Skip to main content

A linked stress release model for historical Japanese earthquakes: coupling among major seismic regions

Abstract

A linked stress release model is proposed for the analysis of spatial interaction of earthquake occurrences through stress transfer within a large area of the Earth’s crust. As an example, the model is used for statistical analysis for the Japanese historical earthquakes in central Japan and offshore in the Nankai and Sagami troughs with magnitude M ≥ 6.5 during the period from 1400 to 1997. This area is divided into four smaller regions of roughly comparable size and activity. Based on the Akaike information criterion (AIC), the results demonstrate the existence of coupling between certain of the regions. With the evidence that the crust may lie in a near-critical state, this has implications for the possible triggering of earthquakes at long distances from the origin event. In particular, we find evidence for the dependence of Nankai trough events on the Chubu/Kinki triangle region, whose events are themselves dependent on the the Fossa Magna/Sagami trough. Evidence for the validity of the model includes simulation results indicating that the model had a higher forecast hazard post-1991 for an event in the Chubu/Kinki triangle region than did models not incorporating regional coupling.

References

  1. Akaike, H., On entropy maximization principle, in Applications of Statistics, edited by P. R. Krishnaiah, pp. 27–41, North Holland, Amsterdam, 1977.

    Google Scholar 

  2. Ando, M., Source mechanism and tectonic significance of historical earthquakes along the Nankai trough, Japan, Tectonophysics, 27, 119–140, 1975.

    Article  Google Scholar 

  3. Bak, P. and C. Tang, Earthquakes as a self-organized critical phenomenon, J. Geophys. Res., 94, 15635–15637, 1989.

    Article  Google Scholar 

  4. Ben-Zion, Y. and J. R. Rice, Dynamic simulations of slip on a smooth fault in an elastic solid, J. Geophys. Res., 102, 17771–17784, 1997.

    Article  Google Scholar 

  5. Bufe, C. G. and D. J. Varnes, Predictive modelling of the seismic cycle of the greater San Francisco Bay region, J. Geophys. Res., 98, 9871–9883, 1993.

    Article  Google Scholar 

  6. Chen, K., P. Bak, and S. P. Obukhov, Self-organized criticality in a crack-propagation model of earthquakes, Phys. Rev. A, 43, 625–630, 1991.

    Article  Google Scholar 

  7. Daley, D. J. and D. Vere-Jones, An Introduction to the Theory of Point Processes, 702 pp., Springer, Berlin, 1988.

    Google Scholar 

  8. Gabrielov, A. and W. I. Newman, Seismicity modeling and earthquake prediction: A review, in Nonlinear Dynamics and Predictability of Geophysical Phenomena, edited by W. I. Newman, A. Gabrielov, and D. L. Turcotte, pp. 7–13, Am. Geophy. Union, Washington, D.C., 1994.

    Google Scholar 

  9. Gardner, J. K. and L. Knopoff, Is the sequence of earthquakes in southern California, with aftershocks removed, Poissonian?, Bull. Seismol. Soc. Am., 64, 1363–1367, 1974.

    Google Scholar 

  10. Gutenberg, B. and C. F. Richter, Seismicity of the Earth and Associated Phenomenon, 2nd edition, 310 pp., Princeton University Press, Princeton, 1954.

    Google Scholar 

  11. Hill, D. P., P. A. Reasenberg, A. Michael, W. J. Arabaz, G. Beroza, D. Brumbaugh, J. N. Brune, R. Castro, S. Davis, D. dePolo, W. L. Ellsworth, J. Gomberg, S. Harmsen, L. House, S. M. Jackson, M. J. S. Johnston, L. Jones, R. Keller, S. Malone, L. Munguia, S. Nava, J. C. Pechmann, A. Sanford, R. W. Simpson, R. B. Smith, M. Stark, M. Stickney, A. Vidal, S. Walter, V. Wong, and J. Zollweg, Seismicity remotely triggered by the magnitude 7.3 Landers, California, earthquake, Science, 260, 1617–1623, 1993.

    Article  Google Scholar 

  12. Imoto, M., K. Maeda, and A. Yoshida, Use of statistical models to analyze periodic seismicity observed for clusters in the Kanto region, central Japan, PAGEOPH, 155, 609–624, 1999.

    Article  Google Scholar 

  13. Ito, K. and M. Matsuzaki, Earthquakes as self-organized critical phenomena, J. Geophys. Res., 95, 6853–6860, 1990.

    Article  Google Scholar 

  14. Kagan, Y. Y., Observational evidence for earthquakes as a non-linear dynamic process, Physica D, 77, 160–192, 1994.

    Article  Google Scholar 

  15. Kanamori, H., Tectonic implications of the 1944 Tonankai and the 1946 Nankaido earthquakes, Phys. Earth Planet. Inter, 5, 129–139, 1972a.

    Article  Google Scholar 

  16. Kanamori, H., Relations among tectonic stress, great earthquakes and earthquake swarm, Tectonophysics, 14, 1–12, 1972b.

    Article  Google Scholar 

  17. Kanamori, H. and D. L. Anderson, Theoretical basis of some empirical relations in seismology, Bull. Seismol. Soc. Am., 65, 1073–1095, 1975.

    Google Scholar 

  18. Kanaori, Y., S. Kawakami, and K. Yairi, Space-time distribution patterns of destructive earthquakes in the inner belt of central Japan: Activity intervals and locations of earthquakes, Eng. Geol., 31, 209–230, 1991.

    Article  Google Scholar 

  19. Kanaori, Y., S. Kawakami, and K. Yairi, Space-time distribution patterns of destructive earthquakes in the inner belt of central Japan (part 2): Moment-release rates and earthquake prediction, Eng. Geol., 32, 113–122, 1992.

    Article  Google Scholar 

  20. Kanaori, Y., S. Kawakami, and K. Yairi, Space-time correlations between inland earthquakes in central Japan and great offshore earthquakes along the Nankai trough: Implication for destructive earthquake prediction, Eng. Geol., 33, 289–303, 1993.

    Article  Google Scholar 

  21. Kanaori, Y., S. Kawakami, and K. Yairi. Seismotectonics of the Median Tectonic Line in southwest Japan: Implications for coupling among major fault systems, PAGEOPH, 142, 589–607, 1994.

    Article  Google Scholar 

  22. Knopoff, L., A stochastic model for the occurrence of main-sequence earthquakes, Rev. Geophys. Space Phys., 9, 175–188, 1971.

    Article  Google Scholar 

  23. Liu, J., D. Vere-Jones, L. Ma, Y. Shi, and J. Zhuang, The principle of coupled stress release model and its applications, Acta Seismologica Sinica, 11, 273–281, 1998.

    Article  Google Scholar 

  24. Lu, C., H. Takayasu, A. Tretyakov, M. Takayasu, and S. Yumoto, Self-organized criticality in a block lattice model of the brittle crust, Phys. Lett. A, 242, 349–354, 1998.

    Article  Google Scholar 

  25. Main, I., Statistical physics, seismogenesis, and seismic hazard, Rev. Geophys., 34, 433–462, 1996.

    Article  Google Scholar 

  26. Mogi, K., Earthquake Prediction, 355 pp., Academic Press, Tokyo, 1985.

    Google Scholar 

  27. Ogata, Y., On Lewis’s simulation method for point processes, IEEE Trans. Inf. Theory, IT-27, 23–31, 1981.

    Article  Google Scholar 

  28. Oike, K. and K. Huzita, Relation between characteristics of seismic activity and neotectonics in Honshu, Japan, Tectonophysics, 148, 115–130, 1988.

    Article  Google Scholar 

  29. Pollitz, F. F. and I. S. Sacks, The 1995 Kobe, Japan, earthquake: A long-delayed aftershock of the offshore 1944 Tonankai and 1946 Nankaido earthquakes, Bull. Seismol. Soc. Amer, 87, 1–10, 1997.

    Google Scholar 

  30. Reid, H. F., The mechanism of the earthquake, in The California Earthquake of April 18, 1906, Report of the State Earthquake Investigation Commission, Vol. 2, pp. 16–28, Carnegie Institute of Washington, Washington, D.C., 1910.

    Google Scholar 

  31. Rundle, J. B., W. Klein, S. Gross, and D. L. Turcotte, Boltzman fluctuations in numerical simulations of nonequilibrium lattice threshold systems, Phys. Rev. Lett., 75, 1658–1661, 1995.

    Article  Google Scholar 

  32. Seno, T., Pattern of intraplate seismicity in Southwest Japan before and after great interplate earthquakes, Tectonophysics, 57, 267–283, 1979.

    Article  Google Scholar 

  33. Shi, Y., J. Liu, D. Vere-Jones, J. Zhuang, and L. Ma, Application of mechanical and statistical models to the study of the seismicity of synthetic earthquakes and the prediction of natural ones, Acta Seismologica Sinica, 11, 421–430, 1998.

    Article  Google Scholar 

  34. Shimazaki, K., Intraplate seismicity gap along the Median Tectonic Line and oblique plate convergence in southwest Japan, Tectonophysics, 31, 139–156, 1976a.

    Article  Google Scholar 

  35. Shimazaki, K., Intraplate seismicity and inter-plate earthquakes: Historical activity in southwest Japan, Tectonophysics, 33, 33–42, 1976b.

    Article  Google Scholar 

  36. Shimazaki, K. and T. Nakata, Time-predictable recurrence model for large earthquakes, Geophys. Res. Lett., 7, 279–282, 1980.

    Article  Google Scholar 

  37. Sornette, D. and C. G. Sammis, Complex critical exponents from renormalization group theory of earthquakes, J. Phys. I. France, 5, 607–619, 1995.

    Article  Google Scholar 

  38. Takayasu, H., Fractals in the Physical Sciences, 170 pp., Manchester University Press, Manchester, 1990.

    Google Scholar 

  39. Thatcher, W., The earthquake deformation cycle at the Nankai trough, J. Geophys. Res., 89, 3087–3101, 1984.

    Article  Google Scholar 

  40. Utsu, T., Historical Earthquakes Accompanied by Damage in Japan, Communication by Y. Ogata, 1998.

  41. Utsu, T., Y. Ogata, and R. S. Matsu’ura, The centenary of the Omori formula for a decay law of aftershock activity, J. Phys. Earth, 43, 1–33, 1995.

    Article  Google Scholar 

  42. Vere-Jones, D., A branching model for crack propagation, PAGEOPH, 114, 711–726, 1976.

    Article  Google Scholar 

  43. Vere-Jones, D., Earthquake prediction: A statistician’s view, J. Phys. Earth, 26, 129–146, 1978.

    Article  Google Scholar 

  44. Vere-Jones, D., Probabilities and information gain for earthquake forecasting, Computational Seismology, 30, 249–263, 1998.

    Google Scholar 

  45. Vere-Jones, D. and Y. L. Deng, A point process analysis of historical earthquakes from North China, Earthq. Res. China, 2, 165–181, 1988.

    Google Scholar 

  46. Wang, A. L., D. Vere-Jones, and X. Zheng, Simulation and estimation procedures for stress release models, in Stochastic Processes and Their Applications, edited by M. J. Beckman, M. N. Gopalan, and R. Subramani, Lecture notes in economics and mathematical systems 370, pp. 11–27, Springer-Verlag, Berlin, 1991.

    Google Scholar 

  47. Zhao, Z., K. Oike, K. Matsumura, and Y. Ishikawa, Stress field in the continental part of China derived from temporal variations of seismic activity, Tectonophysics, 178, 357–372, 1990.

    Article  Google Scholar 

  48. Zheng, X. and D. Vere-Jones, Application of stress release models to historical earthquakes from North China, PAGEOPH, 135, 559–576, 1991.

    Article  Google Scholar 

  49. Zheng, X. and D. Vere-Jones, Further applications of the stochastic stress release model to historical earthquake data, Tectonophysics, 229, 101–121, 1994.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chunsheng Lu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, C., Harte, D. & Bebbington, M. A linked stress release model for historical Japanese earthquakes: coupling among major seismic regions. Earth Planet Sp 51, 907–916 (1999). https://doi.org/10.1186/BF03351562

Download citation

Keywords

  • Akaike Information Criterion
  • Stress Release
  • Nankai Trough
  • Stress Release Model
  • Triangle Region