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Abstract 

The matched filter technique is often used to detect microearthquakes such as deep low-frequency (DLF) earth-
quakes. It compares correlation coefficients (CC) between waveforms of template earthquakes and the observed data. 
Conventionally, the sum of CC at multiple seismic stations is used as an index to detect the DLF earthquakes. A major 
disadvantage of the conventional method is drastically reduced detection accuracy when there are too few seismic 
stations. The new matched filter method proposed in this study can accurately detect microearthquakes using only 
a single station. It adopts mutual information (MI) in addition to CC to measure the similarity between the template 
and target waveforms. The method uses the product of MI and CC (MICC) as an index to detect DLF earthquakes. This 
index shows a distinct peak corresponding to an earthquake signal in a synthetic data set consisting of artificial noise 
and the waveform of a DLF earthquake. Application of this single-station method to field observations of Kirishima 
volcano, one of the most active volcanoes in Japan, detected a total of 354 events from the data in December 2010, 
whereas the catalog of the Japan Meteorological Agency shows only two. Of the detected events, 314 (89%) are likely 
DLF earthquakes and other events may be false detections. Most of the false detections correspond to surface-wave 
arrivals from teleseismic events. The catalog of DLF earthquakes constructed here shows similar temporal behavior to 
that found by the conventional matched filter method using the sum of the CC of the six stations near the volcano. 
These results suggest that the proposed method can greatly contribute to the accurate cataloging of DLF earth-
quakes using only a single seismic station.
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Introduction
One of established methods for the automatic detec-
tion of microearthquakes, is the matched filter tech-
nique employing Pearson’s correlation coefficients (CC) 
between template waveforms—which are previously 
detected seismic waveforms—and target waveforms 
(Gibbons and Ringdal 2006). It can detect micro-
earthquakes such as aftershocks (Peng and Zhao 2009; 
Kato and Obara 2014), low-frequency earthquakes 
and tremor in the plate subduction zone and volcanic 
regions (Shelly et  al. 2007; Shapiro et  al. 2017; Yuku-
take et  al. 2019; Kurihara et  al. 2019; Kato and Naka-
gawa 2020; Kurihara and Obara 2021). The matched 
filter method is especially useful in  situations of con-
tinued intense seismic activity, such as aftershocks and 
seismic swarms, because it is difficult to detect these 
earthquakes by either visual detection or using con-
ventional methods such as the STA/LTA method. This 
method has been used to detect many low-frequency 
earthquakes; the resulting earthquake catalogs provide 
precise constraints on the spatial and temporal evo-
lution of this intense seismicity. Detailed analysis of 
the low-frequency earthquake activity has improved 
understanding of wider geophysical activity such as the 
occurrence of slow slip events and the migration of vol-
canic fluids (e.g., Shelly et al. 2007; Shapiro et al. 2017; 

Yukutake et  al. 2019; Kurihara et  al. 2019; Kato and 
Nakagawa 2020; Kurihara and Obara 2021).

Although matched filter method can be applied to data 
from only one station (for example, when the seismic net-
work is small) (e.g., Vuan et al. 2018; Wech et al. 2020), 
the sum of CC between template waveforms and in the 
three components data measured at multiple observa-
tion stations was often used in most cases (e.g., Gibbons 
and Ringdal 2006; Shelly et al. 2007). The matched filter 
technique usually employs template waveforms with 4- to 
5-s time windows for waveforms that have been filtered 
at either 1–4 or 2–8  Hz to detect low-frequency earth-
quakes. The similarities of waveforms measured at mul-
tiple stations are evaluated by CC stacked over a seismic 
network. Earthquakes are identified by the summed CC 
being larger than a threshold value. Using stacked CC 
from multiple stations is advantageous over using of a 
single station to detect small-magnitude earthquakes 
including low-frequency earthquakes, because the CC 
from a single station always become high, as noise shares 
the same frequency band as the signal, resulting in sub-
stantial false detections. In other words, the quality of 
a seismic catalog that is constructed using the conven-
tional matched filter technique decreases where there is 
either an inadequate number of observation stations or a 
well-determined seismic catalog is lacking. Single-station 
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matched filter method is potentially effective in various 
regions in which microearthquakes occur, thus allowing 
detection of much smaller events that are only recorded 
by a single station (e.g., Vuan et al. 2018). However, much 
improvements of technique is required to maintain the 
quality of the catalog.

As CC can be calculated quickly, they can be used eas-
ily to evaluate waveform similarity. However, they do not 
necessarily evaluate the overall similarity because CC are 
generally sensitive to a large-amplitude  portion of the 
waveform depending on their calculation formula. To 
reduce the contribution of large-amplitude parts, Gao 
and Kao (2020) proposed a method of dividing the time 
window into smaller sub-segments, which could effec-
tively distinguish seismic waves generated from differ-
ent epicenters and focal mechanisms. The present work, 
unlike the previous study, concerns the detection of low-
frequency earthquakes, so we cannot expect to improve 
detection accuracy by dividing the time window, due to 
the sharing of the same frequency band between sig-
nal and noises and unclear P-wave arrivals. Therefore, 
we tried to improve detection accuracy by introducing 
another index in addition to CC.

Statistical studies have proposed using other indices in 
addition to CC such as the mutual information (MI), the 
maximum information coefficient (Reshef et al. 2011), and 
the total information coefficient (Reshef et al. 2016). These 
indices show the similarity of two data sets, including non-
linear relationships not evaluated by CC. MI has been used 
to evaluate electron correlation in the fields of chemical 
physics (Sagar and Guevara 2005) and medical imaging 
(Pluim et al. 2003). Various studies have used other indices, 
but they are generally more computationally costly than 
MI. Therefore, we introduce MI, which can evaluate with 
low computational cost the degree of waveform similar-
ity in small-amplitude parts. In order to take advantage of 
both MI and CC, we propose a new method for detecting 
deep low-frequency (DLF) earthquakes using their prod-
uct (called MICC) as an index. A similar approach using 
CC|CC| (i.e., the product of CC and the absolute value of 
CC) has been reported recently by Gibbons (2021).

Data and method
This study considers the waveforms of DLF earthquakes 
in Kirishima volcano, one of the most active volcanoes 
in Japan. The observed DLF earthquakes that occurred 
at 25  km depth during the 2-year period from Decem-
ber 2009 (Kurihara et al. 2019), which includes the Janu-
ary 2011 subplinian eruptions, were activated. Waveform 

data are from the high-sensitivity seismograph network 
(Hi-net) of NIED (Okada et  al. 2004; National Research 
Institute for Earth Science and Disaster Resilience 
2019). We apply a 1–8  Hz bandpass filter, and deci-
mate the waveform from 100 to 25  Hz sampling before 
calculations.

Conventional matched filter usually evaluates detec-
tion using stacked CC between observed and template 
waveforms of three components measured at multiple 
seismic stations. The template is selected from previously 
observed earthquakes. The template events used here are 
DLF earthquakes in the unified catalog of the Japan Metro-
logical Agency (JMA) (e.g., Katsumata and Kamaya 2003). 
The CC of component j at seismic station i is calculated as:

where vtpij (t)and vtgij (t)are the velocities of the template 
earthquake and target data at time t of component j at 
station i, respectively; ttp is the occurrence time of the 
template earthquake; ttg is the time of the target event, 
which is determined by the search method; ∆ti is the 
time of S-wave propagation from the origin of the tem-
plate earthquake to its arrival at station i; τ corresponds 
to each time step in the window length. The mean of 
the template and data in each time window should be 
removed during the calculation of the true statistical cor-
relation coefficient. However, we used the bandpass-fil-
tered waveform data after removing its mean and trend. 
Therefore, the mean of the template and data in the tar-
get window is very small (0–2% of the maximum value 
for most of the template waveforms in this study), such 
that we can ignore the mean to calculate CC in this study. 
This assumption does not affect the detection capability 
(e.g., Beaucé et al. 2018). This analysis sets the length of 
the time window to be 8 s, and allocates its center to the 
arrival time of the template S-wave earthquake observed 
by the JMA. When the JMA did not determine the arrival 
time at a station, we estimate it using the origin time in 
the JMA catalog and the JMA’s 1D velocity structure 
model (Ueno et al. 2002). When using multiple stations, 
CC are summed as follows:
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This sum is high when the peak CC values in the wave-
forms of each station and each direction are stacked. In 
other words, when the hypocenter of the target event is 
near that of the template event and the two events have 
similar source properties, the stacked peak values yield a 
large summed CC.

MI is defined using the normalized amplitudes of two 
variables. First, we normalized the waveforms within each 
time window using the maximum absolute amplitudes. We 
then assigned the normalized velocities of each time step 
in each time window, vtp(t) and vtg(t) , to the x- and y-axis, 
respectively, as shown in Fig. 1. MI is calculated by divid-
ing the points of the velocity seismograms into discrete 
cells in the x, y domain. Here, we selected 5 × 5 cells for the 
division process; the details of this division selection are 
presented in the discussion section. By dividing the nor-
malized velocities to 5 × 5 cells, we converted the velocities 
into integers ntp and ntg between 1 and 5 as follows:

(3)vtp(t) =
vtp(t)

max
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∣
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) ,
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vtg(t)

max(
∣

∣vtg(t)
∣
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,
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,

(6)
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)

∗ 2.5⌋
(

when vtg(t) < 1
)

The notation || means the absolute function, and ⌊⌋ 
means the floor function converting a real number to 
the largest integer smaller than itself. The constants 1.4 
and 2.5 convert the velocity into integers. This calcula-
tion means that n = 1 when the normalized velocity v(t) 
ranges from − 1.0 to − 0.6, n = 2 when v(t) is between − 0.6 
and − 0.2, n = 3 when v(t) is between − 0.2 and 0.2, n = 4 
when v(t) is between 0.2 and 0.6, and n = 5 when v(t) is 
between 0.6 and 1.0.

Using the above integers, the MI is calculated as:

where p
(
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 are the probabilities of ntp and 
ntg, respectively; p

(
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)

 is the joint probability in the 
cells of ntp and ntg. As the time window is 8 s and the sam-
pling rate is 25 Hz (i.e., 200 time-steps for each time win-
dow), we obtain p
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 by dividing 
the number of points in the bins by 200.

The upper limit of MI depends on the data set according 
to Eq. (9). We use the sum of the information entropy htp 
and htg to normalize the MI using the following equations 
(cf. Zhang 2015):
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Fig. 1  Scatter plots of relations between two variables (top) and their waveforms at the same time (bottom). MI and CC are given above the plots. 
Black grid lines correspond to the borders of the bins used to calculate MI. A given time step represents each sample of velocity data in a given time 
window and its associated sampling rate. a Two variables with the same sinusoidal waves. b Two variables with sinusoidal waves and a time shift. c 
One variable with a sinusoidal wave and one with a spike-like wave
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Hereafter, we simply describe MI as MI.
MI is an index that reflects the linear or non-linear 

relation between two variables. If the relation is linear, 
both MI and CC are high (Fig. 1a). While if the relation 
is non-linear, MI has a non-zero value (Fig. 1b). Accord-
ing to Eq. (1), CC gives more weight to data points with 
high amplitudes in phase, while MI increases when the 
data points are concentrated in a small number of cells. 
In other words, CC are high when the peaks of two vari-
ables match, even if the shapes of the waveforms are dif-
ferent (Fig. 1c).

For detection, we use here the MICC index defined as 
the product of MI and CC:

The product of two variables contains the charac-
teristics of MI, including information about the small-
amplitude parts, and the characteristics of the CC, which 
correspond to the consistency of large-amplitudes parts.

Synthetic tests
We test how the index values of MI, CC, and MICC 
change in response to a variety of noise and signals for 
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(12)MI =
2.0 ∗MI
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(13)MICC(t) = MI(t)CC(t).

DLF earthquakes. The analysis uses a synthetic data set 
comprising three types of noise (Gaussian, sinusoidal and 
random phase noise) added to a template waveform of 
data from a DLF earthquake recorded by station N.SUKH 
at 22:03:56 (JST) on 7 August 2010 (Fig. 2).

Gaussian noise
We computed MI, CC, and MICC for the synthetic data. 
Artificial observation data were made by adding a filtered 
template waveform (1–8  Hz) with various amplitudes 
proportional to the signal-to-noise (SN) ratio at station 
N.SUKH to Gaussian noise with a variance of one. The 
variance of the template waveform is the same as the 
value of the SN ratio.

When the SN ratio is small, the peaks of each index 
are unclear; in other words, DLF events are not detect-
able in the synthetic data (Figure 3a). For high SN ratio 
examples, event detection is possible if the appropriate 
threshold is set, since the signal possesses larger MI, CC, 
and MICC indices than the surrounding noise. However, 
it is difficult to set such an appropriate threshold, since 
the range above the noise level and below the peak level, 
which corresponds to the target signal, is extremely nar-
row for CC. In the case of Gaussian noise, DLF events are 
detectable using any of the indices when the SN ratio is 
over 0.5.

The test results can verify how the three indices evalu-
ate the similarity of the waveforms. Scatter plots compare 
the amplitude of the template earthquake with that of the 
target data (Fig. 4a, b). The relationship becomes linear at 
high SN ratio (Fig. 4b). CC rapidly increase when the SN 

Fig. 2  a Distribution of Hi-net stations (blue inverted triangles) and the epicenter (yellow star) of the DLF earthquake (7 August 2010, 22:03:56, JST) 
used as a template here. The red triangle shows the location of Kirishima volcano. b Three-components, 1–8 Hz bandpass-filtered waveforms of 
the earthquake recorded at the six stations. The horizontal axis is the time elapsed from the origin. Red parts of the waveforms show the template 
waveform used in this study
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ratio is relatively low, and reach a steady value as the SN 
ratio becomes large; in contrast, MI gradually increases 
as the SN ratio rises from 0 to 5 (Fig. 4c). MICC gradu-
ally increases in any range of SN ratio corresponding to 
an increase of MI and CC.

With Gaussian noise, even at low SN ratio, the values 
of MI, CC, and MICC seem to be large. However, noise 
associated with microseisms and human activities often 
overlap with the 1–8  Hz characteristic band of actual 
DLF earthquakes. The next tested case has sinusoidal 
noise waves roughly matching the frequency band of DLF 
earthquakes.

Sinusoidal noise
As in the case of Gaussian noise, the test considers a tem-
plate waveform with added noise, this time a sinusoidal 
wave of 1.25  Hz frequency. The variance of the noise 
is 1. The variance of CC tends to be always high due to 
the phase similarity with the noise (Fig. 5). On the other 
hand, MI is small when the waveform does not include 

the template signal, and a distinct peak can be observed 
compared with the CC. While CC is relatively large when 
the noise phases match with those of the template event, 
the MI remains smaller than CC (Figs.  6, 7). MICC has 
the most-distinct peak corresponding to the signal, and 
allows the detection of DLF earthquakes at low SN ratio. 
We therefore suggest that MICC as a proper and sensi-
tive index to detect DLF events.  

Random phase noise
We next consider random phase noise as more realistic 
noise. Random phase noise was produced following the 
method proposed by Chamberlain et al. (2014). We first 
obtained one day of continuous data (N–S component) 
at station N.SUKH on 21 December 2010, when many 
DLF earthquakes were observed. These one-day data 
were converted from the time domain to the frequency 
domain by Fourier transform.

We then changed the phase randomly in the frequency 
domain. Finally, we produced random phase noise by an 

Fig. 3  MI, CC, and MICC for a signal comprising the template waveform with added Gaussian noise. The indices are calculated for each time step 
with the moving time window. The SN ratios are (a) 0.2, (b) 0.5, and (c) 1.0. Red dots show the index corresponding to the template signal
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inverse Fourier transform of the spectrum data with the 
randomized phase. We generated a synthetic waveform 
after adding template waveforms to the random noise 
every 400 s with various SN ratios.

We calculated MI, CC, and MICC between the tem-
plate and synthetic waveforms  (Fig.  8). MI and MICC 
show a very distinct peak that corresponds to the added 
template waveform when the SN ratio is above 1.0. 
Although we can detect DLF earthquakes using every 
index with the appropriate threshold, MICC shows the 
most distinct peak, which allows us to easily select the 
appropriate threshold.

Application to field data from DLF earthquakes 
at Kirishima volcano
Here, we apply the new method to field data. We selected 
200 waveforms of DLF earthquakes as templates from 
the JMA catalog from 2004 to 2015 and tested con-
tinuous data observed in December 2010 at Kirishima 
volcano. The DLF earthquakes that occurred during 
this month were characterized by lower dominant fre-
quencies than those that occurred during other periods 
(Kurihara et  al. 2019). Only two DLF earthquakes were 
observed in the catalog of JMA in the month. The wave-
form data are bandpass filtered at 1–8 Hz. For detection 

Fig. 4  a–b Scatter plots of detection using a waveform comprising a DLF earthquake signal with Gaussian noise at SN ratios of (a) 0.2 and (b) 1.0. 
A given time step represents each sample of velocity data in the 8-s time window (25 Hz sampling rate). Scatter plots (top panels) compare the 
amplitude of the template waveform with the amplitude of the target data at each time step. Bottom panels show the waveforms of the target data 
and template waveform at that time. c The three indices (MI, CC, and MICC) plotted with respect to the SN ratio of the waveform
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using a single station, we focus on three-component 
seismograms retrieved at station N.SUKH (see Fig.  2a), 
which has the highest SN ratio for DLF earthquakes at 
Kirishima volcano.

First, to determine the threshold value, we examine 
histograms of MI, CC, and MICC obtained from data 
for 21 December 2010, when intense DLF earthquakes 
occurred. An earthquake is counted as occurring when 
the index value is larger than the threshold. The time 
series of MI, CC, and MICC vibrate in the same fre-
quency bands of the template waveform. The distribu-
tion of maximum values for each time series is found by 
simply extracting the local maximum value larger than 
the values before and after. The distribution of local 
maximum values for each index differed among the 
templates; three representative examples are shown in 
Fig.  9. Conventional matched filter based on summed 
CC often has the threshold value determined based on 
the median absolute deviation (MAD) (e.g., Shelly et  al. 

2007; Peng and Zhao 2009). However, it cannot be used 
for MI because MI is always positive and the shape of the 
distribution is different from the approximately Gauss-
ian distribution of CC. Furthermore, the upper limit for 
both MI and CC is 1.0. If we define the threshold using 
eight or nine times the MAD, then the threshold values 
for some templates are above the maximum CC value 
(i.e., 1.0). Therefore, we use a fixed threshold value in this 
study. We set here the threshold to be 0.35 for MICC, 
based on visual inspection of waveforms and the histo-
gram distributions of the maximum value of each index 
(Fig. 9). The thresholds for a comparative analysis using 
only MI and CC are similarly set as 0.45 and 0.85, respec-
tively. A DLF earthquake is detected when the index of 
any of the three components exceeds the threshold. Some 
earthquakes are detectable more than once by the differ-
ent template earthquakes. To prevent double counting of 
any earthquake, we select only one event with the high-
est index in any 10-s time window and neglect the other 

Fig. 5  1.25-Hz sine wave used as noise combined with template waveforms at SN ratios of (a) 1.0, (b) 2.0, and (c) 3.0. The values of MI, CC, and MICC 
are calculated at each time. Red dots show the index corresponding to the template signal
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events. After compiling the detection catalogs, results 
corresponding to the daily artificial signal at 9:00:00 (JST) 
in the Hi-net data are removed.

Figure  10 gives the calculated time variations of MI, 
CC, and MICC for each time step with a sampling rate 
of 25 Hz. MICC has very distinct detection peaks, while 
CC always vibrates with a large variance. Furthermore, 
MICC has a larger SN ratio and more distinct peaks 
than CC|CC|, which is an index that has been proposed 
by Gibbons (2021) (Additional file  1: Figure S1). In this 
data set, the summed CC in the three components of six 
stations (see Fig. 2) does not show distinct peaks corre-
sponding to some DLF earthquakes detected using the 
proposed single-station method. For example, the events 
at 05:48 on 21 December were detected in the single-
station method, however, summed CC does not have the 
peak corresponding to the events. Then, there are some 

cases in which no peaks are found in the summed CC 
because the amplitude is small or the hypocentral loca-
tion is slightly different from those of the template event, 
suggesting that the single-station method is suitable for 
detection without misdetection. The comprehensive-
ness of the method can be also seen from the fact that 
the peaks of MICC correspond to large amplitudes in 
the velocity waveform except some parts corresponding 
to the signals of earthquakes occurring in other regions. 
Although false detections, such as other earthquakes, 
may be included, they can be removed from the seismic 
catalog by applying signal processing that targets these 
undesired signals.

MICC identified 354 DLF earthquakes in the test 
month. Even using data from a single station achieved 
a temporal change of the cumulative number of DLF 
events similar to that observed from the catalog of 

Fig. 6  Scatter plots and relationship between the SN ratio of the waveform and the MI, CC, and MICC for the synthetic waveform with sinusoidal 
noise. The figures are as in Fig. 4, but here the noise is a sinusoidal wave of frequency 1.25 Hz
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events compiled from six stations’ data (Fig.  11). The 
catalogs include step-like increases in the number of DLF 
earthquakes on 5 and 12 December, and the difference 
between the catalogs over the month is small. This trend 
is generally consistent across the results from any of the 
three indices. As many of the earthquakes detected by 
these indices have very small SN ratios, it is not possible 
to distinguish between a true signal and a false detection 
even by visual inspection of the waveforms. Although the 
MICC peak is the most distinct and the detection looks 
good, the accuracies of the detection of the three single-
station indices are quantitatively evaluated in discussion.

Discussion
We first visually inspected the events that were detected 
by either the summed CC or MICC approaches to assess 
the accuracy of the detected events. We focused on the 
ratio of the amplitudes for each component that were 
recorded at the six stations (Additional file 1: Figures S2–
S4). Although some events were classified as misdetec-
tions owing to their surface-wave arrivals, most of the 
events were identified as DLF earthquakes (Table  1). 
Most of the misdetections due to surface waves could be 

automatically removed by calculating the amplitude ratio 
between the 0–10 s and 10–20 s intervals after the detec-
tion onset in the 2–4  Hz frequency band. If the ampli-
tude ratio was smaller than one, then the detection was 
classified as a misdetection. The 10-s waveform duration 
appears to be appropriate for this analysis, since most of 
the DLF earthquakes have durations of < 10 s.

We then confirmed the index with the best statistical 
performance via a numerical comparison of the catalogs 
obtained using each of the three indices with one based 
on the conventional matched filter method using the 
summed CC (e.g., Gibbons and Ringdal 2006; Kato and 
Nakagawa 2020; Kurihara et al. 2019; Shapiro et al. 2017; 
Shelly et al. 2007; Yukutake et al. 2019). Using a threshold 
of 5.0 for conventional detection using the summed CC 
of three components of the six seismic stations detected 
312 events throughout December 2010. We assume 
that the conventional method provides a true catalog 
against which the performance of other methods can be 
compared using the threat score (also called the critical 

Fig. 7  Scatter plot showing the correspondence between the 
sinusoidal wave noise and the template waveform, using the data 
from 12 s before Figs. 5 and 6. These plots correspond to the SN = 0.0 
case in Fig. 6c Fig. 8  MI, CC, and MICC for the test between the template waveform 

and synthetic data (random noise and template waveforms). MI, 
CC, and MICC are calculated every 0.04 s (every sampling point). 
The template waveforms were added to the noise every 400 s with 
various SN ratios
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success index), which is often used in the weather fore-
casting (Japan Meteorological Agency 2019). The score is 
defined as follows:

where TP, FP, and FN are the numbers of true-positive, 
false-positive, and false-negative events, respectively. TP 
events are those detected in the catalogs from both the 
conventional multiple-station method and the single-
station method. FP events are those detected by the sin-
gle-station method but not the conventional method. FN 
events are those detected conventionally but not by the 
single-station method. To assess the effect of changing 
the detection threshold for each catalog, we change the 
threshold and calculated the threat score for each thresh-
old of the three indices. The threat score is maximized 

(14)Threatscore =
TP

TP+ FP+ FN
,

at 0.437 for the MI catalog using a threshold of 0.445, at 
0.451 for CC with a threshold of 0.850, and at 0.461 for 
MICC with a threshold of 0.360 (Fig.  12; Table  2). The 
threat score for the MICC catalog remains similar within 
a broad range of threshold values of 0.3 to 0.4, indicat-
ing that the similar accuracy can be obtained regardless 
of which threshold is selected within this range.

We compare the maximum value of summed CC in the 
5  s before and after the time with that of each index at 
the single station (Fig. 13). The summed CC is positively 
correlated with each of MI, CC, and MICC applied to a 
single station’s data. In particular, MICC shows the best 
positive relationship with the summed CC, whereas large 
CC values are limited because the maximum value is one.

The threat score for the MICC catalog is the high-
est among the three catalogs; however, the value seems 
low. We next assess the quality of the catalog compiled 
using MICC. Of the 88 events detected with summed CC 

Fig. 9  Histograms of the local maximum values of three indices (MI, CC, and MICC) extracted from each time series. Three representative templates 
that detect many DLF earthquakes are shown out of the original 200 templates. Vertical axes correspond to the number of samples in each bin 
(width, 0.01). The time at the top of each panel is the time of occurrence of the template event (JST). Applied data are for one day, 21 December 
2010. Red lines show the threshold value for each index
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Fig. 10  Values of MI, CC, and MICC from 0:00 to 12:00 on 21 December 2010. The right axis shows each index after normalization by the MAD. The 
MAD is calculated using the half-day waveform data. The lowest panel shows the velocity waveform. The template earthquake is the earthquake 
shown in Fig. 2. Red lines show the threshold of detection. Green triangles in each panel show the detected events by the template using the index. 
White triangles show the detection using other templates. All of the events in this time window that were detected by the summed CC and MICC at 
station N.SUKH were identified as DLF earthquakes by visual inspection
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over 6.0, 80 are also included in the MICC catalog. On 
the other hand, of the 354 events detected using MICC, 
85% of the events (302 events) are also in the catalog of 
summed CC with the threshold of 4.0. In other words, 
the FP and FN events included those around the thresh-
old value, and the threat score of 0.461 does not mean 
that only 46.1% of DLF earthquakes are detected. The 
single-station catalog probably includes DLF earthquakes 
with very small magnitudes that are only observed at 
the single station (N.SUKH); however, this comparison 
cannot distinguish FP detections from actual small DLF 
earthquakes.

This study calculates MI by dividing the points of veloc-
ity-seismograms into 5 × 5 cells. The number of divisions 
was determined by evaluating the clarity of the peaks 
corresponding to the signal. Comparing calculations for 
each number of divisions for the observed continuous 

waveform data in the Kirishima region showed that odd-
numbered divisions such as 3 × 3 and 5 × 5 give sharper 
peaks than even-numbered division such as 4 × 4 when 
the number of divisions is small (Fig. 14). This is because 
the points near the origin in even-numbered divisions, 
belong to different cells due to slight differences of the 
seismograms. This leads to a decrease in the MI when 
considering the distribution diagram as shown in Fig. 4. 
As 3 × 3 division has a large variance for parts not includ-
ing signals of DLF earthquakes, 5 × 5 is considered suit-
able for detection in the three data sets. On the other 
hand, as the number of divisions is increased, the base-
line of MI rises and the peaks become generally less 
sharp (Fig. 14) because there are too many cells relative 
to the number of the points. Therefore, for our dataset 
with 25 Hz sampling and an 8-s time window, 5 × 5 divi-
sion is optimal.

Using MICC with a single station’s data is a potentially 
powerful tool, especially for monitoring shallow volcanic 
earthquakes occurring beneath the crater because there 
cannot be many seismic stations in that region due to the 
risk and low accessibility. In addition, the single-station 
method will improve the completeness of small-magni-
tude volcanic seismicity studies, deepening understand-
ing about volcanic activity beneath the crater. Even if a 
micro-earthquake hypocenter cannot be determined 
due to a weak observation network, the method can at 
least count the number of microearthquakes. As in pre-
vious cases of single-station analysis (Vuan et  al. 2018; 
Wech et  al. 2020), this method will also contribute to 
the monitoring of other low-SN ratio earthquakes, such 
as DLF earthquakes and swarm earthquakes that can be 
observed only with part of an observation network.

Fig. 11  Cumulative number of detected DLF earthquakes based on 
each index during December 2010

Table 1  Detection results by visual inspection

* Numbers in brackets are the total numbers of detected events after removing the surface-wave misdetections (i.e., the amplitude ratio between the 0- to 10-s and 
10- to 20-s intervals after the detection onset is larger than one)

Number of events (not removed by amplitude ratio) Summed CC > 5.0 N.SUKH MICC > 0.35

DLF earthquake 297 (295) 314 (309)

Surface wave 12 (10) 28 (9)

Noise 2 (1) 8 (6)

Regular earthquake, shallow tremor, etc 1 (1) 4 (4)

Total 312 (307) 354 (328)
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Fig. 12  The threat score and the number of TP, FP, and FN events. The upper panels show the threat score for three indices. Horizontal axis 
corresponding to the threshold values. Red, blue, and green circles in the lower panels show the number of TP, FN, and FP events for each threshold 
value

Fig. 13  Relations between summed CC (horizontal axis) and three indices (vertical axis) of a component of the data from N.SUKH station. Black dots 
correspond to each event. Red broken lines show the threshold of detection

Table 2  Relationships between the summed CC (horizontal 
axis; six stations) and the three indices (vertical axis) from a single 
station (N.SUKH)

One station/
multi-station

Summed CC (six stations)

Detected Not detected

N.SUKH MI Detected 192 130

Not detected 120 –

N.SUKH CC Detected 184 96

Not detected 128 –

N.SUKH MICC Detected 207 147

Not detected 121 –

Conclusions
This study developed a new matched filter method of 
earthquake detection using MICC applied to a single sta-
tion’s data. Tests using synthetic waveforms revealed 
that using MICC gave more-distinct peaks than MI or 
CC. Applying this method to DLF earthquake data from 
Kirishima volcano in December 2010 detected 314 DLF 
earthquakes. Comparison with conventional matched 
filter applied to multiple stations’ data showed the large 
detection accuracy of the proposed method. Overall, the 
proposed single-station matched filter technique could be 
useful in various regions where observations from multiple 
stations are not possible, as it can detect microearthquakes 
using only a small number of stations and templates.
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