, accompanied by RTRs (Fig. 7). The migration
speed during RTR reached approximately 250 km/day,
which is of the same order as RTR velocities observed
previously in the Kii Peninsula (Obara et al. 2012) and in
Cascadia (Houston et al. 2011), whereas the migration
speed during the main rupture front (i.e., the first rupture
of the patches) was approximately 15 km/day, similar to
speeds of the main rupture front in other ETS events in
this region. This migration speed is also comparable to
that estimated by Obara (2010); 2—20 km/day and aver-
aging 10 km/day.

The relatively high energy release rates of tremor dur-
ing RTRs observed in this study are consistent with
previously reported high tremor amplitudes during
RTRs (Thomas et al. 2013; Rubin and Armbruster 2013;
Bostock et al. 2015; Peng et al. 2015). The total radi-
ated energy of tremor during the RTR is estimated to be
roughly 7 x 10° J for ETS 2 and 6 x 10° J for ETS 20, or
4% and 2% of the entire radiated energy, respectively. This
small fraction of radiated energy related to RTR implies
that the fraction of the total seismic moment of slow slip
related to RTR is similarly small, as observed by Haw-
thorne et al. (2016), if the same proportionality holds
between the radiated energy rate of tremor and the seis-
mic moment rate of slow slip.

Large-amplitude RTRs are often tidally modulated
(Obara et al. 2012; Thomas et al. 2013; Royer et al. 2015),
whereas others are triggered by a cascading failure of
brittle asperities (Peng and Rubin 2016). To investigate
the cause of the RTRs in ETS 2 and ETS 20, we used the
TidalStrain.2 code (Hirose et al. 2019) to calculate the
tidal stresses at a depth of 35 km below patch B for ETS
2 and below patch C for ETS 20 because the RTRs appear
to initiate from these patches. The assumed fault geom-
etry and slip (strike, dip, and rake) were taken from the
parameters of a corresponding SSE (Table 3). We adopted
shear stress (Ar) as the index of tidal stress because the
frictional coefficient is close to 0 for tremor (Houston
2015). The timing of the RTRs does not coincide with
a peak in shear stress or a positive shear stressing rate
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(Fig. 7), ruling out modulation of these RTRs by tidal
shear stress as reported by Rubin and Armbruster (2013).
This result agrees with that of Yabe et al. (2015), who
ruled out such a tidal modulation in the Nankai subduc-
tion zones. Instead, these RTRs appear to have been trig-
gered by the failure of high-energy patches in the absence
of high-energy rate tremor. The trigger of the RTRs
without high-energy rate tremor is consistent with the
observation of RTRs of Peng and Rubin (2016) and the
simulation of Luo and Ampuero (2014, 2017).

Cascading growth process of ETS events

Comparing the temporal evolution of ETS events with
the same start points effectively removes one possi-
ble confounding variable in the growth process of ETS
events. Figure 8 displays the temporal evolution of three
ETS events (ETS 9, 12 and 17) that initiated only a few
kilometers apart. These events started at the down-dip
end, and the rupture propagated up dip at about 1 km/h
for about 12 h, which is consistent with the migration
speed of 1 km/h reported for these events by Sagae et al.
(2021). ETS 12 ruptured patch B and terminated without
rupturing patches A and C, whereas ETSs 9 and 17 rup-
tured patch B and then propagated bilaterally to patches
A and C. In ETS 17, patch A ruptured before patch C.
The rupture of ETS 17 continued longer than that of ETS
9, and the radiated seismic energy from patches A and C
was larger in ETS 17 (Fig. 8b). These results suggest that
differences in ETS growth are controlled by the rupture
of strong patches, as suggested by Yabe and Ide (2014),
even for ETS events with nearly identical start points.

For regular earthquakes, the existence of a nuclea-
tion phase, or slow initial phase, has been controver-
sial, and some studies have reported that the eventual
size of an earthquake is scaled as the cube of the dura-
tion of the nucleation phase (e.g., Ellsworth and Beroza
1995). We investigated whether such a phase can be
found for ETS events, again using the trio of ETS 9, 12,
and 17 (Fig. 8c). Given the possible uncertainty of the
start time of ETS events, we assigned a consistent start
time for the three events by aligning their energy release
curves at the beginning of the rupture of patch B, then
considered the relation between energy release during
the day before and the day after this start time (Fig. 8c).
We also assigned the start time as the time of the first

(See figure on next page.)

Fig. 8 a Evolution of the energy release for three ETS events with nearly identical start points. Each snapshot encompasses the time period

shown in the upper left corner and displays the cumulative seismic energy release during that period. Black rectangles represent the locations of
high-energy patches on the subducting Philippine Sea plate interface. Red stars indicate the start point of the ETS events. b Cumulative seismic
energy release curves of the three ETS events. ¢, d Comparison of cumulative seismic energy release during the initial parts of the three ETS events
in which ¢ the start of the rupture in patch B and d the time of the first tremor event within the period of semblance analysis (Table 1) serves as the
zero point on which the curves are aligned so as to better compare the earliest phase of the ETS events
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tremor event within the period of the semblance analysis
(Table 1) under the assumption that all tremor events we
detected were related to ETS events (Fig. 8d). Despite the
large difference in their sizes (Fig. 8b), the three events
had very similar initial phases before the start time; that
is, there was no size-dependent growth process evident
in the initial part of the ETS events. This result suggests
that the growth of ETS events is controlled by how high-
energy patches rupture, and suggests that ETS events
have a cascading rupture process similar to that reported
for regular earthquakes (Ide 2019).

A logarithmic plot of the data shown in Fig. 8b (Fig. 9a)
allows us to focus on the long-term cumulative energy
curve of ETS events after 10* s (about 2.8 h), a time
range that emphasizes variations between events. The
cumulative energy of slow earthquakes is proposed to be
proportional to the seismic moment with a constant of
approximately 107'° (Ide et al. 2008), and the cumulative
energy curves in Fig. 9a appear roughly consistent with a
scaling relationship between seismic moment (Mg) and
duration (7T) of My T for slow earthquakes (Ide et al.
2007), shown as the pink stripe in Fig. 9. However, it is
apparent that the slopes of the cumulative energy curves
are not constant. The slope is steep for the time interval
2-4x 10* s to 5-9 x 10* s, when the cumulative energy
(E) scales approximately as the cube of T, or Eoc T°. The
slope becomes gentler after 5-9 x 10* s, when the cumu-
lative energy scales approximately as the lapse time, Ecc T
(Fig. 9a). The first time interval corresponds to the rup-
ture of patch B, and the second corresponds to the rup-
ture propagation along strike from patch B to patch A
or C. Therefore, we suggest that ETS events might grow
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as Mo T® during rupture expansion in a high-energy
patch and as Mo T during rupture propagation along
strike within the ETS zone. This transition of the scal-
ing relation due to the bounded or one-dimensional
growth of SSEs within the ETS zone was also suggested
by Gomberg et al. (2016). In this case, the scaling relation
of M ox T? for SSEs in Cascadia reported by Michel et al.
(2019b) might indicate the unbounded growth of a SSE
within the ETS zone. Moreover, the transition we found
in the scaling relation between M, and T differs from
the result of a numerical simulation of slow earthquakes
based on a Brownian walk model, which shows a transi-
tion from Mg T> to My oc T (Ide 2008), although this
difference might reflect fluctuations in the temporal evo-
lution of ETS events. The cumulative energy curves for all
17 ETS events in this study are quite scattered (Fig. 9b),
and they appear to have no common evolution process
signified by a systematic transition of the scaling between
E and T. On the other hand, most of the events approxi-
mate the My T scaling relationship (Ide et al. 2007)
when considered as whole events (Fig. 9b). This could be
consistent with the M oc T8 scaling relationship for 61
SSEs in Shikoku in the Nankai subduction zone (Hirose
and Kimura 2020).

Conclusions

We analyzed seismic array records of tectonic tremor
beneath the Kii Peninsula in the Nankai subduction zone
to trace the detailed growth of ETS events. Our exami-
nation of tremor in 17 ETS events revealed the existence
of stationary patches on the plate interface that release
high radiated seismic energy. The location of these
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high-energy patches is independent of the start point and
migration pattern of ETS events, suggesting that the dis-
tribution of the patches reflects heterogeneities in fric-
tional properties that are inherent to the plate interface.
The start points generally lie outside the high-energy
patches, similar to the spatial relationship between hypo-
centers and asperities of regular earthquakes. In some
ETS events, the high-energy patches have a role in ter-
minating the rupture; in others, the high-energy patches
rupture twice in an RTR-like pattern. We also compared
the initial part of ETS events with different sizes but
nearly identical start points, finding that the final size
of ETS events appears to be controlled by the extent of
the rupture of the high-energy patches; that is, the final
size of an ETS event cannot be estimated from its initial
growth phase. These features indicate that ETS events
have an essentially cascading rupture process similar to
that of regular earthquakes. The growth of ETS events
appears to be controlled by how they rupture high-
energy patches.
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