Skip to main content

Advertisement

Filtering of the interstellar dust flow near the heliopause: the importance of secondary electron emission for the grain charging

Article metrics

  • 347 Accesses

  • 18 Citations

Abstract

The deflection of interstellar dust grains in the magnetic field near the heliopause depends on their surface electric charge. We study the electric charging of the grains with emphasis on the secondary electron emission because of its importance in the hot plasma environment near the heliopause. We correct previous models of the secondary electron emission that overestimate the electric charge of dust near the heliopause. Our model calculations of the grain charge, when combined with results from in situ measurements of interstellar dust in the heliosphere, place an upper limit on the magnetic field strength. We find that the detection of interstellar dust with mass of 10−18 kg indicates the component of the magnetic field perpendicular to the interstellar dust flow to be less than 0.4 nT.

References

  1. Andersen, H. H. and J. F. Ziegler, Hydrogen: Stopping Powers and Ranges in All Elements, 317 pp., Pergamon Press, New York, 1977.

  2. Axford, I. W., The interaction of the solar wind with the interstellar medium, in Solar Wind, edited by C. P. Sonett, P. J. Coleman, Jr., and J. M. Wilcox, pp. 609–660, NASA SP-308, Washington, D. C., 1972.

  3. Baguhl, M., E. Grün, and M. Landgraf, In situ measurements of interstellar dust with the Ulysses and Galileo spaceprobes, Space Sci. Rev., 78, 165–172, 1996.

  4. Baranov, V. B., K. V. Krasnobaev, and M. S. Ruderman, On the model of the solar wind-local interstellar medium interaction with two shock waves, Astrophys. Space Sci., 41, 481–490, 1976.

  5. Baranov, V. B. and Yu. G. Malama, Model of the solar wind interaction with the local interstellar medium: numerical solution of self-consistent problem, J. Geophys. Res., 98, 15157–15163, 1993.

  6. Baranov, V. B. and Yu. G. Malama, Axisymmetric self-consistent model of the solar wind interaction with the LISM: basic results and possible ways of development, Space Sci. Rev., 78, 305–316, 1996.

  7. Baroody, E. M., A theory of secondary electron emission from metals, Phys. Rev., 78, 780–787, 1950.

  8. Bruining, H., Physics and Applications of Secondary Electron Emission, 128 pp., Pergamon Press, London, 1954.

  9. Burke, E. A., Secondary emission from polymers, IEEE Trans. Nucl. Sci., NS-27, 1760–1764, 1980.

  10. Caron, M., M. Beuve, H. Rothard, B. Gervais, A. Dubus, and M. Rösler, Experimental and theoretical study of target thickness dependent electron yields induced by electrons in carbon, Nucl. Instr. Meth. Phys. Res. B, 135, 436–442, 1998.

  11. Chow, V. W., The role of grain size in secondary and photoelectric emission from dust grains, in Advances in Dusty Plasmas, edited by P. K. Shukla, D. A. Mendis, and T. Desai, pp. 77–86, World Scientific, Singapore, 1997.

  12. Chow, V. W., D. A. Mendis, and M. Rosenberg, Role of grain size and particle velocity distribution in secondary electron emission in space plasmas, J. Geophys. Res., 98, 19065–19076, 1993.

  13. Chow, V. W., D. A. Mendis, and M. Rosenberg, Secondary emission from small dust grains at high electron energies, IEEE Trans. Plasma Sci., 22, 179–186, 1994.

  14. Dorschner, J., Properties of interstellar dust, in Physics, Chemistry and Dynamics of Interplanetary Dust, edited by B. A. S. Gustafson and M.S. Hanner, pp. 487–496, Astronomical Society of the Pacific, San Francisco, 1996.

  15. Draine, B. T., Photoelectric heating of interstellar gas, Astrophys. J. Suppl. Ser., 595–619, 1978.

  16. Draine, B. T., Charging processes for interstellar dust, in Evolution of Interstellar Dust and Related Topics, edited by A. Bonetti, J. M. Greenberg, and S. Aiello, pp. 91–101, Elsevier Science, New York, 1989.

  17. Draine, B. T. and H. M. Lee, Optical properties of interstellar graphite and silicate grains, Astrophys. J., 285, 89–108, 1984.

  18. Draine, B. T. and E. E. Salpeter, On the physics of dust grains in hot gas, Astrophys. J., 231, 77–94, 1979.

  19. Fitting, H. J., Transmission, energy distribution, and SE excitation of fast electrons in thin solid films, Phys. Stat. Sol. (a), 26, 525–535, 1974.

  20. Frisch, P. C., Characteristics of nearby interstellar matter, Space Sci. Rev., 72, 499–592, 1995.

  21. Frisch, P. C., J. M. Dorschner, J. Geiss, J. M. Greenberg, E. Grün, M. Landgraf, P. Hoppe, A. P. Jones, W. Krätschmer, T. J. Linde, G. E. Morfill, W. Reach, J. D. Slavin, J. Svestka, A. N. Witt, and G. P. Zank, Dust in the local interstellar wind, Astrophys. J., 525, 492–516, 1999.

  22. Gayley, K. G., G. P. Zank, H. L. Pauls, P. C. Frisch, and D. E. Welty, One-versus two-shock heliosphere: constraining models with Goddard High Resolution Spectrograph Lyα spectra toward α Centauri, Astrophys. J., 487, 259–270, 1997.

  23. Gelfort, St., H. Kerkow, R. Stolle, V. P. Petukhov, and E. A. Romanovskii, Secondary electron yield induced by slowly moving heavy ions, Nucl. Instr. Meth Phys. Res. B, 125, 49–52, 199

  24. Gloeckler, G., L. A. Fisk, and J. Geiss, Anomalously small magnetic field in the local interstellar cloud, Nature, 386, 374–377, 1997.

  25. Göller, J. R. and E. Grün, Calibration of the GALILEO/ULYSSES dust detectors with different projectile materials and at varying impact angles, Planet. Space Sci., 37, 1197–1206, 1989.

  26. Greenberg, J. M., Interstellar dust, in Cosmic Dust, edited by J. A. M. McDonnell, pp. 187–294, Wiley-Interscience, New York, 1978.

  27. Grün, E., B. Gustafson, I. Mann, M. Baguhl, G. E. Morfill, P. Staubach, A. Taylor, and H. A. Zook, Interstellar dust in the heliosphere, Astron. Astrophys., 286, 915–924, 1994.

  28. Grün, E., M. Baguhl, D. P. Hamilton, J. Kissel, D. Linkert, G. Linkert, and R. Riemann, Reduction of Galileo and Ulysses dust data, Planet. Space Sci., 43, 941–951, 1995a.

  29. Grün, E., M. Baguhl, N. Divine, H. Fechtig, D. P. Hamilton, M. S. Hanner, J. Kissel, B.-A. Lindblad, D. Linkert, G. Linkert, I. Mann, J. A. M. McDonnell, G. E. Morfill, C. Polanskey, R. Riemann, G. Schwehm, N. Siddique, P. Staubach, and H. A. Zook, Three years of Galileo dust data, Planet. Space Sci., 43, 953–969, 1995b.

  30. Grün, E., M. Baguhl, N. Divine, H. Fechtig, D. P. Hamilton, M. S. Hanner, J. Kissel, B.-A. Lindblad, D. Linkert, G. Linkert, I. Mann, J. A. M. McDonnell, G. E. Morfill, C. Polanskey, R. Riemann, G. Schwehm, N. Siddique, P. Staubach, and H. A. Zook, Two years of Ulysses dust data, Planet. Space Sci., 43, 971–999, 1995c.

  31. Grün, E., P. Staubach, M. Baguhl, D. P. Hamilton, H. A. Zook, S. Dermott, B. A. Gustafson, H. Fechtig, J. Kissel, D. Linkert, G. Linkert, R. Srama, M. S. Hanner, C. Polanskey, M. Horanyi, B. A. Lindblad, I. Mann, J. A. M. McDonnell, G. E. Morfill, and G. Schwehm, South-north and radial traverses through the interplanetary dust cloud, Icarus, 129, 270–288, 1997.

  32. Hachenberg, O. and W. Brauer, Secondary electron emission from solids, Adv. Electron. Electron Phys., 11, 413–499, 1959

  33. Hall, T. D. and W. W. Beeman, Secondary electron emission from beams of polystyrene latex spheres, J. Appl. Phys., 47, 5222–5225, 1976.

  34. Hasselkamp, D., S. Hippler, A. Scharmann, and T. Schmehl, Electron emission from clean solid surfaces by fast ions, Ann. Phys., 47, 555–567, 1990.

  35. Havnes, O., G. E. Morfill, and F. Melandsø, Effects of electromagnetic and plasma drag forces on the orbit evolution of dust in planetary magneto-spheres, Icarus, 98, 141–150, 1992.

  36. Heroux, L., M. Cohen, and J. E. Higgins, Electron densities between 110 and 300 km derived from solar EUV fluxes of August 23, 1972, J. Geophys. Res., 79, 5237–5244, 1974.

  37. Higgins, J. E., The solar EUV flux between 230 and 1220 Å on November 9, 1971, J. Geophys. Res., 81, 1301–1305, 1976.

  38. Holzer, T. E., Interaction between the solar wind and the interstellar medium, Ann. Rev. Astron. Astrophys., 27, 199–234, 1989.

  39. Horányi, M., S. Robertson, and B. Walch, Electrostatic charging properties of simulated lunar dust, Geophys. Res. Lett., 22, 2079–2082, 1995.

  40. ICRU, ICRU Report 49, Stopping Powers and Ranges for Protons and Alpha Particles, 286 pp., International Commission on Radiation Units and Measurements, Bethesda, 1993.

  41. ICRU, ICRU Report 55, Secondary Electron Spectra from Charged Particle Interactions, 114 pp., International Commission on Radiation Units and Measurements, Bethesda, 1996.

  42. Jacobsson, H., Fundamental processes in SiO2 under ion bombardment, Ph.D. dissertation, Chalmers University of Technology, 109 pp., Göteborg, 1993.

  43. Jacobsson, H. and G. Holmén, The dependence of Si and SiO2 electron emission on the angle of ion incidence, J. Appl. Phys., 74, 6397–6400, 1993.

  44. Jacobsson, H. and G. Holmén, Electron emission from ion-bombarded SiO2 thin films, Phys. Rev. B, 49, 1789–1795, 1994.

  45. Jones, A. P., W. W. Duley, and D. A. Williams, Interstellar extinction correlations, Mon Not. Roy. Astron. Soc., 229, 213–221, 1987.

  46. Jonker, J. L. H., On the theory of secondary electron emission, Philips Res. Rep., 7, 1–20, 1952.

  47. Jurac, S., R. A. Baragiola, R. E. Johnson, and E. C. Sittler, Jr., Charging of ice grains by low-energy plasmas: Application to Saturn’s E ring, J. Geophys. Res., 100, 14821–14831, 1995.

  48. Kanaya, K., S. Ono, and F. Ishigaki, Secondary electron emission from insulators, J. Phys. D.: Appl. Phys., 11, 2425–2437, 1978.

  49. Katz, I., D. E. Parks, M. J. Mandell, J. M. Harvey, D. H. Brownell, Jr., S. S. Wang, and M. Rotenberg, A three dimensional dynamic study of electrostatic charging in materials, Contractor Report (NASA CR-135256), NASA Lewis Research Center, Cleveland, 1977.

  50. Kimura, H. and I. Mann, The electric charging of interstellar dust in the solar system and consequences for its dynamics, Astrophys. J., 499, 454–462, 1998a.

  51. Kimura, H. and I. Mann, Charging of dust in the very local interstellar medium, in Physics of Dusty Plasmas, edited by M. Horányi, S. Robertson, and B. Walch, pp. 321–328, American Institute of Physics, Woodbury, 1998b.

  52. Kimura, H. and I. Mann, Selection effects on interstellar dust in heliosphere, Adv. Space Res., 25(2), 299–302, 1999.

  53. Kimura, H., I. Mann, and A. Wehry, Interstellar dust in the solar system, Astrophys. Space Sci., 264, 213–218, 1999.

  54. Kollath, R., Sekundärelektronen-Emission fester Körper bei Bestrahlung mit Elektronen, in Electron-Emission · Gas Discharges I, edited by S. Flügge, pp. 232–303, Springer-Verlag, Berlin, 1956 (in German).

  55. Krüger, H., E. Grün, D. P. Hamilton, M. Baguhl, S. Dermott, H. Fechtig, B. A. Gustafson, M. S. Hanner, M. Horányi, J. Kissel, B. A. Lindblad, D. Linkert, G. Linkert, I. Mann, J. A. M. McDonnell, G. E. Morfill, C. Polanskey, R. Riemann, G. Schwehm, R. Srama, and H. A. Zook, Three years of Galileo dust data II: 1993–1995, Planet. Space Sci., 47, 85–106, 1999a.

  56. Krüger, H., E. Grün, M. Landgraf, M. Baguhl, S. Dermott, H. Fechtig, B. A. Gustafson, D. P. Hamilton, M. S. Hanner, M. Horányi, J. Kissel, B. A. Lindblad, D. Linkert, G. Linkert, I. Mann, J. A. M. McDonnell, G. E. Morfill, C. Polanskey, G. Schwehm, R. Srama, and H. A. Zook, Three years of Ulysses dust data: 1993–1995, Planet. Space Sci., 47, 363–383, 1999b.

  57. Laor, A. and B. T. Draine, Spectroscopic constraints on the properties of dust in active galactic nuclei, Astrophys. J., 402, 441–468, 1993.

  58. Linde, T. J., T. I. Gombosi, P. H. Roe, K. G. Powell, and D. L. DeZeeuw, Heliosphere in the magnetized local interstellar medium: Results of a three-dimensional MHD simulation, J. Geophys. Res., 103, 1889–1904, 1998.

  59. Lye, R. G. and A. J. Dekker, Theory of secondary emission, Phys. Rev., 107, 977–981, 1957. Mann, I. and H. Kimura, Interstellar dust properties derived from mass density, mass distribution and flux rates in the heliosphere, J. Geophys. Res., 2000 (in press).

  60. Mathis, J. S. and G. Whiffen, Composite interstellar grains, Astrophys. J., 341, 808–822, 1989.

  61. Meckbach, W., G. Braunstein, and N. Arista, Secondary-electron emission in the backward and forward directions from thin carbon foils traversed by 25–250 keV proton beams, J. Phys. B.: Atom. Molec. Phys., 8, L344–L349, 1975.

  62. Meyer-Vernet, N., “Flip-flop” of electric potential of dust grains in space, Astron. Astrophys., 105, 98–106, 1982.

  63. Mezger, P. G., J. S. Mathis, and N. Panagia, The origin of the diffuse galactic far infrared and sub-millimeter emission, Astron. Astrophys., 105, 372–388, 1982.

  64. Millet, J. M. and J.-P. J. Lafon, Secondary-electron emission from porous solids, Phys. Rev. A, 52, 433–438, 1995.

  65. Mukai, T, On the charge distribution of interplanetary grains, Astron. Astrophys., 99, 1–6, 1981.

  66. Mullan, D. J. and C. N. Arge, Structure of the heliospheric MHD bow shock: Effects of ion-atom drifts, J. Geophys. Res., 101, 2535–2545, 1996.

  67. Nerney, S., S. T. Suess, and E. J. Schmahl, Flow downstream of the heliospheric terminal shock: the magnetic field on the heliopause, J. Geophys. Res., 98, 15169–15176, 1993.

  68. Pauls, H. L. and G. P. Zank, Interaction of a nonuniform solar wind with the local interstellar medium, J. Geophys. Res., 101, 17081–17092, 1996.

  69. Pauls, H. L. and G. P. Zank, Interaction of a nonuniform solar wind with the local interstellar medium 2. A two-fluid model, J. Geophys. Res., 102, 19779–19787, 1997.

  70. Ratkiewicz, R., A. Barnes, G. A. Molvik, J. R. Spreiter, S. S. Stahara, M. Vinokur, and S. Venkateswaran, Effect of varying strength and orientation of local interstellar magnetic field on configuration of exterior heliosphere: 3D MHD simulations, Astron. Astrophys., 335, 363–369, 1998.

  71. Reach, W. T. and F. Boulanger, Infrared emission from interstellar dust in the local interstellar medium, in The Local Bubble and Beyond, edited by D. Breitschwerdt, M. J. Freyberg, and J. Trümper, pp. 353–362, Springer-Verlag, Berlin, 1998.

  72. Richardson, J. D., The heliosphere-interstellar medium interaction: One shock or two?, Geophys. Res. Lett., 24, 2889–2892, 1997.

  73. Ritzau, S. M. and R. A. Baragiola, Electron emission from carbon foils induced by keV ions, Phys. Rev. B, 58, 2529–2538, 1998.

  74. Salow, H., Über den Sekundäremissionfaktor elektronenbestrahlter Isolatoren, Zeitschr. f. techn Physik, 21, 8–15, 1940 (in German).

  75. Santry, D. C. and R. D. Werner, Energy loss of 4 He ions in Al2O3 and SiO2, Nucl. Instr. Meth Phys. Res. B, 14, 169–172, 1986.

  76. Schou, J., Secondary electron emission from solids by electron and proton bombardment, Scanning Microscopy, 2, 607–632, 1988.

  77. Sternglass, E. J., Theory of secondary electron emission under electron bombardment, Scientific Paper 6-94410-2-P9, Westinghouse Research Laboratories, Pennsylvania, 1957.

  78. Suess, S. T., The heliopause, Rev. Geophys., 28, 97–115, 1990.

  79. Svedhem, H., R. Münzenmayer, and H. Iglseder, Detection of possible interstellar particles by the HITEN spacecraft, in Physics, Chemistry, and Dynamics of Interplanetary Dust, edited by B. Å. S. Gustafson and M.S. Hanner, pp. 27–30, Astronomical Society of the Pacific, San Francisco, 1996.

  80. Vernazza, J. E., E. H. Avrett, and R. Loeser, Structure of the solar chromosphere. II. the underlying photosphere and temperature-minimum region, Astrophys. J. Suppl. Ser., 30, 1–60, 1976.

  81. Voreades, D., Secondary electron emission from thin carbon films, Surf. Sci, 60, 325–348, 1976.

  82. Washimi, H. and T. Tanaka, 3-D magnetic field and current system in the heliosphere, Space Sci. Rev., 78, 85–94, 1996.

  83. Whang, Y. C., L. F. Burlaga, and N. F. Ness, Locations of the termination shock and the heliopause, J. Geophys. Res., 100, 17015–17023, 1995.

  84. Whiddington, R., The transmission of cathode rays through matter, Proc. Roy. Soc. Lond. (A), 86, 360–370, 1912.

  85. Yong, Y. C., J. T. L. Thong, and J. C. H. Phang, Determination of secondary electron yield from insulators due to a low-kev electron beam, J. Appl. Phys., 84, 4543–4548, 1998.

  86. Young, J. R., Penetration of electrons in aluminum oxide films, Phys. Rev., 103, 292–293, 1956.

  87. Zank, G. P. and H. L. Pauls, Modelling the heliosphere, Space Sci. Rev., 78, 95–106, 1996.

  88. Zank, G. P., H. L. Pauls, L. L. Williams, and D. T. Hall, Interaction of the solar wind with the local interstellar medium: A multifluid approach, J. Geophys. Res., 101, 21639–21655, 1996.

  89. Ziegler, J. F., Helium: Stopping Powers and Ranges in All Elemental Matter, 367 pp., Pergamon Press, New York, 1977.

  90. Ziegler, J. F., Handbook of Stopping Cross-Sections for Energetic Ions in All Elements, 432 pp., Pergamon Press, New York, 1980.

  91. Ziemann, P. J., P. Liu, D. B. Kittelson, and P. H. McMurry, Electron impact charging properties of size-selected, submicrometer organic particles, J. Chem. Phys., 99, 5126–5138, 1995.

Download references

Author information

Correspondence to Hiroshi Kimura.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kimura, H., Mann, I. Filtering of the interstellar dust flow near the heliopause: the importance of secondary electron emission for the grain charging. Earth Planet Sp 51, 1223–1232 (1999) doi:10.1186/BF03351596

Download citation

Keywords

  • Dust
  • Solar Wind
  • Secondary Electron
  • Dusty Plasma
  • Yield Curve