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Analysis and prediction of polar motion 
using MSSA method
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Abstract 

Polar motion is the movement of the Earth’s rotational axis relative to its crust, reflecting the influence of the material 
exchange and mass redistribution of each layer of the Earth on the Earth’s rotation axis. To better analyze the tem-
porally varying characteristics of polar motion, multi-channel singular spectrum analysis (MSSA) was used to analyze 
the EOP 14 C04 series released by the International Earth Rotation and Reference System Service (IERS) from 1962 to 
2020, and the amplitude of the Chandler wobbles were found to fluctuate between 20 and 200 mas and decrease 
significantly over the last 20 years. The amplitude of annual oscillation fluctuated between 60 and 120 mas, and the 
long-term trend was 3.72 mas/year, moving towards N56.79 °W. To improve prediction of polar motion, the MSSA 
method combining linear model and autoregressive moving average model was used to predict polar motion with 
ahead 1 year, repeatedly. Comparing to predictions of IERS Bulletin A, the results show that the proposed method can 
effectively predict polar motion, and the improvement rates of polar motion prediction for 365 days into the future 
were approximately 50% on average.

Keywords:  Polar motion, Multi-channel singular spectrum analysis, Time series analysis and prediction, 
Autoregressive moving average
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Introduction
The rotation of the Earth not only characterizes the over-
all motion state of the Earth, but also reflects the coupling 
processes between the solid Earth and the atmosphere, 
oceans, mantle, and core on spatial and temporal scales 
(Nastula and Ponte 1999; Zotov and Bizouard 2015). 
Polar motion (PM) is an objective representation of the 
Earth’s rotation, so its changes also indicate variations in 
various geophysical factors. Therefore, the study of PM 
changes is of great value and significance for understand-
ing geophysical processes, such as the movement of mass 
in the crust (mantle convection, topographic coupling, 
electromagnetic coupling, and plate movement), the 
flow of Earth’s surface materials (ocean circulation and 
tides, atmospheric motion, postglacial rebound, and gla-
cier melting), and the external effects on the Earth (the 

influence of the Moon, Sun, and other celestial bodies) 
(Chen and Wilson 2005; Lambeck 2005; Dill and Dob-
slaw 2010; Jin et al. 2013; Wang et al. 2016; Adhikari and 
Ivins 2016).

PM is the movement of the Earth’s rotational axis rela-
tive to the crust, which is usually expressed by using X 
and Y coordinates, and these coordinate axes point to 0° 
and 90°W, respectively. Long-term drift, Chandler wob-
bles and the annual term are important components of 
PM, which is of great significance in studying the tempo-
rally varying characteristics of PM (Nastula et al. 2011). 
The Chandler wobbles were proposed by Chandler in 
1891, which is subject of ongoing research since its dis-
covery (Zotov and Bizouard 2015; Wang et al. 2016). As 
time changes, the period of the Chandler wobbles fluctu-
ates from 1.13 to 1.20  years (Schuh et  al. 2001), and its 
amplitude varies between 100 and 200 mas (Gross 2000; 
Wang et al. 2016). Although current studies have shown 
that the Chandler wobbles are related to interactions 
among the atmosphere, ocean and other Earth fluids, 
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its excitation mechanism remains to be further studied 
(Chen and Wilson 2005; Malkin and Miller 2010; Nastula 
et al. 2011). The period and amplitude of the annual term 
remain basically stable, and the long-term drift is approx-
imately 3.3–3.5 mas/year (Gross 2000; Schuh et al. 2001).

To better extract the periodic terms of PM and study 
their time-varying characteristics, bandpass filters have 
typically been used. For instance, Popinski et  al. (1995) 
used Fourier transform bandpass filter to analyze PM 
variations and extracted the Chandler wobbles and 
annual term from IERS93C01 and IERS90C04. Wave-
let transform was applied to determine and analyze the 
amplitudes of the Chandler wobbles and annual term 
(Schuh et al. 2001; Liu et al. 2007). Since 2010, singular 
spectrum analysis (SSA) has been applied for the analysis 
of PM. Malkin and Miller (2010) used SSA to extract the 
Chandler wobbles and annual term of PM, and the results 
showed that this method can obtain a more detailed PM 
series structure than other digital filters. Wang et  al. 
(2016) proposed a Fourier basis pursuit bandpass filtering 
that can effectively suppress the edge effect in the process 
of extracting prograde and retrograde annual wobbles. 
However, these methods can only analyze the time series 
in the X- or Y-direction individually, whereas the PM is 
actually an entire movement, which is only expressed 
by X- and Y-coordinates. Therefore, the correlation of 
changes in PM between the two directions should be 
considered in PM analysis.

Multi-channel singular spectrum analysis (MSSA) is 
widely applied in the fields of climatology (Luzano 2020), 
seismology (Oropeza and Sacchi 2011) and physical 
geodesy (Jin et  al. 2021). This analysis method extracts 
the spectral characteristics of a multi-channel time series 
and extends the analysis of the observed dynamic charac-
teristics from a limited single channel to multiple chan-
nels, taking into account the correlation among different 
measurement signals. Compared with SSA and principal 
component analysis (Rangelova et  al. 2007), MSSA can 
better extract useful information (such as periodic term 
and long-term variations) from signals (Zhou et al. 2018). 
Therefore, in order to better extract the principal com-
ponents such as the trend, Chandler wobbles and annual 
term in the X- and Y-directions of PM, MSSA is used in 
this study to analyze PM variations.

With the development of observation technology, 
modern space geodetic technology has become the main 
method for solving precise PM parameters. However, 
owing to the complexity of the data collection and pro-
cessing process, these parameters are usually delayed 
by hours to days. To satisfy the real-time requirements 
of spacecraft tracking, deep space detection and satel-
lite positioning (Schuh and Behrend 2012; Dill et  al. 
2019), it is significant to research PM prediction. 

Moreover, precise transformations between the interna-
tional celestial and terrestrial reference frames, as well 
as the autonomous navigation and positioning of artifi-
cial Earth satellites have an increasing demand for pre-
cise PM prediction parameters with long term (Kalarus 
et  al. 2010). To improve prediction of PM, many meth-
ods have been proposed. For instance, Kosek et al. (2007) 
used the combined least-square (LS) and autoregres-
sive (AR) algorithm (as the official PM prediction algo-
rithm of International Earth Rotation and Reference 
System Service (IERS)) to predict PM for one year into 
the future from 2003 to 2012. The mean absolute errors 
(MAEs) of 10-day-lead predictions with this method in 
the X- and Y-directions are 3.1 and 1.9 mas, respectively, 
and the MAEs of 180-day-lead predictions are 23.5 and 
26.9 mas, respectively. Fuzzy-wavelet was used to pre-
dict PM during the period from 2000 to 2005. The root 
mean squares of 10 days and 180 days ahead prediction 
in the X- and Y-directions are 4.86 and 3.28 mas, 33.02 
and 34.29 mas, respectively (Akyilmaz et al. 2011). Liao 
et  al. (2012) applied artificial neural network (ANN) to 
predict PM. In the ultra-short-term forecast, its precision 
in the X- and Y-directions are only 21.84 and 16.87 mas, 
respectively, and the MAEs of 180-day-lead predictions 
are 22.74 and 27.67 mas, respectively. The Earth Orienta-
tion Parameters Prediction Comparison Campaign (EOP 
PCC) has compared these methods and shows that the 
LS + AR model is one of the most efficacious methods for 
predicting PM (Kalarus et al. 2010). Many scholars have 
improved the LS + AR model (Xu et  al. 2012; Xu and 
Zhou 2015; Wu et al. 2018). For instance, Xu et al. (2012) 
added the Kalman filter method to the LS + AR model 
and achieved good results in short-term prediction. The 
MAEs of 10-day-lead predictions in the X- and Y-direc-
tions are 2.88 and 2.14 mas, respectively, and the preci-
sion of 50-day-lead predictions are 9.27 and 8.93 mas, 
respectively. And no long-term prediction was made.

However, these methods do well for short-term pre-
diction and do not perform satisfactorily in mid-term 
and long-term predictions, because they cannot extract 
the variable amplitude of Chandler wobbles and annual 
terms (which have amplitudes up to several mas, or 
even dozens of mas) (Guo and Han, 2009; Su et al. 2014; 
Modiri et al. 2018). The aforementioned MSSA can effec-
tively extract the temporally varying Chandler wobbles 
and annual term. Therefore, MSSA will be applied to pre-
dict PM for the first time in this paper, and a new method 
combining the linear model (LM) and autoregressive 
moving average model (ARMA) is proposed.

The structure of this paper is as follows: Sect.  "Analy-
sis of PM time series" introduces the MSSA method and 
analyzes the principal components of PM, such as the 
Chandler wobbles and annual term extracted by this 
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method. Section "Prediction of PM parameters" explains 
how to use MSSA method to predict PM parameters for 
1-year into the future and compares these predictions 
with the predictions of IERS Bulletin A. Section "Conclu-
sion" contains the conclusion.

Analysis of PM time series
Data sources
The EOP 14 C04 PM time series provided by IERS used 
in this paper were downloaded from https://​www.​iers.​
org/​IERS/​EN/​DataP​roduc​ts/​Earth​Orien​tatio​nData/​eop.​
html. The data covers January 1, 1962, to May 12, 2020, 
with an interval of 1 day, which is calculated by solutions 
of various spatial measurement technologies (Very Long 
Baseline Interferometry (VLBI), Global Navigation Satel-
lite Systems (GNSS), Satellite Laser Ranging (SLR) and 
Doppler Orbitography and Radio-positioning Integrated 
by Satellite (DORIS)), which is consistent with the con-
ventional reference frame ITRF 2014, with a precision of 
0.02 mas (Bizouard et al. 2019).

Multi‑channel singular spectrum analysis
MSSA is a non-parametric analysis technique of nonlin-
ear time series that can extract valid information from 
time series with unknown prior information. It has been 
widely used in the fields of climatology (Luzano 2020) 
and seismology (Oropeza and Sacchi 2011). As an exten-
sion of SSA, MSSA can better consider the correlations 
among various variables (Zhou et  al. 2018). Therefore, 
MSSA was selected herein to analyze PM variations.

PM is divided into two components in the X- and 
Y-directions, so two channels are selected for analy-
sis. First, the linear trends in the X- and Y-directions 
of PM are removed. It is assumed that the de-trended 
PM time series in the X- and Y-directions are x1,t and 
x2,t(t = 1, 2, · · · ,N ) , respectively, where t is time and N 
is the length of the series. L represents the window size, 
which usually meets 1 < L < N/2 . To better extract the 
periodic terms, the window size is generally a multiple of 
the period (Golyandina and Zhigljavsky 2013). The Chan-
dler wobbles and annual term are a reasonable choice 
as the main PM period (Zotov 2010; Shen et  al. 2018), 
so 2190 is chosen herein as the window size. The total 
trajectory matrix H constructed by PM in the X- and 
Y-directions is expressed as follows:

The trajectory matrix H is an L × 2  K matrix and is 
transformed into the sum of biorthogonal matrices of 

(1)

H =







x1,1 · · · x1,K x2,1 · · · x2,K
x1,2 · · · x1,K+1 x2,2 · · · x2,K+1

...
...

...
...

...
...

x1,L · · · x1,N x2,L · · · x2,N






,K = N − L+ 1.

rank 1, S = HHT , that is decomposed by singular value 
decomposition (Golyandina and Stepanov 2005). The 
singular value decomposition of trajectory matrix H is 
expressed as follows:

where Hi =
√
�iUiV

T
i  , �1 ≥ . . . ≥ �d ≥ 0 are the eigen-

values of the matrix S , d represents the rank of H , 
U1, . . . ,Ud are the corresponding eigenvectors, and 
Vi = HTUi

/√
�i.

Considering that Hi is associated with the i-th largest 
singular value of H , the proper eigenvalues and corre-
sponding eigenvectors are selected to reconstruct H :

where r is the number of reconstruction, r < d.
Using anti-diagonal averaging on each block of Hi , the 

reconstruction component (RC), a new N-length time 
series, is obtained. Therefore, the mth reconstruction 
component hm is expressed as:

Through the above steps, 2190 RCs in the X- and 
Y-directions can be obtained, respectively. The variance 
contribution rates of the first 12 RCs were statistically 
analyzed, as shown in Fig. 1.

As shown in Fig. 1, RC1 and RC2 have the highest con-
tribution rates, at 35.08% and 34.37%, respectively. RC3 
and RC4 have the second-highest contribution rates, 
at 13.68% and 13.60%, respectively. The contribution 
rates of RC5, RC6 and RC7 are 1.06%, 0.53% and 0.48%, 
respectively. The contribution rates of the other RCs are 
relatively low and gradually decrease with the increasing 
order. The total variance contribution rate of the first 7 
RCs is 98.81%. Under the statistical null hypothesis, F sta-
tistics can easily test the significance of any mode (Smith 
et al. 2007; Karegar et al. 2015), and the results show that 
the first 7 modes are dominant. Therefore, the first 7 
RCs in the X- and Y-directions of PM were selected for 
analysis.

Periodic analysis of PM
Weighted correlation (w-correlation) analysis (Has-
sani 2007) can effectively reflect the correlations among 
various variables. To better determine the relationships 

(2)H = H1 +H2 + · · · +Hd,

(3)
H =

Signal (Principal)
︷ ︸︸ ︷

H1 + · · · +Hr +

Noise (Remaining)
︷ ︸︸ ︷

Hr+1 + · · · +Hd,

(4)hm =







1
k

m�

j=1

xj,m−j+1 , 1 ≤ m ≤ L

1
L

L�

j=1

xj,m−j+1 , L ≤ m ≤ K

1
N−m+1

L�

j=m−K+1

xj,m−j+1 , K ≤ m ≤ N

https://www.iers.org/IERS/EN/DataProducts/EarthOrientationData/eop.html
https://www.iers.org/IERS/EN/DataProducts/EarthOrientationData/eop.html
https://www.iers.org/IERS/EN/DataProducts/EarthOrientationData/eop.html
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among the RCs of PM, first, the reconstructed compo-
nents in the X- and Y-directions were analyzed using 
the w-correlation analysis method. The w-correlation 
between any two reconstructed RCs of the de-trended 
time series of PM ( Xi ) can be expressed as:

where 
∥
∥Xi

∥
∥
w
=

√
(

X (i),X(j)
)

 , 
(

X (i),X(j)
)

=

N∑

k=1

wkx
i
kx

j
k , 

wk is the weight coefficient, and its value is 
min (k ,M,N − k) . The closer the absolute value of ρw

i,j is 
to 1, the greater the correlation between the two signals 
is, and the higher the degree of similarity between the 
two signals is. It is necessary to group them together 
when extracting the periodic term.

The w-correlation analysis of the first 12 RCs is 
shown in Fig.  2. RC1 and RC2 have high correlation, 
and RC1 + RC2 has good independence relative to 

(5)
ρw
i,j =

(

X (i),X(j)
)/(∥

∥
∥Xi

∥
∥
∥
w

∥
∥
∥Xj

∥
∥
∥
w

) (
1 ≤ i, j ≤ N

)
,

other components, so they can be divided into a group 
of signals. Similarly, RC3 and RC4 also have high cor-
relation and independence, combing into a group of 
signals. There is a strong correlation between RC6 and 
RC7, but the two RCs are still weakly correlated with 
RC9 and RC10. Then, a fast Fourier transform (FFT) 
was used to perform a power spectrum analysis on the 
combined signals.

The de-trended PM original time series, merged results 
of the same periodical RC terms in the X- and Y-direc-
tions of PM and the corresponding power spectrum anal-
ysis are shown in Figs. 3 and 4, respectively. The periodic 
terms in the X- and Y-directions are relatively consistent, 
and the first principal component (RC1 + RC2) period is 
all 1.18 years, which represents the Chandler wobbles of 
the PM. The second principal component (RC3 + RC4) 
period is 1  year, which represents the annual term. The 
third principal components (RC5) are all nonlinear trends 
that represent the long-term nonlinear trend changes of 

Fig. 1  Statistics of RC variance contribution rates

Fig. 2  W-correlations among the first 12 RCs
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PM after removing the linear trend. The fourth principal 
components (RC6 + RC7) are all the periodic component 
of 1.34 years, and the components all contain some other 
weak periodic signals, which is also consistent with the 
results of the w-correlation analysis.

As shown in Figs.  3 and 4, the periodic terms of PM 
reveal nonlinear variations by using MSSA. The ampli-
tude of the periodic term changes with time, which 
is more in line with the actual variation in PM. Tra-
ditional least-square spectrum analysis can only pro-
vide a constant amplitude of the period. The amplitude 
of RC1 + RC2 (Chandler wobbles) varies from 20 to 
200 mas, and has decreased significantly over the last 
20  years. Since the length of PM series is only a hun-
dred years, the last time a similar Chandler amplitude 
minima occurred was in the 1940s (Malkin and Miller 
2010). The physical mechanism on this phenomenon is 
currently unclear, and there is still no relevant excitation 
mechanism that can explain it. RC3 + RC4 (the annual 
variation in PM) is relatively stable, and its amplitude 
varies between 60 and 120 mas. This change also reflects 
that the seasonal redistribution of the mass of Earth has 

good stability. For the periodic term of approximately 
1.34  years, no corresponding excitation mechanism is 
currently known. This term may be a combination of 
multiple other periodic terms and thus only represent a 
mathematical expression of MSSA, and further research 
and analysis are needed.

Long‑term trend analysis of PM
The trajectory and long-term trend of PM from January 
1, 1962, to May 12, 2020, are shown in Fig.  5. Assum-
ing that the PM series are Xt(t = 1, 2 . . .N ) , the linear 
trend is extracted by using the least square (LS) method, 
expressed as follows:

where ω0 is a constant and ω1 is the change rate of PM. 
The red dashed line represents the nonlinear trend of 
PM, ω0 + ω1t + RC5t(t = 1, 2 . . .N ) , which is formed by 
the superposition of the PM linear trend and RC5 term 
obtained by MSSA. The change rates of nonlinear trend 
of PM are also directly calculated by LS method. Table 1 

(6)Xt = ω0 + ω1t,

Fig. 3  RCs in the X-direction of PM and its perform power spectrum analysis
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shows the linear and nonlinear long-term trend direc-
tions and the movement rate of PM, and the results are 
relatively consistent. The change rates of PM in the X- 
and Y-directions are approximately 2.04 ± 0.02 mas/year 
and 3.11 ± 0.02 mas/year, respectively, and the long-term 
trend is 3.72 mas/year.

As shown in Table  1, the long-term trends of PM 
obtained from different methods and different data 
periods have relatively large differences. During the 
period used in this paper, the North Pole moves to 
56.79  °W in the longitudinal direction with respect to 
the crust, pointing to Greenland. As shown in Fig.  5, 
after July 1990, Earth’s North Pole began to move to the 
west, which is also consistent with the results of Schuh 
et  al. (2001). At the beginning of the twenty-first cen-
tury, the North Pole of the earth began to move slowly 
eastward. In recent decades, with the increase in global 
average temperatures, the glaciers in Greenland have 
been experiencing accelerated melting (Chen et  al. 

2013; Adhikari and Ivins, 2016), which may be the main 
cause for this trend.

Prediction of PM parameters
Principle of prediction
To meet the real-time requirements of satellite navigation 
for PM parameters (Jayles et al. 2016), the MSSA method 
combining LM and ARMA model was used herein to 
predict PM parameters. The prediction flowchart is 
shown in Fig. 6. First, the LS is used to extract the linear 
trend of PM series, and a linear model is established to 
obtain linear trend predictions. Then, MSSA is used to 
decompose and analyze the de-trended PM series, select-
ing appropriate principal components of PM for predic-
tions. The ARMA model is used to predict the remaining 
components. Finally, the resulting PM predictions can be 
obtained by adding predictions of the three components.

Fig. 4  RCs in the Y-direction of PM and its perform power spectrum analysis
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Method of prediction
The prediction process includes three steps (Fig. 6):

a)	 A linear model is used for prediction. Equation  (6) 
shows that the linear trend of PM is Xt = ω0 + ω1t . 
The LM model is built for the linear trend predic-
tions.

b)	 The MSSA model is used for prediction (Golyandina 
and Stepanov 2005). According to step (a), the result-

ing PM time series after removing the linear trends in 

the X- and Y-directions are Y (2)
t =

[

y
(1)
1

· · · y
(1)
N

y
(2)
1

· · · y
(2)
N

]

 . The 

MSSA is used to decompose Y (2)
t  to obtain the last 

L-1 values of the reconstructed signal, denoted by F  
as follows:

(7)F =

[

f
(1)
N−L+1 · · · f

(1)
N−1

f
(2)
N−L+1 · · · f

(2)
N−1

]

Fig. 5  Trajectory and trend of PM. The gray line represents the trajectory of PM. The red cross indicates the position of the start and end times of PM 
trajectory. The blue solid line and red dashed line is the linear and nonlinear trend term of PM, respectively

Table 1  Long-term trends of polar motion

Literature PMX (mas/year) PMY (mas/year) PM (mas/year) Direction (°W) Data/time span Trend

This paper 2.02 ± 0.2 3.07 ± 0.2 3.67 56.70 14 C04/1962–2020.5 Linear trend

This paper 2.04 ± 0.02 3.11 ± 0.02 3.72 56.79 14 C04/1962–2020.5 Non-linear trend

Schuh et al. (2001) – – 4.00 77.36 93 C01/1861–1997 Linear trend

Schuh et al. (2001) – – 3.31 76.10 OA97/1899.7–1992.0 Linear trend

Chen et al. (2013) 7.26 ± 0.17 ( χ1) 5.45 ± 0.25 ( χ2) – 36.90 08 C04/2005–2011 Linear trend/mass excitations
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	 For X-direction of PM, f (1)N  is a linear combination of 
the first components f (1)N−1 , f

(1)
N−2,…, f (1)N−L+1 :

where the vector RL = (a1, a2, . . . aL−1) can be 
expressed as:

where U∇
i  is the vector containing the first L-1 values 

of the eigenvectors Ui , πi is the last value of the eigen-
vectors Ui , r is the number of reconstruction, and 
ν =

r∑

i=1

π2
i .

	 The recurrent prediction formula for M predic-
tions is

where M is the number of predictions for future, the 
coefficients 

{
aj , j = 1, 2, . . . , L− 1

}
 derived in for-

mula (9). The series 
{

f
(1)
N+1, f

(1)
N+2, . . . , f

(1)
N+M

}

 is M 
predictions in the X-direction of PM. Similarly, the 
Y-direction predictions of PM are obtained in the 
same way.

c)	 The ARMA model is used for prediction. Accord-
ing to step (b), the remaining components series are 

(8)
f
(1)
N = a1f

(1)
N−1 + a2f

(1)
N−2 + . . .+ aL−1f

(1)
N−L+1,

(9)RL =
(

1

1− ν2

) r∑

i=1

πiU
∇
i
,

(10)

f
(1)
i =

L−1∑

j=1

ajf
(1)
i−j for i = N + 1, . . . ,N +M,

Zt(t = 1, 2 . . .N ) ; this components are modeled by 
ARMA, which is expressed as follows:

	 where p is the AR model’s order, q is the MA model’s 
order, c is the constant term, φi is the autoregressive 
coefficient at time t − i , εt is the error term at time t , 
and θj is the moving average coefficient at time t − j . 
The extended autocorrelation function (EACF) is 
selected to determine the orders p and q of the AR 
model and the MA model, respectively, which can be 
used to build the ARMA model for the prediction of 
the remaining components.

Results and analysis
The PM series from January 2000 to December 2019 was 
selected for the prediction experiment, and the predictions 
were compared with the Bulletin A released by IERS to 
evaluate the accuracy of the LM + MSSA + ARMA model.

The experiments conducted in this paper are all based 
on historical data, and the training period data were used 
for modeling to predict PM for 1-year into the future. 
The PM from January 1, 2000, to the predicted starting 
time was used as the training data. The predicted start-
ing times are January 7, 2016, February 4, 2016, March 
3, 2016, …, October 11, 2018, November 8, 2018, and 
December 6, 2018. Each predicted starting time is moved 
forward by 4  weeks (28  days) for the next prediction. 

(11)Zt = c +
p

∑

i=1

φiYt−i + εt +
q

∑

j=1

θjεt−j ,

Linear trend

Principal 
components

Remaining
components

Using MSSA model 
for prediction

Predictions
of PM

Using ARMA model 
for prediction

PM time 
series

Using Linear model 
for prediction

LS

MSSA

Fig. 6  Flowchart of PM prediction
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From 2016 to 2018, 13 predictions were made per year, 
for a total of 39 predictions.

First, the PM time series from January 1, 2000 to 
January 7, 2016 were analyzed using MSSA to deter-
mine the principal components of PM. The recon-
structed series with the first 6 and 7 RCs in the X- and 
Y-directions of PM and their corresponding de-trended 
series are shown in Fig.  7, and the correlation coef-
ficients are shown in Table  2, showing that the recon-
structed series with the first 6 and 7 RCs can represent 
the original series well. However, it can be seen from 
the w-correlation analysis results described in Sect.  2 
that the combined components of RC6 and RC7 con-
tain some other weak periodic signals. To better predict 
PM, this paper uses the first 6 and 7 RCs as the princi-
pal components for prediction, respectively. As shown 
in Fig. 7, the ARMA model is used to predict the differ-
ences (remaining components) between the de-trended 
PM series and reconstructed principal components by 
using MSSA. Through EACF analysis, it was found that 
for the first 6 and 7 RCs reconstructions, the ARMA 

(2, 9) has good applicability for modeling the remain-
ing components in the X- and Y directions of PM, 
respectively. 

Second, the mean absolute error (MAE) was used to 
evaluate the prediction accuracy (Kalarus et  al. 2010), 
that is:

where Pi is the predicted value of the i-th period, Oi is 
the observed value in the corresponding period, and n is 
the total number of predictions. The MAE comparison 
between the LM + MSSA + ARMA model and IERS Bul-
letin A predictions are shown in Fig. 8, and the statistics 
are shown in Table 3.

As shown in Fig.  8, compared to the predictions of 
Bulletin A, the MAEs of the predictions produced by 
the proposed method were smaller in most periods. 
Our prediction accuracies were excellent for predictive 
period (0–180 days and more than 250 day) for PMX and 
predictive period (110–320  days) for PMY. This may be 
because MSSA can effectively model and predict the vari-
able amplitude of Chandler wobbles and annual terms. In 
addition, for the LM + MSSA + ARMA model, the pre-
diction precision of PMX was higher than that of PMY.

As shown in Table  3, for the ultra-short-term and 
short-term prediction (Kalarus et al. 2010), the MAEs of 
10-day-lead and 30-day-lead predictions with MSSA(6) 
model for PMX were 2.43 and 5.73 mas, respectively, 

(12)MAE =
1

n

n∑

i=1

|Oi − Pi|,

Fig. 7  Reconstructed PM time series

Table 2  Statistics of correlation coefficients

De-trended PM series The first 6 RCs (%) The first 
7 RCs 
(%)

X-direction of PM 99.14 99.26

Y-direction of PM 99.06 99.25
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which were better than those of Bulletin A, i.e., 2.52 and 
6.52 mas. For PM in Y-direction, the MAEs of 10-day-
lead and 30-day-lead predictions with MSSA(6) model 
were 1.92 and 4.69 mas, respectively, which were approx-
imately equal to those of Bulletin A, i.e., 1.89 and 4.77 
mas. For the medium-term prediction, the MAEs of 
180-day-lead predictions for PMX and PMY were 15.51 
and 19.09 mas, respectively, which were better than those 
of Bulletin A, i.e., 15.96 and 22.98 mas. For the long-term 
prediction (360 days), the prediction precision of the pro-
posed method was equivalent to that of Bulletin A. In 
summary, the proposed method can effectively and accu-
rately predict PM parameters.

Figure 8 can only reflect the overall prediction accuracy 
of the model. To further discuss the actual correction 
effect of the model, Bulletin A was used as the bench-
mark, and the improvement rate was used to evaluate the 

accuracy of the two models. When the absolute values of 
the measured value minus the predictions of Bulletin A 
is greater than that of the measured value minus the pre-
dictions of the proposed method, the predictions of Bul-
letin A were considered to be improved, otherwise, the 
improvement failed. The improvement rate formula is:

The improvement analysis is shown in Fig.  9 and 
Table  4, yellow indicates improvement, and green 
indicates failure. The improvement in the prediction 
by the proposed method was approximately 50% on 
average. Overall, the proposed model with 6 RCs was 
slightly better than the model with 7 RCs. The highest 

(13)
Improvement rate =

Number of improvements in PM prediction

Total predicted number of PM
× 100%.

Fig. 8  MAE of IRES Bulletin A and LM + MSSA + ARMA model

Table 3  MAE statistics of various models (mas)

Lead day Bulletin A LM + MSSA(6) + ARMA LM + MSSA(7) + ARMA

PMX PMY PMX PMY PMX PMY

10 2.52 1.89 2.43 1.92 2.48 2.03

30 6.52 4.77 5.73 4.69 5.89 5.05

60 10.73 8.38 9.85 9.35 9.77 10.22

90 13.49 11.77 12.96 12.89 12.57 14.19

120 14.96 16.33 13.95 15.56 13.38 16.45

150 15.99 20.52 14.99 17.21 15.09 16.86

180 15.96 22.98 15.51 19.09 16.43 17.08

210 15.46 24.92 16.79 21.36 17.41 18.31

240 16.43 25.31 17.87 22.59 17.35 19.81

300 20.11 24.56 19.94 23.08 18.66 23.55

360 21.30 23.47 22.27 24.65 21.57 25.66
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improvement rate of prediction in the X- and Y-direc-
tions of PM reached 60.97% and 68.37%, respectively.

Conclusions
Variations in polar motion (PM) are accompanied by 
the physical processes of the Earth. To study the tem-
porally varying characteristics of PM, multi-channel 
singular spectrum analysis (MSSA) was used to analyze 
approximately 58-year PM series from 1962 to 2020. 
Principal components such as the trend, annual term 
and Chandler wobbles were extracted effectively. The 
analysis shows that the amplitude of Chandler wob-
bles fluctuates between 20 and 200 mas, and its ampli-
tude has decreased significantly over the last 20 years. 
The physical mechanism behind this phenomenon 
is currently unclear, and further research is needed. 
The annual variation in PM is relatively stable, and its 
amplitude varies between 60 and 120 mas. This change 
also reflects that the seasonal redistribution of Earth 

materials has good stability. The trends of PM in the 
X- and Y-directions are about 2.04 ± 0.02 mas/year and 
3.11 ± 0.02 mas/year, respectively, and the long-term 
trend is 3.72 mas/year, moving towards N56.79 °W.

To improve prediction of PM, the MSSA method com-
bining linear model (LM) and autoregressive moving 
average model (ARMA) was used to predict PM param-
eters for 1-year into the future, repeatedly. Comparing to 
predictions of IERS Bulletin A, the results show that the 
proposed method can effectively predict PM parameters, 
and the improvement rates of PM prediction for 365 days 
into the future are approximately 50% on average.
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