Open Access

Geodynamical interpretation of crustal and upper mantle electrical conductivity anomalies in Sayan-Baikal province

Earth, Planets and Space201451:BF03351582

https://doi.org/10.1186/BF03351582

Received: 16 November 1998

Accepted: 12 April 1999

Published: 20 June 2014

Abstract

There exists a number of models that account for the deep structure of the Sayan-Baikal province on the basis of different geophysical data. The models based on magnetotelluric soundings differ from those obtained from seismology with no regard to magnetotelluric soundings (MTS) results. To decide between the active and passive mechanisms of Baikal rifting, we propose to correlate the modeling results to the available seismological and petrological data, as well as to the model of asthenospheric diapirism put forward by Zorin et al. (1989, 1990, 1995). Inasmuch as the reality of MTS-based models depends on removal of static-shift effects, the reported three-dimensional modeling of the Baikal rift deep structure was preceded by normalization of the original MT curves by the global magnetovariation curve. The enhanced electrical conductivities of the crust and upper mantle of the region is interpreted in terms of geodynamics where the Cenozoic activity is suggested to be driven by convective mantle flow and triggered by the associated plate collisions. The origin and evolution of the Baikal rift can be explained in terms of reactivation of a pre-existing lithospheric inhomogeneity between the Siberian craton and the Sayan-Baikal fold area.