Skip to main content

Advertisement

Angular momentum transfer in oblique impacts: Implications for 1989ML

Article metrics

  • 268 Accesses

  • 2 Citations

Abstract

We conducted 10 shots of high-velocity oblique impact experiments (1.95–3.52 km/s) using nylon projectiles and spherical mortar targets. Large craters were formed, but these targets were not disrupted by the impacts. We then calculated the efficiencies of momentum transfer from the projectile to the post-impact target for each experiment. The efficiencies of angular momentum transfer from the translational motion of the projectiles to the rotation of the post-impact targets were also derived. A representative efficiency of angular momentum transfer was calculated to be 0.17 for random successive collisions. The efficiency was applied to an equation expressing the precession angle of asteroids. It is shown that 1989ML, target of Japan-US asteroid-sample-return-mission (MUSES-C) would be tumbling.

References

  1. Abe, M., I. Sato, and H. Araki, Lightcurve and color of Near-Earth-Asteroid 1989ML, Adv. Space Res., 1999 (in press).

  2. Asphaug, E. and D. J. Scheeres, Deconstructing Castalia: Evaluating a postimpact state, Icarus, 139, 383–386, 1999.

  3. Asphaug, E., J. M. Moore, D. Morrison, W. Benz, M. C. Nolan, and R. J. Sullivan, Mechanical and geological effects of impact cratering on Ida, Icarus, 120, 158–184, 1

  4. Asphaug, E., S. J. Ostro, R. S. Hudson, D. J. Scheeres, and W. Benz, Disruption of kilometre-sized asteroids by energetic collisions, Nature, 393, 437–440, 1998.

  5. Binzel, R. P., Is 1220 Crocus a precessing, binary asteroid?, Icarus, 63, 99–108, 1985.

  6. Binzel, R. P., 1991 Urey prize lecture: Physical evolution in the solar system—Present observations as a key to the past, Icarus, 100, 274–287, 1992.

  7. Burns, J. A. and V. S. Safronov, Asteroid nutation angles, Mon. Not. R. Astr. Soc., 165, 403–411, 1973.

  8. Davis, D. R. and S. J. Weidenschilling, Catastrophic disruption and momentum transfer in high-speed impacts, Lunar Planet. Sci., XIII, 142–143, 1982.

  9. Davis, D. R., S. J. Weidenschilling, P. Farinella, P. Paolicchi, and R. P. Binzel, Asteroid collisional history: Effects on sizes and spins, in Asteroids II, edited by R. P. Binzel, T. Gehrels, and M. S. Matthews, pp. 805–826, Univ. Arizona Press, Tucson, 1989.

  10. Dobrovolskis, A. R. and J. A. Burns, Angular momentum drain: A mechanism for despinning asteroids, Icarus, 57, 464–476, 1984.

  11. Fujiwara, A. and A. Tsukamoto, Rotation of fragments in catastrophic impact, Icarus, 48, 329–334, 1981.

  12. Fujiwara, A., P. Cerroni, D. Davis, E. Ryan, M. Di Martino, K. Holsapple, and K. Housen, Experiments and scaling laws for catastrophic collisions, in Asteroids II, edited by R. P. Binzel, T. Gehrels, and M. S. Matthews, pp. 240–265, Univ. Arizona Press, Tucson, 1989.

  13. Fujiwara, A., J. Kawaguchi, T. Mukai, and T. Uesugi, Sample return mission to NEA (MUSES-C), Adv. Space Res., 1999 (in press).

  14. Gault, D. E. and P. H. Schultz, Oblique impact: Projectile ricochet, concomitant ejecta, and momentum transfer, Meteoritics, 21, 368–369, 1986.

  15. Harris, A. W., Asteroid rotation rates II: A theory for the collisional evolution of rotation rates, Icarus, 40, 145–153, 1979.

  16. Harris, A. W., Tumbling asteroids, Icarus, 107, 209–211, 1994.

  17. Hicks, M. D., B. J. Buratti, D. R. Rabinowitz, and U. Fink, Colors and lightcurve properties of MUSES-C target 1989ML, Asteroids, Comets, Meteors 1999 (abstract).

  18. Ishibashi Y., M. Abe, Y. Takagi, I. Sato, H. Araki, S. Hasegawa, and A. Fujiwara, Ground-based observations of Nereus and 1989ML: Target candidates for Near-Earth-Asteroid missions, Asteroids, Comets, Meteors 1999 (abstract).

  19. Migliorini, F., P. Michel, A. Morbidelli, D. Nesvorný, and V. Zappala, Origin of multikilometer Earth- and Mars-crossing asteroids: A quantitative simulation, Science, 281, 2022–2024, 1998.

  20. Morbidelli, A. and D. Nesvorný, Numerous weak resonances drive asteroids toward terrestrial planets orbits, Icarus, 139, 295–308, 1999.

  21. Prokof’eva, V. V, V. P. Tarashchuk, and N. N. Gor’kavyĭ, Satellites of asteroids, Physics-Uspekhi, 38, 623–649, 1995.

  22. Shirono, S., M. Tada, A. M. Nakamura, T. Kadono, A. Rivkin, and A. Fujiwara, Efficiency of linear and angular momentum transfer in oblique impact, Planet. Space Sci., 41, 687–692, 1993.

  23. Schultz, P. H. and D. E. Gault, Momentum transfer from oblique impacts, Lunar Planet. Sci., XVII, 781–782, 1986.

  24. Yanagisawa, M. and S. Hasegawa, Momentum transfer in oblique impacts: Implications for asteroid rotations, Icarus, 1999 (submitted).

  25. Yanagisawa, M., J. Eluszkiewicz, and T. J. Ahrens, Angular momentum transfer in low velocity oblique impacts: Implications for asteroids, Icarus, 94, 272–282, 1991.

  26. Yanagisawa, M., S. Hasegawa, and N. Shirogane, Momentum and angular momentum transfer in oblique impacts: Implications for asteroid rotations, Icarus, 123, 192–206, 1996.

Download references

Author information

Correspondence to Masahisa Yanagisawa.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yanagisawa, M., Hasegawa, S. Angular momentum transfer in oblique impacts: Implications for 1989ML. Earth Planet Sp 51, 1163–1171 (1999) doi:10.1186/BF03351591

Download citation

Keywords

  • Impact Velocity
  • Rotation Period
  • Impact Point
  • Momentum Vector
  • Glass Fiber Reinforce Plastic