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Spatiotemporal evolution of tremor 
activity near the Nankai Trough trench axis 
inferred from the spatial distribution of seismic 
amplitudes
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Abstract 

Slow earthquakes have gained importance due to their proximity to the focal regions of megathrust earthquakes. 
Among slow earthquakes, tectonic tremors have the highest dominant frequency and are thus best resolved. Here, 
we estimated the locations of tectonic tremors off the Kii Peninsula, southwestern Japan, from December 2020 
through January 2021 using the seismograms of the Dense Oceanfloor Network system for Earthquakes and Tsunamis 
(DONET). The study area is adjacent to the Nankai Trough, where large megathrust earthquakes are known to occur. 
We successfully estimated the locations of 3578 tectonic tremor events within an area of ∼ 130 km in northeast–
southwest and ∼ 50 km in northwest–southeast directions along the trench axis. Tremor activity differed between the 
northeastern and southwestern areas of the focal region, which were separated by a central region of markedly low 
activity. During the study period, tremor activity began at the northeastern edge of the focal region, and expanded 
to the southwest along the trench axis until reaching the central low-activity region. Renewed tremor activity later 
began at the southwestern edge of the low-activity region and migrated southwest along the trench axis. We also 
detected two distinct events similar to rapid tremor reversals that migrated to the northeast, the first of which may 
have been triggered by the combined effects of teleseismic surface waves and Earth’s tides. Such detailed locations of 
tectonic tremors can be used as a proxy of the stress state in the accretionary prism and/or along the plate boundary 
in the Nankai Trough.
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Introduction
Anomalous seismic events called slow earthquakes are 
governed by a different scaling law than that of typical 
earthquakes (Ide et  al. 2007) and have been observed 
at plate boundaries around the world (Beroza and Ide 
2011). Because the source locations of slow earth-
quakes tend to be near megathrust earthquakes (Kato 
et al. 2012; Obara and Kato 2016), the detection of slow 
earthquakes, as well as regular earthquakes, can pro-
vide important information for monitoring the stress 
state of plate boundaries where devastating earth-
quakes may occur.

Slow earthquakes are classified into three types based 
on their characteristic duration and period or fre-
quency: Slow slip events (e.g., Linde et  al. 1996; Hirose 
et al. 1999, 2000) have durations of a few days to years; 
Very low frequency earthquakes (VLFEs, e.g., Obara and 
Ito 2005) have dominant periods of a few tens of sec-
onds; and tectonic tremor (e.g., Obara 2002; Kao et  al. 
2005) has a dominant frequency of a few hertz. Because 
tectonic tremor lacks the high-frequency energy ( > 10 
Hz), short-duration tremor events are sometimes called 
low-frequency earthquakes; indeed, Shelly et  al. (2007) 
interpreted tectonic tremors as swarms of low-frequency 
earthquakes. These three types of slow earthquakes are 
sometimes spatiotemporally correlated (e.g., Rogers and 

Dragert 2003; Obara et al. 2004; Hirose and Obara 2005; 
Ito et al. 2007; Takeo et al. 2010).

Dense seismic or geodetic networks, which have aided 
the detection of slow earthquakes, are usually deployed 
on land [e.g., High sensitivity seismograph network 
Japan (Okada et al. 2004; Aoi et al. 2020) and the GNSS 
Earth Observation Network System (Sagiya 2004)]. In 
contrast, continuous seafloor observations are difficult, 
and offshore slow earthquakes have been recorded only 
by temporally installed geophysical equipment (e.g., 
Obana and Kodaira 2009; Ito et al. 2013; Yamashita et al. 
2015; Wallace et  al. 2016; Plata-Martinez et  al. 2021; 
Yamashita et  al. 2021). The exception is VLFEs, which 
can be observed using on-land broadband seismometers 
(Ito and Obara 2006; Asano et  al. 2008; Ito et  al. 2009). 
Recently, two dense offshore seismic networks have 
been deployed around Japan (Aoi et al. 2020): the Dense 
Oceanfloor Network system for Earthquakes and Tsuna-
mis (DONET) and the Seafloor observation network for 
earthquakes and tsunamis along the Japan Trench. These 
networks have been used to reveal detailed tectonic 
tremor and VLFE activities (Sugioka et al. 2012; To et al. 
2015; Toh et al. 2018; Nishikawa et al. 2019; Tanaka et al. 
2019; Yamamoto et al. 2022).

In this study, we estimate spatiotemporal locations 
of tectonic tremor events that occurred off the Kii 
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Peninsula (Fig. 1a) from December 2020 through Janu-
ary 2021 using the DONET seismograms. This study 
area includes part of the Nankai Trough, where sev-
eral devastating historical earthquakes have occurred 
(Ando 1975). Since the first detection of tectonic trem-
ors by Obana and Kodaira (2009), characteristics of 
tremor activity in the area have been investigated from 
the viewpoint of triggering and migration (Annoura 
et  al. 2017; Tamaribuchi et  al. 2019), statistics of the 
event size distribution (Nakano et  al. 2019), and scal-
ing law of seismic energy (Yabe et al. 2019). The other 
types of slow earthquakes have also been detected, and 
spatiotemporal correlations among them are one of the 
important topics in the seismology of slow earthquakes 
(Obara and Ito 2005; Sugioka et al. 2012; To et al. 2015; 
Toh et al. 2018; Araki et al. 2017; Takemura et al. 2019a, 
b; Ariyoshi et al. 2021; Yamamoto et al. 2022). Hence, a 

detailed analysis of tremor activity using the DONET 
dense offshore seismic network would contribute to the 
understanding of the slow earthquake activity in the 
area.

The envelope correlation method (e.g., Obara 2002; Ide 
2010) has been widely used to locate tremors. However, 
the waveforms of tremors occurring near trench axes have 
long durations and lack distinct phases because of the het-
erogeneous seismic structure and the existence of a seawa-
ter layer (Takemura et al. 2020). As a result, the correlation 
coefficient of seismogram envelopes may be low, inducting 
large uncertainties on differential travel times and widely 
varying tremor locations. In such cases, locations can 
alternatively be estimated using seismic amplitudes. Even 
if the shape of each seismogram envelope shows compli-
cated features, the amplitude decay of a given seismic event 
can be modeled with geometrical spreading and intrinsic 
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Fig. 1  a Regional (bottom) and location (top) maps of the study area and the distribution of DONET seismic stations (white inverted triangles). 
White rectangle shows the region of our grid search. Topography is from the ETOPO1 model (NOAA National Centers for Environmental Information 
2009) and plate boundaries are from Bird (2003). b Depth-dependent 1-D S-wave velocity (left) and attenuation (right) structures used in this study
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absorption, because the net loss of seismic energy during 
wave propagation depends solely on intrinsic absorption. 
The amplitude source location (ASL) method (Yamasato 
1997; Battaglia and Aki 2003; Kumagai et  al. 2013, 2019) 
has been successfully used to estimate  locations of long-
duration seismic events such as volcanic tremor (Kumagai 
et al. 2010; Ogiso and Yomogida 2012; Ichihara and Mat-
sumoto 2017; Ichimura et al. 2018; Walsh et al. 2019) and 
propagation of pyroclastic flows (Jolly et  al. 2002), debris 
flows (Kumagai et al. 2009; Ogiso and Yomogida 2015; Doi 
and Maeda 2020), and snow avalanches (Pérez-Guillén 
et  al. 2019). Tamaribuchi et  al. (2019) applied the ASL 
method to seismic records recorded by temporary ocean 
bottom seismometers to reveal spatiotemporal tremor 
activity in our study area. Therefore, we applied the ASL 
method to DONET records to reveal tremor activity over 
a broader region than that analyzed by Tamaribuchi et al. 
(2019).

All dates and times used in this study are reported in 
Japan Standard Time (UTC +9 h).

Methods and data
Amplitude source location method
Here, we briefly review the ASL method and its application 
to locate tremor events (Battaglia et al. 2005; Kumagai et al. 
2010). When a seismic source at location i radiates seis-
mic waves of amplitude A(s)

i (f ) at frequency f, the seismic 
amplitude at the jth station, Aj(f ) , is represented as

where τij is the travel time, rij is the hypocentral distance, 
Q−1
ij  is the attenuation factor between the ith location 

and the jth station, and Sj(f ) is the site amplification fac-
tor at the jth station. The power n depends on the type 
of propagating waves: n = 1.0 for body waves and n = 0.5 
for surface waves. Equation (1) holds for far-field wave 
propagation. We assumed that the wave trains of tremors 
consisted of S-waves, i.e., n = 1.0 (see “Data processing”, 
below). If we assume the ith location, we can calculate 
source radiation amplitude from Eq. (1) as

where N is the number of stations. Then, we define the 
normalized residual Ri as

(1)Aj(f ) = A
(s)
i (f )

exp(−π fQ−1
ij τij)

rnij
Sj(f ),

(2)A
(s)
i (f ) =

1

N

N
∑

j=1

Aj(f )

Sj(f )
rnij exp(π fQ

−1
ij τij),

(3)

Ri =

∑N
j=1{Aj(f )/Sj(f )− A

(s)
i (f ) exp(−π fQ−1

ij τij)/r
n
ij}

2

∑N
j=1{Aj(f )/Sj(f )}2

,

and conduct a grid search for the location that minimized 
Ri . We performed our grid search between 135.7◦ and 
137.5◦ E and between 32.5◦ and 33.7◦ N in increments of 
0.02◦ , and from 0 and 20 km depth in increments of 2 km 
(Fig. 1a).

Data set
We used a subset of the DONET ocean-bottom seismom-
eters operated by the National Research Institute for Earth 
Science and Disaster Resilience (NIED, National Research 
Institute for Earth Science and Disaster Resilience 2019; 
Aoi et  al. 2020). DONET comprises of two subnetworks: 
DONET1 (22 stations) and DONET2 (29 stations). Each 
DONET station has two seismometers: a strong motion 
accelerometer and a broadband velocity seismometer. We 
selected 14 and 12 stations from DONET1 and DONET2, 
respectively (Fig. 1a; Additional file 1: Table S1), and then 
collected the continuous waveforms recorded by the 
broadband sensor at each station from 1 December 2020 
through 31 January 2021.

Figure  1b shows the 1-D S-wave velocity and attenu-
ation structures used herein. Nakanishi et  al. (2002) 
estimated 2-D P-wave velocity structures along several 
seismic profiles perpendicular to the trench axis of the 
Nankai Trough. We chose P-wave velocities near the 
trench axis in the study area from Nakanishi et al. (2002, 
their Figure  10), and then constructed the 1-D S-wave 
velocity structure by assuming a Poisson solid. The accre-
tionary prism corresponds to the depth of shallower than 
7 km and the subducting Philippine Sea plate to 7–14 km 
depth. We approximated the distance-dependent attenu-
ation strength of Yabe et al. (2021) as being homogeneous 
(0.02 km−1 ) and converted it to Q−1 by multiplying π f /β , 
where β = 3.5 km/s. Depths > 14 km corresponds to the 
upper mantle, so we set the value of Q−1 in the upper 
mantle to be half that in the upper layer.

Data processing
We applied a bandpass filter with a frequency range of 
2–8 Hz to the vertical component of each seismogram, 
which is the dominant frequency of tectonic tremors 
(Obana and Kodaira 2009; Tamaribuchi et  al. 2019). 
The frequency f in Eq.  (1) was set to 5.0 Hz, and the 
site amplification factor Si(f ) at each station was taken 
as that estimated by Yabe et  al. (2021). Because surface 
waves at this frequency range should be attenuated rap-
idly, we assumed that the tremor waveforms in this fre-
quency range were composed of S-waves and set n = 1.0 
in Eqs. (1–3). We calculated the root mean square (RMS) 
amplitude at the jth station, Aij(f , t0) , in 60-s time win-
dows from the bandpass filtered seismogram, which we 
took as the observed amplitude of tremor at an arbitrary 
location i and origin time t0:
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where vj(f , t) is the vertical component of bandpass-fil-
tered seismograms at the jth station, �t is the sampling 
interval of seismograms at the jth station, and M is the 
number of data used to calculate the RMS amplitude. 
The sampling interval at each DONET station was 0.01 
s, so M = 6000 in this study. We checked the qual-
ity of Aij(f , t0) , i.e., whether it could be used in the ASL 
method, based on two aspects: the signal-to-noise ratio 
and the amplitude ratio among several frequency ranges 
at each station (Sit et  al. 2012; Katakami et  al. 2017). 
First, we defined the amplitude of noise at each station 
to be the RMS amplitude calculated from vj(f , t) during 
the 60-s time window beginning at 01:00 on 1 Decem-
ber 2020, because no tremors and regular earthquakes 
occurred, and the amplitude of ambient noise was low 
in this period. We calculated the ratio between Aij(f , t0) 
and the noise amplitude at each station and rejected data 
for which the ratio was lower than 3.0. Next, we checked 
the amplitude ratio of different frequency ranges at each 
station. We applied bandpass filters to the three fre-
quency ranges f1 = 0.02−0.1 Hz, f2 = 2.0−5.0 Hz, and 
f3 = 10.0−15.0 Hz in the vertical components of seismo-
grams from each station, producing three seismograms 
denoted vj(f1, t) , vj(f2, t) , and vj(f3, t) . Then, we calculated 
the RMS amplitude in these frequency ranges for each 
assumed grid of tremor locations and origin time follow-
ing Eq. (4) and calculated the ratio of these RMS ampli-
tudes RFS

ij (t0) as

where Aij(f1, t0) , Aij(f2, t0) , and Aij(f3, t0) are the RMS 
amplitudes in the frequency ranges f1 , f2 , and f3 , respec-
tively, calculated in a 60-s time window at the jth sta-
tion. Aij(f1, t0) , Aij(f2, t0) , and Aij(f3, t0) correspond to the 
indices of teleseismic surface waves, tectonic tremors, 
and regular earthquakes, respectively (Sit et  al. 2012). 
Although we used the RMS amplitudes in the frequency 
range of 2–8 Hz for the estimation of tremor locations, 
we excluded the frequency range of 5–8 Hz for f2 , as Sit 
et  al. (2012) did, because regular earthquakes also had 
significant seismic energy at a frequency higher than 5 
Hz (Obana and Kodaira 2009; Tamaribuchi et  al. 2019). 
Large RFS

ij (t0) value indicates that Aij(f2, t0) is dominant; 
therefore, tremor wavetrains that excited at the origin 
time t0 at the ith location should arrive at the jth station. 
We discarded Aij(f , t0) if RFS

ij (t0) was lower than 5.0.

(4)Aij(f , t0) =

{

1

M

M−1
∑

k=0

v2j (f , t0 + τij + k�t)

}1/2

,

(5)RFS
ij (t0) =

A2
ij(f2, t0)

Aij(f1, t0)Aij(f3, t0)
,

After these two quality checks, we counted the number 
of available Aij(f , t0) values for each grid of tremor loca-
tions, adding new criteria that (1) the hypocentral dis-
tance between the ith grid and the jth station should be 
shorter than 100 km and (2) the station at the shortest 
hypocentral distance must pass the quality checks. When 
between 6 and 20 Aij(f , t0) values were available in the ith 
grid, we calculated Ri in the grid following Eq.  (3). The 
lower limit of available Aij(f , t0) was set to 6 to guarantee 
the precision of determined tremor locations, whereas 
the upper limit was set to 20 to exclude non-tectonic-
tremor seismic events such as teleseismic earthquakes, 
which are observed at many stations. Finally, we searched 
for the location with the smallest value of Ri among all 
grids at the assumed origin time t0.

We defined the confidence interval on the location 
of each tremor to be the range, where the logarithm of 
residual was less than twice its minimum value, because 
the logarithm of residual varied smoothly, as with a nor-
mal distribution. Additional file 1: Figures S1 and S2 show 
the spatial distributions of residuals and latitudinal, lon-
gitudinal, and depth confidence intervals for two example 
events. The station geometry controls the range of confi-
dence intervals (e.g., Walsh et al. 2017). If a tremor event 
occurred in a location surrounded by many stations, as 
in Additional file 1: Fig. S1, both the latitudinal and lon-
gitudinal confidence intervals were small (< 0.08◦ in the 
case of Additional file 1: Fig. S1), whereas the confidence 
intervals were large for tremor events that occurred 
between the DONET1 and DONET2 subnetworks (< 
0.22◦ in the case of Additional file 1: Fig. S2). Constrain-
ing the depths of tremor events is more difficult; we were 
only able to constrain the events in Additional file  1: 
Figs. S1 and S2 to 4–14 and 4–20 km depth, respectively. 
All stations locate above tremors and the variation of ray 
incident angles is smaller than that of azimuthal angles 
for a certain tremor; therefore, the confidence intervals of 
depths become larger than those of horizontal locations.

Screening tremor locations
We conducted a grid search every 10 s beginning at 00:00 
on 1 December 2020 and ending at 23:59 on 31 January 
2021. As a result, we derived a time series of source radi-
ation amplitude A(s)

i (f , t0) and tremor locations. Because 
each tremor might have lasted for several tens of seconds, 
whereas we estimated tremor locations every 10 s, we 
might have derived several locations for the same tremor 
event. Therefore, we screened for duplicate tremor loca-
tions by checking the temporal variations of tremor 
locations and source radiation amplitudes of three suc-
cessive origin times. We used two criteria to select the 
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appropriate tremor location for further analyses. First, 
the source radiation amplitude must have been a local 
maximum. This criterion guarantees that the 60-s time 
window at each station captured the largest amplitude 
part of the corresponding tremor signal. If a time win-
dow contained the main part of a tremor signal, Aij(f , t0) 
and consequently A(s)

i (f , t0) became larger than those for 
assumed origin times 10 s earlier and later. Second, we 
checked whether the difference between the epicenter of 
a given tremor and those determined for assumed origin 
times 10 s earlier and later was less than 0.06◦ (i.e., three 
grids), both longitudinally and latitudinally. This crite-
rion evaluates the temporal stability of tremor epicent-
ers. Because tremors have long durations, the epicenter 
of a given tremor should not vary within three successive 
assumed origin times. Furthermore, if we had picked a 
tremor location for an assumed origin time 20 s earlier, 
we compared their residuals and disregarded the events 
with larger residuals. Figure 2 shows the observed wave-
form at station KMB08 and the source radiation ampli-
tude time series from 09:00 to 09:40 on 13 December 
2020. Several tremor events are recognizable in Fig.  2a, 
and the source radiation amplitude increases as the 
observed amplitude increases, implying the occurrence 
of tremor. The short-duration “pulses” in the time series 
of source radiation amplitude occur when a time window 
at each station captures a part of a tremor event. In those 
cases, Aij(f , t0) may show little difference among stations, 
which, together with the large source radiation ampli-
tude, inducting that the tremor locations are determined 
far from the station array. Such tremor locations strongly 
depend on the assumed origin time, and we successfully 
disregard them by comparing locations determined dur-
ing three successive assumed origin times.

After the screening, we eliminated any tremor loca-
tions that corresponded to regular earthquakes. Refer-
ring to the Japan Meteorological Agency’s unified 
earthquake catalog, we calculated the theoretical arrival 
times at 33.0◦  N, 136.5◦  E and 0 km depth (i.e., the 
center of the determined tremor focal region) of P- and 
S-waves originating from regular earthquakes. If either 
the P- or S-wave arrival time was within the 60-s time 
window after the origin time of an arbitrary tremor loca-
tion, we disregard that location, because Aij(f , t0) might 
have originated from the regular earthquake instead of a 
tremor event. Finally, we visually checked the observed 
waveforms of all stations and eliminated 45 locations cor-
responding to wave trains from non-tremor events such 
as teleseismic earthquakes.

Results and discussion
We successfully estimated 3578 tremor locations; the 
hypocentral distribution of these tremor events are 
shown in Fig. 3. Most events are within the area of 130 
km in northeast–southwest and 50 km in northwest–
southeast directions along the trench axis. About 80% of 
the tremor events occurred closer to the DONET1 net-
work, and 95% of the events were shallower than 14 km 
depth. The focal region of tremors in this study extends 
further southwest than that of Annoura et al. (2017) and 
Tamaribuchi et al. (2019). Overall, the focal region of all 
tremor events does not coincide with areas of peak shear 
stress accumulation rate on the plate boundary as esti-
mated by Noda et al. (2018), consistent with VLFE loca-
tions (Takemura et al. 2019b).

Figure 4 shows temporal variations of tremor locations 
parallel and normal to the trench axis. One obvious fea-
ture of the tremor locations is a region of low activity 
around 32.8◦  N and 136.5◦  E. Although this low-activ-
ity region is obvious in this study, it is unclear whether 
it is common to all tremor events occurring in this area 
or specific of this analysis period; further investigation 
requires estimating tremor locations for a longer period 
than in this study. When focusing on temporal varia-
tions parallel to the trench axis, tremor activities differ 
to the northeast and southwest of the low-activity region. 
Tremor activity during the study period began at the 
northeastern edge of the focal region on 6 December. 
Then, the focal region expanded southwest along the 
trench axis with a velocity of 3–4 km/day. The expansion 
stopped when the expansion front reached the low-activ-
ity region around 24 December. We note that this expan-
sion of the focal region is distinct from the well-known 
migration of tremor locations reported in many previous 
studies (e.g., Yamashita et al. 2015; Annoura et al. 2017; 
Kurihara et  al. 2018; Tamaribuchi et  al. 2019; Kato and 
Nakagawa 2020). On 30 December, renewed tremor 
activity began at the southwestern edge of the low-activ-
ity region; This activity migrated (not expanded) to the 
southwest at 8 km/day until 6 January, roughly twice the 
earlier expansion velocity northeast of the low-activity 
region. On 28 December and 11 January, the above activ-
ity was accompanied by intensive tremor migrations 
to the northeast, in both cases at velocities of 10  km/
day. These two events resembled rapid tremor reversals 
(RTRs), but the migration velocities were much slower 
than those reported by Houston et  al. (2011) and Sagae 
et al. (2021). We speculate the difference between migra-
tion velocities of our results and those of previous studies 
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to the difference of the tectonic settings. The depths of 
tremor locations in this study are shallower than those 
of Houston et  al. (2011) and Sagae et  al. (2021) so that 
the generation environment of tremors should also differ. 
Quantitative discussion of migration velocities is future 
work.

The historical seismicity along the Nankai Trough 
described by Ando (1975) implies that the distinct peaks 
in the stress accumulation rate estimated by Noda et al. 
(2018) correspond to the asperities of large earthquakes. 
The focal region of tremors estimated herein is located 
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within the shallower extent of these asperities. Whether 
the focal region of tremors ruptures during a megathrust 
earthquake should be a key control on the nucleation of 
a tsunamigenic earthquake. Park et  al. (2014) reported 
a periodical variation of reflection coefficients, which 
correlate with the amount of fluids, on the décollement 
along the Nankai Trough (Fig. 4). The northeastern side 
of the whole focal region of tremors in this study coin-
cides with the region of positive reflection coefficients 
while southwestern the negative reflection coefficients. 
Park et  al. (2014) interpreted the regions of positive 
reflection coefficients as conditionally stable patches 
while negative as unstable seismogenic patches, based on 
the relationship between an amount of fluids and elastic 

strain accumulation. Spatial correlation between the dis-
tribution of reflection coefficients and the tremor activ-
ity in our study area implies that the spatial variation of 
tremor activity would be an indirect measurement of 
strain (and stress) distribution, and temporal change of 
tremor activity might be a proxy of the strain (and stress) 
state there. An advantage of monitoring tremor activity is 
the number of events. In general, tremor events outnum-
ber VLFEs (e.g., Tamaribuchi et  al. 2019), so it may be 
possible to derive more detailed spatiotemporal features 
from tremors than from VLFEs.

The difference between tremor activities to the north-
east and southwest of the low-activity region is also evi-
dent in the time series of source radiation amplitudes 

135.5˚ 136˚ 136.5˚ 137˚ 137.5˚
32.5˚

33˚

33.5˚

34˚

40 km

−16 −12 −8 −4 0 4 8 12 16
Shear stress change rate (kPa/year)

N = 3578

0

5

10

15

20

D
ep

th
 (

km
)

0 5 10 15 20
Depth (km)

0

1000

2000

# 
of

 e
ve

nt
s

Longitude

010002000
# of events

Latitude

010002000
# of events

Depth

Fig. 3  Epicenters, vertical cross sections and the histograms of longitudinal, latitudinal, and depth distributions of tremor locations determined 
herein between 1 December 2020 and 31 January 2021. Circles are tremor locations, and inverted triangles are DONET stations. The longitudinal 
and latitudinal histograms have bin sizes of 0.1◦ , and the depth histogram has bin size of 2 km. Color contours describes the shear stress 
accumulation rate at the plate boundary estimated by Noda et al. (2018)



Page 9 of 14Ogiso and Tamaribuchi ﻿Earth, Planets and Space           (2022) 74:49 	

(Fig.  5a). Tremor events with large source radiation 
amplitudes ( ≥ 0.05 m2/s ) mainly occurred in December, 
i.e., to the northeast of the low-activity region. In con-
trast, the source radiation amplitudes of tremor events to 
the southwest tended to be small, as were those of tremor 

events that occurred to the northeast in January. We note 
that the source radiation amplitude is affected by both 
the maximum amplitude and duration of the source time 
function; our use of a fixed 60-s time window in calcu-
lating observed amplitudes would result in the radiated 
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seismic energy being underestimated if the duration of 
the tremor event was less than 60 s. Quantitative analysis 
of the observed spatiotemporal variation of source radia-
tion amplitudes is beyond the scope of this study.

External disturbances such as the propagation of seis-
mic waves from regional or teleseismic earthquakes 
or the Earth’s tides are known to trigger tremor events 
(Nakata et  al. 2008; Ide 2010; To et  al. 2015; Annoura 
et al. 2017; Tamaribuchi et al. 2019). Here, we compared 
the observed tremor activity with the global seismic-
ity and Earth’s tides. Figure  5b shows the variation of 
Coulomb’s failure function ( �CFF) at the plate bound-
ary around the focal region of the observed tremors. We 
calculated �CFF following the procedure of Hirose et al. 
(2019) with the following fault parameters: strike 258◦ , 
dip 7 ◦ , and rake 123◦ . The predominant �CFF variations 
are semidiurnal and semimonthly, whereas the cumula-
tive number of tremor events increased at an almost con-
stant rate from 11 December until 18 January (Fig.  5a). 
Therefore, we conclude that the semimonthly tidal period 
had little influence on the occurrence of tremor during 
the study period.

According to the Global Centroid–Moment–Tensor 
(GCMT) catalog (Ekström et al. 2012), three teleseismic 
earthquakes with magnitudes larger than 6.5 occurred 
during the analysis period (Figs.  4 and 5a). The M6.7 
earthquake near Chile preceded RTR-like activity in late 
December. In contrast, the M6.5 earthquake near Argen-
tina was followed by a pause in tremor activity, and the 
M7.0 earthquake at intermediate depth near the Philip-
pines occurred during a pause in activity, and thus seems 
to have had no influence on tremor activity. Although it 
seems that the M6.5 Argentina earthquake might have 
caused the tremor activity to cease, demonstrating such 
a causal relationship between seismic waves and the pre-
vention of tremor events is difficult and will be the sub-
ject of future work.

Figure  5c directly compares the number of tremor 
events per hour to the �CFF due to the Earth’s tides 
before and after the M6.7 Chile earthquake. Increased 
tremor activity persisted for about 48 h after the earth-
quake, during which time and the hourly number of 
tremors gradually increased for the first 12 h and then 
gradually decreased during the following 36 h. Dur-
ing the same period, the hourly number of tremors 
seems to correlate with the semidiurnal variations of �
CFF. In contrast to the semimonthly tidal period, the 
twice-daily energy of the Earth’s tides seems to have 
affected the occurrence of tremors during the transient 
RTR-like activity during 28–30 December. Considering 
the lag time between the arrival of large-amplitude sur-
face waves (about 50 min after the origin time) and the 
increase in the number of tremor events, the RTR-like 

activity during 28–30 December may have been caused 
by the combined effects of stress disturbances by the tel-
eseismic surface waves and Earth’s tides rather than the 
dynamic triggering only by surface waves.

Conclusions
We estimated the detailed location of tectonic tremor 
events off the Kii Peninsula, southwest Japan, from 
December 2020 through January 2021 using the ASL 
method. The tremors were distributed in a focal region 
of roughly 130 km in northeast–southwest and 50 km 
in northwest–southeast directions along the trench 
axis. The main period of tremor activity was between 11 
December and 18 January. We found a region of mark-
edly low activity region at the center of the focal region. 
Most tremor events (80%) occurred in the northeast-
ern part of the focal region. Tremor activity began at 
the northeastern edge of the focal region and expanded 
to the southwest at a velocity of 3–4 km/day until the 
expansion front reached the central low-activity region. 
At the end of December, renewed tremor activity began 
from the southwestern edge of the low-activity region 
and tremor locations migrated southwest at a velocity 
of ∼ 8 km/day. We also detected two RTR-like tremor 
events during the study period, the earlier of which pos-
sibly triggered by the combined effects of teleseismic 
surface waves and Earth’s tides. The locations of tectonic 
tremors estimated by the ASL method may prove useful 
for analyzing spatiotemporal features of tremor, such as 
the triggering tremor events by external disturbances and 
stress state in the focal region of tremors.
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