Skip to main content

Volume 51 Supplement 11

Special Issue: Asteroids, Dust, and Ring Particles

Angular momentum transfer in oblique impacts: Implications for 1989ML


We conducted 10 shots of high-velocity oblique impact experiments (1.95–3.52 km/s) using nylon projectiles and spherical mortar targets. Large craters were formed, but these targets were not disrupted by the impacts. We then calculated the efficiencies of momentum transfer from the projectile to the post-impact target for each experiment. The efficiencies of angular momentum transfer from the translational motion of the projectiles to the rotation of the post-impact targets were also derived. A representative efficiency of angular momentum transfer was calculated to be 0.17 for random successive collisions. The efficiency was applied to an equation expressing the precession angle of asteroids. It is shown that 1989ML, target of Japan-US asteroid-sample-return-mission (MUSES-C) would be tumbling.


  1. Abe, M., I. Sato, and H. Araki, Lightcurve and color of Near-Earth-Asteroid 1989ML, Adv. Space Res., 1999 (in press).

  2. Asphaug, E. and D. J. Scheeres, Deconstructing Castalia: Evaluating a postimpact state, Icarus, 139, 383–386, 1999.

    Article  Google Scholar 

  3. Asphaug, E., J. M. Moore, D. Morrison, W. Benz, M. C. Nolan, and R. J. Sullivan, Mechanical and geological effects of impact cratering on Ida, Icarus, 120, 158–184, 1

    Article  Google Scholar 

  4. Asphaug, E., S. J. Ostro, R. S. Hudson, D. J. Scheeres, and W. Benz, Disruption of kilometre-sized asteroids by energetic collisions, Nature, 393, 437–440, 1998.

    Article  Google Scholar 

  5. Binzel, R. P., Is 1220 Crocus a precessing, binary asteroid?, Icarus, 63, 99–108, 1985.

  6. Binzel, R. P., 1991 Urey prize lecture: Physical evolution in the solar system—Present observations as a key to the past, Icarus, 100, 274–287, 1992.

    Article  Google Scholar 

  7. Burns, J. A. and V. S. Safronov, Asteroid nutation angles, Mon. Not. R. Astr. Soc., 165, 403–411, 1973.

    Article  Google Scholar 

  8. Davis, D. R. and S. J. Weidenschilling, Catastrophic disruption and momentum transfer in high-speed impacts, Lunar Planet. Sci., XIII, 142–143, 1982.

    Google Scholar 

  9. Davis, D. R., S. J. Weidenschilling, P. Farinella, P. Paolicchi, and R. P. Binzel, Asteroid collisional history: Effects on sizes and spins, in Asteroids II, edited by R. P. Binzel, T. Gehrels, and M. S. Matthews, pp. 805–826, Univ. Arizona Press, Tucson, 1989.

    Google Scholar 

  10. Dobrovolskis, A. R. and J. A. Burns, Angular momentum drain: A mechanism for despinning asteroids, Icarus, 57, 464–476, 1984.

    Article  Google Scholar 

  11. Fujiwara, A. and A. Tsukamoto, Rotation of fragments in catastrophic impact, Icarus, 48, 329–334, 1981.

    Article  Google Scholar 

  12. Fujiwara, A., P. Cerroni, D. Davis, E. Ryan, M. Di Martino, K. Holsapple, and K. Housen, Experiments and scaling laws for catastrophic collisions, in Asteroids II, edited by R. P. Binzel, T. Gehrels, and M. S. Matthews, pp. 240–265, Univ. Arizona Press, Tucson, 1989.

    Google Scholar 

  13. Fujiwara, A., J. Kawaguchi, T. Mukai, and T. Uesugi, Sample return mission to NEA (MUSES-C), Adv. Space Res., 1999 (in press).

  14. Gault, D. E. and P. H. Schultz, Oblique impact: Projectile ricochet, concomitant ejecta, and momentum transfer, Meteoritics, 21, 368–369, 1986.

    Google Scholar 

  15. Harris, A. W., Asteroid rotation rates II: A theory for the collisional evolution of rotation rates, Icarus, 40, 145–153, 1979.

    Article  Google Scholar 

  16. Harris, A. W., Tumbling asteroids, Icarus, 107, 209–211, 1994.

    Article  Google Scholar 

  17. Hicks, M. D., B. J. Buratti, D. R. Rabinowitz, and U. Fink, Colors and lightcurve properties of MUSES-C target 1989ML, Asteroids, Comets, Meteors 1999 (abstract).

  18. Ishibashi Y., M. Abe, Y. Takagi, I. Sato, H. Araki, S. Hasegawa, and A. Fujiwara, Ground-based observations of Nereus and 1989ML: Target candidates for Near-Earth-Asteroid missions, Asteroids, Comets, Meteors 1999 (abstract).

  19. Migliorini, F., P. Michel, A. Morbidelli, D. Nesvorný, and V. Zappala, Origin of multikilometer Earth- and Mars-crossing asteroids: A quantitative simulation, Science, 281, 2022–2024, 1998.

    Article  Google Scholar 

  20. Morbidelli, A. and D. Nesvorný, Numerous weak resonances drive asteroids toward terrestrial planets orbits, Icarus, 139, 295–308, 1999.

    Article  Google Scholar 

  21. Prokof’eva, V. V, V. P. Tarashchuk, and N. N. Gor’kavyĭ, Satellites of asteroids, Physics-Uspekhi, 38, 623–649, 1995.

    Article  Google Scholar 

  22. Shirono, S., M. Tada, A. M. Nakamura, T. Kadono, A. Rivkin, and A. Fujiwara, Efficiency of linear and angular momentum transfer in oblique impact, Planet. Space Sci., 41, 687–692, 1993.

    Article  Google Scholar 

  23. Schultz, P. H. and D. E. Gault, Momentum transfer from oblique impacts, Lunar Planet. Sci., XVII, 781–782, 1986.

    Google Scholar 

  24. Yanagisawa, M. and S. Hasegawa, Momentum transfer in oblique impacts: Implications for asteroid rotations, Icarus, 1999 (submitted).

  25. Yanagisawa, M., J. Eluszkiewicz, and T. J. Ahrens, Angular momentum transfer in low velocity oblique impacts: Implications for asteroids, Icarus, 94, 272–282, 1991.

    Article  Google Scholar 

  26. Yanagisawa, M., S. Hasegawa, and N. Shirogane, Momentum and angular momentum transfer in oblique impacts: Implications for asteroid rotations, Icarus, 123, 192–206, 1996.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Masahisa Yanagisawa.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yanagisawa, M., Hasegawa, S. Angular momentum transfer in oblique impacts: Implications for 1989ML. Earth Planet Sp 51, 1163–1171 (1999).

Download citation


  • Impact Velocity
  • Rotation Period
  • Impact Point
  • Momentum Vector
  • Glass Fiber Reinforce Plastic