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A convolutional neural network‑based 
classification of local earthquakes and tectonic 
tremors in Sanriku‑oki, Japan, using S‑net data
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Abstract 

Low-frequency tremors have been widely detected in many tectonic zones, and are often located adjacent to meg-
athrust zones, indicating that their spatiotemporal evolution provides important insights into megathrust events. 
The envelope correlation method (ECM) is commonly used to detect tremors. However, the ECM also detects regu-
lar earthquakes, which requires the separation of these two signals after the initial detection. In addition, signals of 
tremors are weak, so classifying tremors from noises is also an essential problem. We develop a convolutional neural 
network (CNN)-based method using a single S-net station located off Sanriku region, Northeast Japan, to classify local 
earthquakes, tremors, and noise. Along the Japan Trench, especially in a region focused in this study, local earthquakes 
and tremors occurred in coexistence within a small region, so detection, location, and discrimination of these events 
are the key to understand the relationship between slow and regular earthquakes. The spectrograms of the three-
component velocity waveforms that were recorded during 16 August 2016 to 14 August 2018 are used as the training 
and test datasets for the CNN. The CNN successfully classified 100%, 96%, and 98% of the earthquakes, tremors, and 
noise, respectively. We also showed a successful application of our method to continuous waveform data including 
a tremor to explore the feasibility of the proposed method in classifying tremors and noise in continuous streaming 
data. The output probabilities for the true classifications decrease with increasing epicentral distance and/or decreas-
ing event magnitude. This highlights the need to train the CNN using tremors proximal to the seismic stations for 
detecting tremors using multiple stations.
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Introduction
Slow earthquakes, which are characterized by a longer 
duration than regular earthquakes of the same magni-
tude, have been widely detected in many tectonic zones 
(e.g., Obara and Kato 2016). There have been increasing 
observational reports that slow earthquake activity has 
sometimes preceded megathrust earthquakes (Kato et al. 
2012; Ito et al. 2013; Graham et al. 2014; Ruiz et al. 2014; 
Radiguet et al. 2016; Socquet et al. 2017; Voss et al. 2018). 

This activity has been detected adjacent to the coseismic 
source regions of some megathrusts, suggesting that slow 
earthquakes may potentially provide the necessary stress 
loading to trigger these megathrust ruptures. Therefore, 
the detection of slow earthquakes is one of the key crite-
ria for advancing our understanding of tectonic processes 
in subduction zones.

Tectonic tremors are slow earthquakes with dominant 
frequencies of ~ 2–10  Hz. Tectonic tremors are often 
detected via the envelope correlation method (ECM) 
(e.g., Obara 2002) using inland and/or ocean-bottom 
seismometers. The ECM utilizes the similarity of the 
envelopes of the observed waveforms among different 
stations because it is usually difficult to identify clear 
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P- and S-wave onsets in the tremor signal. While the 
ECM is a powerful tool for tremor detection, it is also 
effective in detecting regular earthquake signals. There-
fore, a visual inspection of the seismic waveforms is nec-
essary to identify the tremor signals, which are then used 
to create tremor catalogs.

A machine learning approach is one way to reduce the 
manual cost of waveform inspections, especially for large 
seismic data volumes (e.g., Kong et  al. 2019). Nakano 
et  al. (2019) developed a supervised convolutional neu-
ral network (CNN)-based method to classify local earth-
quakes, tremors, and noise using the spectrograms 
obtained by the DONET ocean seismometers deployed 
in the Nankai subduction zone, Southwest Japan, as input 
images for the CNN, and achieved an event classification 
accuracy of 99.5%. The known effectiveness of CNNs in 
extracting features from input images (e.g., Krizhevsky 
et  al. 2012; Szegedy et  al. 2015; Goodfellow et  al. 2016) 
allowed Nakano et al. (2019) to tailor a CNN for tremor 
detection because tectonic tremors have characteristic 
dominant frequencies of 2–10 Hz.

The S-net seismic network, a seafloor observation net-
work that covers a wide area of the Japan Trench sub-
duction zone, has recently been established in Northeast 
Japan (Fig.  1a) (NIED 2019). Short-period velocity seis-
mometers have been deployed at intervals of a few tens 
of kilometers in this network. Nishikawa et al. (2019) and 
Tanaka et al. (2019) have investigated local tremor activ-
ity using the S-net observations. While these previous 
studies detected tremors based on the ECM, we apply 

a CNN-based approach that was developed by Nakano 
et  al. (2019) to the S-net velocity records. However, the 
S-net seismometers have a 15-Hz characteristic period, 
and are therefore less sensitive to the dominant frequen-
cies of tremors (2–10  Hz) compared with the DONET 
seismometers (Nakano et al. 2019). Therefore, we modify 
the structures and retrain the parameters in the CNN 
developed by Nakano et al. (2019) for application to the 
S-net data. We attempt to classify the known local earth-
quakes, tremors, and noise via the CNN using a sin-
gle station to investigate how our CNN-based method 
works, with the ultimate goal of eventually developing 
a comprehensive tremor-detection approach. We note 
that it is important to discriminate local earthquakes and 
tremors along the Japan Trench subduction zone, due to 
the coexistence of regular and slow earthquakes within a 
small region in spite of their different source process (Ide 
2008). In contrast to regular earthquake signals, tremor 
signals are weak, and tremors could be easily mislabeled 
as noise in the condition of far-source station. Therefore, 
using a near-source station is a key to detect and classify 
tremors accurately.

Data
This study utilizes a CNN for classifying the spectro-
grams of local earthquakes, tectonic tremors, and noise, 
which are hereafter labeled EQ, T, and N, respectively, 
that were observed by S-net. We used the three-com-
ponent velocity waveforms that were recorded at a sin-
gle station, N.S4N21, at a sampling frequency of 100 Hz 

Fig. 1  a Map of the study area. The black crosses indicate S-net stations. The red and blue symbols are the tremor and earthquake epicenters 
determined by Nishikawa et al. (2019) and JMA, respectively. b Example local earthquake and tremor observations at station N.S4N21. The locations 
of the example events, Eq #1 and Tremor #1, are shown in a. The upper panel shows a 180-s seismogram record of each example event, with its 
corresponding spectrogram (normalized from 0 to 1) shown in the lower panel
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during the period from 16 August 2016 to 14 August 
2018 . This station was selected based on its location 
above the plate boundary where tremors frequently 
occur (Fig. 1a). Training datasets with labeled EQ, T, and 
N events are necessary since CNNs take a supervised 
approach. We therefore used the Japan Meteorological 
Agency (JMA) unified catalog and the tremor catalog 
created by Nishikawa et  al. (2019) for EQ and T event 
identification, respectively. We selected the events whose 
epicenters were close to station N.S4N21, which include 
those located within the area indicated by the rectan-
gle in Fig. 1a. We selected reference time of each image 
based on the second and minute of the origin time for EQ 
and T, respectively. Here we used the minute for tremor 
instead of the second to extract whole excited parts of 
tremor signals because origin time of cataloged tremors 
do not necessarily start before excitation of signals unlike 
regular earthquakes. The training dataset of N was con-
structed by visually inspecting seismograms every 10 min 
for 1 day in each month (i.e., the 20th day of each month 
in this study) when seismograms do not contain transient 
signal of tremor or regular earthquakes.

For creating all images of EQ, T, and N, we selected 
117.76-s time windows that started from each reference 
time defined above. Either the spectrograms or the power 
spectrum density (PSD) were then calculated for the wave-
forms using twenty 20.48-s moving time windows in the 
2–10 Hz frequency range with a lag of 5.12 s. We corrected 
PSD based on the amplitude characteristic in the frequency 
domain by using a damping constant of 0.707 and the 
15  Hz natural frequency. Each spectrogram was normal-
ized to ensure that the input image pixels were in the 0–1 
range. Each spectrogram was composed of 20 × 165 pix-
els (time domain × frequency domain). Figure  1b shows 
examples of earthquake and tremor waveforms with their 
corresponding spectrograms. The average of duration of 
T events in the catalog is about 44  s as shown by Nishi-
kawa et al. (2019), and the window contains whole excited 
parts of tremor signals. We divided the data period into 
two datasets for the CNN analysis, with the 16 August 
2016–2 December 2017 waveforms used for training and 
the 3 December 2017–14 August 2018 waveforms used 
for validation. Because images with low signal-to-noise 
ratios potentially cause mis-labeling in the training data-
set, we selected qualified images in each category (EQ, T, 
and N) from the training dataset as follows. We first calcu-
lated the difference between the maximum and minimum 
log10(PSD) values for each spectrogram. We then selected 
the images that possessed higher absolute values than the 
third quartile values for the local earthquakes and tremors, 
and images with lower absolute values than the first quar-
tile values for noise. Hereafter, we call these events selected 
events, and events that do not satisfy the abovementioned 

criteria non-selected events. We confirmed that with-
out this selection step, our CNN resulted in a poor clas-
sification accuracy. After this data selection step (Table 1), 
we obtained 210, 531, and 468 training events that were 
labeled EQ, T, and N, respectively. The numbers of labeled 
EQ, T, and N events are 91, 208, and 118, respectively, for 
the validation dataset (Table  1). Each event is composed 
of three-component PSD images. Finally, we normalized 
log10(PSD) for each event image over the 0–1 range (see 
Fig.  1b for an example) to extract the features in the fre-
quency domain.

Methods
CNNs (Fukushima 1980; LeCun et al. 1989) are a de facto 
standard for extracting non-linear features by learning a 
large amount of digital filters in combination with fully 
connected neural networks. CNNs employ these learnable 
filters to provide a function that maps an input image into 
an output vector. The inputs for our CNN are two-dimen-
sional (2D) images of the three-component spectrograms, 
and the output is a three-dimensional vector containing the 
EQ, T, and N probabilities for the input data.

CNNs consist of a series of layers that sequentially pro-
cess the input data as follows (Fig. 2): (a) convolve the input 
images using a set of learnable filters; (b) downsample the 
convolution outputs; and (c) apply a non-linear transforma-
tion known as the activation function to the downsampled 
outputs. The first step (a) is referred to as the convolution 
layer. Let {wt : t = 1, . . . ,T } be an input waveform consist-
ing of T samples, and let {hi : i = 1, . . . , F} be a learnable 
filter of length F. The convolution with this filter can be 
represented as follows:

Here, each filter {hi : i = 1, . . . , F} is optimized dur-
ing the training step (i.e., a learnable filter), and specific 

(1)
F
∑

i=1

hiwt+i, t = 1, . . . ,T .

Table 1  Matrix for the training and validation data of EQ–T–N 
events

We used 210, 531, and 468 images of EQ, T, and N events, respectively. We also 
used 91, 208, and 118 validation images with actual (true) EQ, T, and N labels, 
respectively

Actual label

Training data EQ (N = 210) T (N = 531) N (N = 468)

Validation 
data

EQ (N = 91) T (N = 208) N (N = 118)

Predicted 
label

EQ 91 (100%) 2 (1%) 0 (0%)

 T 0 (0%) 200 (96%) 2 (2%)

N 0 (0%) 6 (3%) 116 (98%)
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features are identified in the original input images. The 
second step (b) is known as the pooling layer. The pool-
ing layer drastically reduces the dimensionality (i.e., the 
number of parameters and computations in the net-
work) to avoid overfitting due to excess parameters. This 
step also introduces both a local translation invariance 
and robustness to local perturbations (for details, see 
section  9.3 in Goodfellow et  al. (2016) and references 
therein). We adopt max pooling, which is a pooling oper-
ation that calculates the maximum value for each point 
of each waveform that is convolved with a learnable filter. 
The max pooling operation with size P , on a waveform 
{w̃t : t = 1, . . . ,T } returns:

where we use zero padding ( ̃wT+i = 0 ) for i = 1, . . . ,P to 
ensure that the output dimension of the pooling opera-
tion is the same as its input dimension. Max pooling 
highlights the sharp contrasts in the convolved wave-
form. The third step (c) is the activation layer, which ena-
bles the network to capture complex features by making 
the output non-linear. We adopt a rectified linear unit 
(ReLU; x  → max{x, 0} ) (Fukushima 1980) as the activa-
tion function, which is commonly used in CNN-based 
seismological research (e.g., Perol et al. 2018; Ross et al. 
2018).

We specified the CNN hyperparameters in this study 
as follows. Twenty-five learnable filters were employed 
in the first and second convolution layers, with each pos-
sessing filter lengths of 10.24  s and 0.29  Hz in the time 
and frequency domains, respectively. These parameters 
were chosen through the performance comparison with 
the other hyperparameter values: we tested the number 
of learnable filters from 5 to 25, the length of filters in 
time domain from 10.24 s to 51.2 s, and the length of fil-
ters in frequency domain from 0.1 to 0.49 Hz. The max 
pooling lengths after the first and second convolution 

(2)

{

max
{

w̃t+m : m = 0, . . . ,P − 1
}

: t = 1, . . . ,T
}

,

layers were 25.6 s in the time domain. Max pooling was 
not conducted in the frequency domain following a pre-
vious study (Nakano et  al. 2019). The number of units 
in the fully connected layer was 10. The batch size dur-
ing the training step was 18. Training-learnable filters 
were applied by minimizing the cross-entropy loss via 
stochastic gradient descent optimization with momen-
tum; a learning rate of 0.005 and momentum of 0.9 were 
employed during the training step. Cross-entropy loss 
is a function that maps a pair of vectors, the true label 
vector (y2, y1, y0) (where y2 = 1 for EQ and 0 otherwise; 
y1 = 1 for T and 0 otherwise; and y0 = 1 for N and 0 oth-
erwise) and output probability vector (p2, p1, p0) (with 
earthquake probability p2 , tremor probability p1 , and 
noise probability p0 ) into −y2logp2 − y1logp1 − y0logp0 . 
Stochastic gradient descent optimization (Robbins and 
Monro 1951) with momentum (Qian 1999) uses a linear 
combination of the gradient multiplied by the learning 
rate and the previous update multiplied by the momen-
tum as the next update. An l2 penalty with a regulariza-
tion parameter of 1.0 was added to the cross-entropy loss 
(Ng 2004).

Results
We begin the analysis by applying our CNN-based 
method to the validation dataset. Table  1 provides the 
confusion matrix for the EQ–T–N classification. We 
determine the predicted labels for the input data via the 
largest output probabilities, whereby our method labels 
the input data based on the region in Fig. 3a, where the 
output probability of a given event is located. Our method 
successfully identified all of the EQ events (100%), and 
almost all of the T and N events (96% and 98%, respec-
tively). Ternary plots of the output probabilities for each 
event type in the validation dataset are shown in Fig. 3b–
d, with the output probabilities for each event type being 
concentrated mainly in the corner corresponding to the 
actual label of the event. Note that if we do not use the 

Fig. 2  Schematic diagram of a convolutional neural network (CNN). Input 2D images are sequentially processed in the following layers: a 
convolution, b pooling, c ReLU, and a fully connected neural network (FNN). The outputs are the EQ, T, and N probabilities
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Fig. 3  Ternary plots for the EQ–T–N classification. Each cross mark represents the output probability for a given event. a Ternary plot highlighting 
the EQ–T–N classification regions. The blue, red, and gray regions correspond to the predicted EQ, T, and N labels, respectively. b Ternary plot for 
events with actual EQ labels. c Ternary plot for events with actual T labels. d Ternary plot for events with actual N labels. Events #1–#10 denote 
events for which the predicted labels are different from their actual labels (Table 1 and Additional file 1: Fig. S1). eX-component spectrograms and 
seismograms of the events with different actual and predicted labels
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training and validation datasets selected based on signal-
to-noise ratio, probabilities for each event type in the val-
idation dataset drop to 98.6%, 80.9%, and 94.2% for EQ, 
T, N, respectively, which suggests selection procedure is 
essential to robust classification.

We then confirm that all of the misclassified events 
were truly misclassified with a different label (Events 
#1–#10). This misclassification can be explained by the 
spectrogram features of these events, with the X spec-
trogram components of Events #1, #8, and #9 shown 
in Fig.  3e. The spectrograms of the other misclassified 
events are summarized in Additional file 1: Fig. S1. Our 
CNN labeled Event #1 as EQ event, which is labeled as a 
T event by Nishikawa et al. (2019). A comparison of the 
Event #1 spectrogram with the typical EQ and T spec-
trograms in Fig. 1b highlights that the Event #1 spectro-
gram has a peak in the relatively high-frequency range 
and possesses a similar spectrogram signal to that of 
an EQ event. The Event #1 waveforms possess a P-wave 
onset at station N.S4N21 and S-wave onsets at neigh-
boring stations, thereby implying that Event #1 is an EQ 
event (Additional file 1: Fig. S2a). Our CNN labeled Event 
#8 as N, whereas the event #8 was detected as T event 
(Nishikawa et al. 2019). As shown in Fig. 3e, the Event #8 
spectrogram does not contain signals with characteristic 
dominant frequencies in the 2–10  Hz range, but rather 
has a spectral peak at around 2–3 Hz. A possible reason 
for this misclassification is a large geometrical spread-
ing due to the long epicentral distance, about 60 km. The 
tremor waveforms with gradual rise time were observed 
at the nearest station, N.S4N24, from the source (Addi-
tional file  1: Fig. S2b). Our CNN labeled Event #9 as 
a T event, whereas we labeled the event as N by visual 
inspection. The Event #9 spectrogram displays a signal 
with dominant frequencies in the 2–10 Hz range in the 
analyzed time window, which caused our CNN to give 
this event a T classification.

Next, we investigated the relationships between the 
probabilities of the CNN-based classification on the true 
event labels and the epicentral distances, and the prob-
abilities and Mw. Figure 4 shows the Mw—epicentral dis-
tance plot for the local earthquakes and tremors, where 
their output probabilities are color-coded. The moment 
magnitudes of EQ are within the range of 0.7 to 6.4, 
while those of T are within the range of − 1.33 to 0.35. 
Remark that as denoted in Fig.  2, our CNN-based clas-
sification yields the probabilities of (EQ, T, N) for each 
event, so, for each event, we picked a probability of the 
true event label from its output probabilities to draw 
Fig.  4. The presented images were selected via the pro-
cedure outlined in the “Data” section, and yielded high 
(> 0.5) output probabilities of the true event labels, as 
confirmed in the “Results” section. However, the number 

of local earthquakes with low probabilities (< 0.5) appears 
to increase in the non-selected dataset for events with 
larger epicentral distances and smaller magnitudes (blue 
histogram in Fig.  4a). The number of tremors with low 
probabilities (< 0.5) also appears to increase in the non-
selected dataset with larger epicentral distances (blue 
histogram in Fig. 4b). We do not investigate the relation-
ship between Mw of tremors and the CNN probabilities 
of them in detail because the omission of the amplifica-
tion factor in Nishikawa et al. (2019) from the tremor Mw 
estimations may have resulted in large uncertainties.

We used the signal-to-noise ratio as a threshold for 
selecting the training data. The training dataset includes 
many events with shorter epicentral distances since these 
events generally possess higher signal-to-noise ratios. 
Therefore, there was a higher probability of classifying 
the events in the validation dataset that possessed shorter 
epicentral distances into their true event labels (Fig. 4).

Discussion
In this section, we discuss three topics: the application 
to continuous data, the impact of noise on classification 
results, and the evaluation of our methods compared 
with other classifier methods.

We first discuss the application of our method to con-
tinuous data. We applied our method to 5-min continu-
ous seismograms containing a tremor listed in Nishikawa 
et al. (2019). We successively created images with 5.12 s 
lag-time, and applied our trained CNN to each image to 
obtain the probabilities for EQ, T, and N. Figure 5 shows 
continuous spectrograms and probability for EQ, T, and 
N, respectively. From the beginning of observation at 
13:48:00 (JST) to 13:48:50, we cannot see any  clear sig-
nal in each image with about 2-min time-window. The 
probability of N is dominant in this period. At the begin-
ning of the increase of probability of T around 13:48:50, 
the corresponding image begins to contain the excitation 
of tremor below 5  Hz. The high probability of T (> 0.9) 
continues for 1.5  min when the images include tremor 
signals. At the end of the high probability of T around 
13:50:30, the corresponding image contains the tremor 
signal at the edge of the time-window. Tremor cata-
log in Nishikawa et al. (2019) determined origin time of 
tremor (13:50:37.8) based on the S-wave arrival time as 
maximum stacked envelopes after correcting the source-
to-station travel times. This origin time is included in the 
period when the probability of T is high. These results 
show that the CNN-based methods successfully identi-
fied tremors and noise just around observed tremor, sug-
gesting the possibility of applying CNN-based methods 
in continuous dataset in the future (e.g., simultaneous 
occurrences, noise we cannot explain by oceanic or cul-
tural noise).
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Fig. 4  a Mw—epicentral distance plot for the local earthquakes, which are color-coded by their output probabilities, in the selected (training) and 
non-selected datasets. The black line shows the training dataset for the local earthquakes. b Mw—epicentral distance plot for the tectonic tremors, 
which are color-coded by their output probabilities, in the selected and non-selected datasets. The black, red, and blue histograms indicate the 
training dataset, high-probability (≥ 0.5) events, and low-probability (< 0.5) events, respectively
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We next discuss impact of noise on classification 
results. We used input noise dataset for about 1  year, 
and as a result we successfully identified signals from 
noise with very high probabilities. However, as suggested 
by Takagi et al. (2020), the noise level shows changes of 
PSDs on the order of 2 above 1 Hz for 3 years along the 
Japan Trench at each S-net station. To be a more relia-
ble classification, we should consider various noise pat-
terns during observation periods. To do so, we need to 
appropriately select training and validation noise dataset 
to create homogeneous dataset by investigating temporal 
changes of noise characteristics in detail.

We finally discuss the evaluation of our methods com-
pared with other classifier methods. Single station detec-
tion and classification methods of tectonic tremors have 
been previously proposed. Brudzinski and Allen (2007), 
Kao et al. (2007), and Sit et al. (2012) mainly focused on 
the dominant frequency of tremor (1–5 Hz) and success-
fully detected tremors in Cascadia using seismic records 
observed at a single station. These methods were only 
applied to hour-long tremor episodes. However, along 
the Japan Trench, tremors are detected with the dura-
tion of dozens of seconds, and sometimes coexist with 
regular earthquakes. Therefore, we should focus on not 
only the dominant frequency band of tremor, but also 

time-length used by classification. Our CNN-based 
method can classify seismograms at least about 120-s 
segments, suggesting the high temporal resolution of 
classification. Recently, Liu et al. (2019) successfully dis-
tinguished tremors from local earthquakes and noise 
with high accuracy of 86.6% to 98.9% from three stations 
using a machine learning approach, k-nearest neighbors 
classifier in Taiwan. In the methods, 27 seismic features 
were calculated. Then they suggested efficient features 
for a better classification between tremor and noise, that 
is, maximum amplitude, number of peaks, and energy 
of the 2 to 8 Hz-filtered signals and number of peaks in 
the curve showing the temporal evolution of the discrete 
Fourier transforms median. We can use these features 
directly as the input of CNN methods, which may lead to 
better classification.

Conclusion
We developed a CNN to classify local earthquakes, 
tremors, and noise that were observed by S-net in 
Northeast Japan. The CNN successfully classified 
100%, 96%, and 98% of the local earthquakes, tectonic 
tremors, and noise, respectively. All of the misclassi-
fied events were thoroughly investigated to validate 
that our CNN-based approach yielded explainable 

Fig. 5  Probabilities of classification of continuous seismograms. (Top) 5-min seismograms of X component. (Middle) 5-min spectrogram containing 
the occurrence time of tremor (Green inverted triangle; Nishikawa et al. 2019). (Bottom) Classification results corresponding to the spectrograms 
calculated by our CNN-based methods. Arrows indicate the time-length of each image. We calculated probabilities based on the corresponding 
117.76 s time-length (arrow) with 5.12 s lag-time
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classifications. We also showed an example of success-
ful classification of continuous waveforms including 
tremor. The classification abilities for local earthquakes 
and tectonic tremors degraded as the epicentral dis-
tance increased and/or event magnitude decreased. The 
utilization of multiple stations appears to be a prom-
ising approach to circumvent this degradation, as the 
subsequent analysis would include a broad spatial dis-
tribution of earthquakes and tremors with various epi-
central distances.
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Japan Meteorological Agency; JST: Japan Standard Time; PSD: Power spectral 
density; ReLU: Rectified linear unit.
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Additional file 1: Figure S1. Spectrograms of Events #2, #3, #4, #5, #6, #7, 
and #10; the event locations are indicated in Fig. 3. The left, middle, and 
right panels for each event denote the X and Y components of the 
spectrogram, respectively. Figure S2. X-component waveforms of Event 
#1 and #8 ((a) and (b), respectively) that were recorded at N.S4N21 (Fig. 1a) 
and the neighboring stations. The waveforms are bandpass filtered at 
2–8 Hz.
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