Skip to main content

Volume 51 Supplement 10

Special Issue: Electromagnetic Induction in the Earth

2-D georesistivity structure in the central part of the northeastern Japan arc

Abstract

Wide-band (0.002?20,000 Hz) magnetotelluric measurements (MT) observations have been conducted along three traverses in the central Tohoku district of the northeastern Japan arc at 86 observation sites since 1990 in order to image the electrical resistivity structure. We used the impedance tensors fully corrected for the three-dimensional galvanic distortion effects including static shift effects in order to refine previous 2-D models (discussed in Fujinawa et al., 1997). The subsurface 3-D effects are found to be generally small with the result of a slight difference between the present model and the previously reported one. p]The modeling results indicate that the crust is homogeneous without an enhanced conductivity zone in the lower crust, in general agreement with results in the northern part of the Tohoku district. The refined resistivity profiles delineate more clearly two near-surface conductive anomalies located in the fracture zone between the Dewa Hill and the Central Basin Range, and in the zone between the Kitakami and Abukuma River regions. Conductors in the crust west of the Sekiryo Mountain Range generally correlate well with mapped faults or pre-Tertiary tectonic lines. Several buried faults are also suggested from the conductivity data. The electrical resistivity distribution and known active faults are integrated to better understand the seismo-tectonics and geologic regime associated with the subduction processes in the Japan arc region.

References

  • Active Fault Research Group (rev. ed.), Active Faults in Japan, 437 pp., University of Tokyo Press, Tokyo, 1991.

  • Adam, A., Geothermal effects in the formation of electrically conducting zones and temperature distribution in the earth, Phys. Earth Planet. Inter., 17, 21–28, 1978.

    Article  Google Scholar 

  • Calvert, A., E. W. Sawyer, W. J. Davis, and J. N. Ludden, Archean subduction inferred from seismic images of a mantle structure in the Superior Province, Nature, 375, 670–674, 1995.

    Article  Google Scholar 

  • Chen, L., J. R. Booker, A. G. Jones, N. Wu., M. J. Unsworth, W. We, and H. Tan, Electrically conductive crust in Southern Tibet from INDEPTH magnetotelluric surveying, Science, 274, 1694–1696, 1996.

    Article  Google Scholar 

  • Fujinawa, Y., N. Kawakami, T. H. Asch, M., Uyeshima, and Y. Honkura, Studies of the Georesistivity structure in the central part of the northeastern Japan Arc, J. Geomag. Geoelectr., 49, 1601–1617, 1997.

    Article  Google Scholar 

  • Gamble, T. D., W. M. Goubau, and J. Clarke, Magnetotellurics with a remote reference, Geophysics, 44, 53–68, 1979.

    Article  Google Scholar 

  • Geological Survey of Japan (ed.), Geological Map of Japan 1:1,000,000, 3rd Edition, CD-ROM Version, Digital Geoscience Map G-1, Geological Survey of Japan, 1995.

  • Groom, R. W. and R. C. Bailey, Decomposition of magnetotelluric impedance tensors in the presence of local three-dimensional galvanic distortions, J. Geophys. Res., 94, 1913–1925, 1989.

    Article  Google Scholar 

  • Groom, R. W. and R. C. Bailey, Analytical investigations of the effects of near-surface three-dimensional galvanic scatters on MT tensor decomposition, Geophysics, 56, 496–518, 1991.

    Article  Google Scholar 

  • Groom, R. W., R. D. Kurtz, A. G. Jones, and D. E. Boerner, A quantitative methodology to extract regional magnetotelluric impedances and determine the dimension of the conductivity structure, Geophys. J. Int., 115, 1095–1118, 1993.

    Article  Google Scholar 

  • Haak, V. and V. R. S. Hutton, Electrical resistivity in continental lower crust, in The Nature of the Lower Continental Crust, edited by J. B. Dawson, D. A. Carswell, J. Hall, and K. H. Wedepohl, Geol. Soc. London, Spe. Publ., 24, pp. 35–49, 1986.

  • Hasegawa, A., D. Zhao, S. Hori, A. Yamamoto, and S. Horiuchi, Deep structure of the northeastern Japan arc and its relationship to seismic and volcanic activity, Nature, 352, 682–689, 1991.

    Article  Google Scholar 

  • Hasegawa, A., A. Yamamoto, N. Umino, and S. Miura, Seismic activity and deformation process of the overriding plate in the northeastern Japan subduction zone, 1999 (to be submitted).

  • Hasemi, A., H. Ishii, and A. Takagi, Fine structure beneath the Tohoku District, Northeastern Japan arc, as derived by an inversion of P-wave arrival times from local earthquakes, Tectonophysics, 101, 245–265, 1984.

    Article  Google Scholar 

  • Honkura, Y., Electrical conductivity structure in the upper mantle and its implications for the origin of magma, Kazan, [vn2 (33), 203–212, 1988 (in Japanese).

    Google Scholar 

  • Horiuchi, S., H. Ishii, and A. Takagi, Two-dimensional depth structure of the crust beneath the Tohoku District, the northeastern Japan arc, I, Method and Conrad discontinuity, J. Phys. Earth, 30, 47–69, 1982a.

    Article  Google Scholar 

  • Horiuchi, S., A. Yamamoto, S. Ueki, K. Tachibana, T. Kono, and A. Takagi, Two-dimensional depth structure of the crust beneath the Tohoku District, the northeastern Japan arc, 2, Moho discontinuity and P-wave velocity, J. Phys. Earth, 30, 71–86, 1982b.

    Article  Google Scholar 

  • Hyndman, R. D., Dipping seismic reflectors, electrically conductive zones, and trapped water in the crust over a subducting plate, J. Geophys. Res., 93, 13,391–13,405, 1988.

    Article  Google Scholar 

  • Hyndman, R. D. and P. M. Shearer, Water in the lower continental crust: modelling magnetotelluric and seismic reflection results, Geophys. J. Int., 98, 343–365, 1989.

    Article  Google Scholar 

  • Jiracek, G. R., Near-surface and topographic distortions in electromagnetic induction, Surv. Geophys., 11, 163–203, 1990.

    Article  Google Scholar 

  • Jones, A. G., MT and reflection; and essential combination, Geophys. J. R. Astr. Soc., 89, 7–18, 1987.

    Article  Google Scholar 

  • Jones, A. G., Electrical conductivity of the continental lower crust, in Continental Lower Crust, edited by D. M. Fountain, R. J. Arculus, and R. W. Kay, Elsevier, New York, 1992.

    Google Scholar 

  • Kaufman, P. S. and L. H. Royden, Lower crustal flow in an extensional setting: Constraints from the Halloran Hills region, eastern Mojave Desert, California, J. Geophys. Res., 99, 15723–15,739, 1994.

    Article  Google Scholar 

  • Kawakami, N., Y. Fujinawa, T. H. Asch, and S. Takasugi, Local three dimensional galvanic distortions in the central part of northeastern Japan, J. Geomag. Geoelectr., 49, 1387–1400, 1997.

    Article  Google Scholar 

  • Kawakami N., Y. Fujinawa, J. Inoue, and T. H. Asch, Local Galvanic Distortions in the Central Part of North-eastern Japan (Part 2), Earth Planets Space, 1998 (to be submitted).

  • Kimura, T., I. Hayami, and S. Yoshida, Geology of Japan, University of Tokyo Press, 1991.

  • Lee, K. H., K. Yamane, and S. Takasugi, A new 2-D inversion scheme for magnetotelluric data using a modified RRI method, in Proceedings of the World Geothermal Congress, Vol. 2, pp. 915–920, 1995.

    Google Scholar 

  • Meju, M. A., Joint inversion of TEM and distorted MT soundings, Some effective practical considerations, Geophysics, 61(1), 56–65, 1996.

    Article  Google Scholar 

  • Meissner, R. and J. Strehlau, Limits of stresses in continental crusts and their relation to the depth frequency distribution of shallow earthquakes, Tectonics, 1, 73–89, 1982.

    Article  Google Scholar 

  • Nabetani, S., K. Maekawa, and K. Uchida, Conductivity structure of crust and mantle in the Northeastern Japan prospected by MT and GEMIT method, 1. East to west section along 40°40′N traverse, Sci. Rep. Hirosaki Univ., 39, 37–46, 19

    Google Scholar 

  • Obara, K., A. Hasegawa, and A. Takagi, Three-dimensional P and S wave velocity structure beneath the northeastern Japan arc, J. Seismol. Soc. Japan., 39, 201–215, 1986.

    Google Scholar 

  • Ogawa, Y., Deep crustal resistivity structure revealed by sideband magnetotellurics-Tohoku and Hokkaido region, Ph.D. Thesis, University of Tokyo, 320 pp., 1992.

  • Ogawa, Y., Y. Mitsuhata, and S. Tokokura, Results of wide band magnetotelluric transect across the northern Tohoku district-Akita-Iwaizumi-profile, in Proc. 1992, Conductivity Anomaly Symposium, pp. 124–132, 1992.

  • Okubo, Y., H. Tsu, and K. Ogawa, Curie point depths of Japan, in Geothermal Resources Council Transactions, 9-part II, pp. 35–39, 1985.

  • Sato, H., I. S. Sacks, and T. Murase, The use of laboratory velocity data for estimating temperature and partial melt fraction in the low velocity zone: comparison with heat flow and electrical conductivity studies, J. Geophys. Res., 94, 5689–5704, 1989.

    Article  Google Scholar 

  • Schmeling, H. and G. Marquart, A mechanism for crustal thinning without lateral extension, Geophys. Res. Lett., 17, 2417–2420, 1990.

    Article  Google Scholar 

  • Simpson, F., Stress and seismicity in the lower-continental rust: a challenge to simple ductility and implication for electrical conductivity mechanisms, in The 14th Workshop on Electromagnetic Induction in the Earth (Abstract), pp. 215–228, 1998.

  • Smith, J. T. and J. R. Booker, Rapid inversion of two and three dimensional magnetotelluric data, J. Geophys. Res., 96, 3905–3922, 1991.

    Article  Google Scholar 

  • Spies, B. R. and D. E., Eggers, The use and misuse of apparent resistivity in electromagnetic methods, Geophysics, 51(7), 1462–1471, 1986.

    Article  Google Scholar 

  • Stanley, W. D., Comparison of geoelectrical/tectonic models for suture zones in the western U.S.A. and eastern Europe: are black shales a possible source of high conductivities?, Phys. Earth Planet. Inter., 53, 228–238, 1989.

    Article  Google Scholar 

  • Sternberg, B. K., J. C. Washburne, and L. Pellerin, Correction for the static shift in magnetotelluric using transient electromagnetic soundings, Geophysics, 53, 1459–1468, 1988.

    Article  Google Scholar 

  • Tournerie, B. and M. Chouteau, Deep conductivity structure in Abitibi, Canada, using long dipole magnetotelluric measurements, Geophys. Res. Lett., 25, 2327–2320, 1998.

    Article  Google Scholar 

  • Umino. N. and A. Hasegawa, On the two-layered structure of a deep seismic plane in the northeastern Japan arc, J. Seismol. Soc. Japan., 28, 125–139, 1975.

    Google Scholar 

  • Yamane, K., S. Takasugi, and K. H. Lee, A new magnetotelluric inversion scheme using generalized RRI method and case studies, Geophysics, 35, 209–213, 1996.

    Google Scholar 

  • Yokokura, T., T. Miyazaki, Y. Watanabe, and T. Urabe, A preliminary experiment towards deep seismic profiling GSJ90-1 Hidaka, Hokkaido, Zisin, 2(45), 145–156, 1992.

    Google Scholar 

  • Yokokura, T., T. Miyazaki, N. Kano, and K. Yamaguchi, Lower crustal and sub-crustal reflectors beneath the southern Kit akami area, in 1998 Japan Earth and Planetary Science Joint Meeting (Abstract), p. 363, 1998.

  • Zhao, D., S. Horiuchi, and A. Hasegawa, Seismic velocity structure of the crust beneath the Japan islands, Tectonophysics, 212, 289–301, 1992a.

    Article  Google Scholar 

  • Zhao, D., A. Hasegawa, and S. Horiuchi, Tomographic imaging of P and W wave velocity structure beneath Northeastern Japan, J. Geophys. Res., 97, 19,909–19,928, 1992b.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukio Fujinawa.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fujinawa, Y., Kawakami, N., Inoue, J. et al. 2-D georesistivity structure in the central part of the northeastern Japan arc. Earth Planet Sp 51, 1035–1046 (1999). https://doi.org/10.1186/BF03351577

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03351577

Keywords

  • Lower Crust
  • Apparent Resistivity
  • Central Basin
  • Impedance Tensor
  • Conductive Body