Skip to main content

Volume 51 Supplement 11

Special Issue: Asteroids, Dust, and Ring Particles

Spatial structure and coherent motion in dense planetary rings induced by self-gravitational instability

Abstract

We investigate the formation of spatial structure in dense, self-gravitating particle systems such as Saturn’s B-ring through local N-body simulations to clarify the intrinsic physics based on individual particle motion. In such a system, Salo (1995) showed that the formation of spatial structure such as wake-like structure and particle grouping (clump) arises spontaneously due to gravitational instability and the radial velocity dispersion increases as the formation of the wake structure. However, intrinsic physics of the phenomena has not been clarified. We performed local N-body simulations including mutual gravitational forces between ring particles as well as direct (inelastic) collisions with identical (up to N 40000) particles. In the wake structure particles no longer move randomly but coherently. We found that particle motion was similar to Keplerian motion even in the wake structure and that the coherent motion was produced since the particles in a clump had similar eccentricity and longitude of perihelion. This coherent motion causes the increase and oscillation in the radial velocity dispersion. The mean velocity dispersion is rather larger in a more dissipative case with a smaller restitution coefficient and/or a larger surface density since the coherence is stronger in the more dissipative case. Our simulations showed that the wavelength of the wake structure was approximately given by the longest wavelength λcr = 4π2GΣ/κ2in the linear theory of axisymmetric gravitational instability in a thin disk, where G, Σ, and κ are the gravitational constant, surface density, and a epicyclic frequency.

References

  • Araki, S., The dynamics of particles disks. II. Effects of spin degrees of freedom, Icarus, 65, 83–109, 1988.

    Article  Google Scholar 

  • Araki, S., The dynamics of particles disks. III. Dense and spinning particle disks, Icarus, 90, 139–171, 1991.

    Article  Google Scholar 

  • Araki, S. and S. Tremaine, The dynamics of dense particle disks, Icarus, 65, 83–109, 1986.

    Article  Google Scholar 

  • Binney, J. and S. Tremaine, Galactic Dynamics, 283 pp., Princeton Univ. Press, Princeton, NJ, 1987.

    Google Scholar 

  • Bridges, F. G., A. Hatzes, and D. N. C. Lin, Structure, stability and evolution of Saturn’s rings, Nature, 309, 333–335, 1984.

    Article  Google Scholar 

  • Cameron, A. G. W. and W. R. Ward, The origin of the Moon, Proc. Lunar Planet Sci. Conf., 7, 120–122, 1976.

    Google Scholar 

  • Dilley, J. P., Energy loss in collisions of icy spheres: Loss mechanism and size-mass dependence, Icarus, 105, 225–234, 1993.

    Article  Google Scholar 

  • Dones, L., J. N. Cuzzi, and M. R. Showalter, Voyager photometry of Saturn’s A ring, Icarus, 105, 184–215, 1993.

    Article  Google Scholar 

  • Esposito, L. W., Understanding planetary rings, Annu. Rev. Earth Planet. Sci., 21, 487–523, 1993.

    Article  Google Scholar 

  • Esposito, L. W., M. O’Callaghan, and R. A. West, The structure of Saturn’s rings: Implications from the Voyager stellar occultation, Icarus, 56, 439–452, 1983a.

    Article  Google Scholar 

  • Esposito, L. W., M. O’Callaghan, K. E. Simmons, C. W. Hord, R. A. West, A. L. Lane, R. B. Pomphery, D. L. Coffeen, and M. Sato, Voyager photopolarimeter stellar occultation of Saturn’s rings, J. Geophys. Res., 88, 8643–8649, 1983b.

    Article  Google Scholar 

  • Goldreich, P. and S. Tremaine, The velocity dispersion in Saturn’s rings, Icarus, 34, 227–239, 1978.

    Article  Google Scholar 

  • Goldreich, P. and S. Tremaine, Precession of the ring of Uranus, Astron. J., 84, 1638–1641, 1979.

    Article  Google Scholar 

  • Goldreich, P. and S. Tremaine, The dynamics of planetary rings, Annu. Rev. Astron. Astrophys., 20, 249–283, 1982.

    Article  Google Scholar 

  • Griv, E., Local stability criterion for the Saturnian ring system, Planet. Space Sci., 46, 615–628, 1998.

    Article  Google Scholar 

  • Hartmann, W. K. and D. R. Davis, Satellite-sized planetesimals and lunar origin, Icarus, 24, 504–515, 1975.

    Article  Google Scholar 

  • Hatzes, A. P., F. G. Bridges, and D. N. C. Lin, Collision properties of ice spheres at low impact velocities, Mon. Not. R. Astron. Soc., 231, 1091–1115, 1988.

    Article  Google Scholar 

  • Hill, G. W., Researches in the lunar theory, Amer J. Math., 1, 5–26, 129–147, 245–260, 1878.

    Article  Google Scholar 

  • Ida, S, Stirring and dynamical friction rates of planetesimals in the solar gravitational field, Icarus, 88, 129–145, 1990.

    Article  Google Scholar 

  • Ida, S. and J. Makino, N-body simulation of gravitational interaction between planetesimals and a protoplanet I. Velocity distribution of planetesimals, Icarus, 96, 107–120, 1992.

    Article  Google Scholar 

  • Ida, S., R. M. Canup, and G. R. Stewart, Lunar accretion from an impact-generated disk, Nature, 389, 353–357, 1997.

    Article  Google Scholar 

  • Julian, W. H. and A. Toomre, Non-axisymmetric responses of differentially rotating disks of starts, Astrophys. J., 146, 810–827, 1966.

    Article  Google Scholar 

  • Kokubo, E., S. Ida, and J. Makino, Evolution of a circumterrestrial disk and formation of a single moon, Icarus, 1999 (submitted).

  • Lin, D. N. C. and P. Bodenheimer, On the stability of Saturn’s rings, Astrophys. J. Lett., 248, L83–L86, 1981.

    Article  Google Scholar 

  • Lukkari, J., Collisional amplification of density fluctuations in Saturn’s rings, Nature, 292, 433–435, 1981.

    Article  Google Scholar 

  • Makino, J. and S. J. Aarseth, On a Hermite integrator with Ahmad-Cohen scheme for gravitational many-body problems, Publ. Astron. Soc. Japan., 44, 141–151, 1992.

    Google Scholar 

  • Makino, J., E. Kokubo, and M. Taiji, HARP: A special-purpose computer for N-body problem, Publ. Astron. Soc. Japan., 45, 349–360, 1993.

    Google Scholar 

  • Nakazawa, K. and S. Ida, Hill’s approximation in the three-body problem, Prog. Theor Phys. Suppl., 96, 167–174, 1988.

    Article  Google Scholar 

  • Ohtsuki, K., Equilibrium velocities in planetary rings with low optical depth, Icarus, 95, 265–282, 1992.

    Article  Google Scholar 

  • Ohtsuki, K., Capture probability of colliding planetesimals: Dynamical constraints on accretion of planets, satellites, and ring particles, Icarus, 106, 228–246, 1993.

    Article  Google Scholar 

  • Ohtsuki, K., Evolution of particle velocity dispersion in a circumplanetary disk due to inelastic collisions and gravitational interactions, Icarus, 137, 152–177, 1999.

    Article  Google Scholar 

  • Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes, 472 pp., Cambridge Univ. Press, London/NewYork, 1986.

    Google Scholar 

  • Richardson, D. C., Tree code simulations of planetary rings, Mon. Not. R. Astron. Soc., 269, 493–511, 1994.

    Article  Google Scholar 

  • Salo, H., Numerical simulations of dense collisional systems, Icarus, 90, 254–270, 1991.

    Article  Google Scholar 

  • Salo, H., Numerical simulations of dense collisional systems. II. Extended distribution of particle sizes, Icarus, 96, 85–106, 1992a.

    Article  Google Scholar 

  • Salo, H., Gravitational wakes in Saturn’s rings, Nature, 395, 619–621, 1992b.

    Article  Google Scholar 

  • Salo, H., Simulations of dense planetary rings. III. Self-gravitating identical particles, Icarus, 117, 287–312, 1995.

    Article  Google Scholar 

  • Smith, B. A., L. Soderblom, R. Batson, P. Bridges, J. Inge, H. Masursky, E. Shoemaker, R. Beebe, J. Boyce, G. Briggs, A. Bunker, S. A. Collins, C. J. Hansen, T. V. Johnson, J. L. Mitchell, R. J. Terrile, A. F. Cook, II, J. Cuzzi, J. B. Pollack, G. E. Danielson, A. P. Ingersoll, M. E. Davies, G. E. Hunt, D. Morrison, T. Owen, C. Sagan, J. Veverka, R. Strom, and V. E. Suomi, A new look at Saturn system: The Voyager 2 images, Science, 215, 504–537, 1982.

    Article  Google Scholar 

  • Sugimoto, D., Y. Chikada, J. Makino, T. Ito, T. Ebisuzaki, and M. Umemura, A special-purpose computer for gravitational many-body problem, Nature, 345, 33–35, 1990.

    Article  Google Scholar 

  • Supulver, K. D., F. G. Bridges, and D. N. C. Lin, The coefficient of restitution of ice particles in glancing collisions: Experimental results for unfrosted surfaces, Icarus, 113, 188–199, 1995.

    Article  Google Scholar 

  • Toomre, A., On the gravitational stability of a disk of stars, Astrophys. J., 139, 1217–1238, 1964.

    Article  Google Scholar 

  • Ward, W. R., On the radial structure of Saturn’s ring, Geophys. Res. Lett., 8, 641–643, 1981.

    Article  Google Scholar 

  • Wisdom, J. and S. Tremaine, Local simulations of planetary rings, Astron. J., 95, 925–940, 1988.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Daisaka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daisaka, H., Ida, S. Spatial structure and coherent motion in dense planetary rings induced by self-gravitational instability. Earth Planet Sp 51, 1195–1213 (1999). https://doi.org/10.1186/BF03351594

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03351594

Keywords