Skip to main content

Filtering of the interstellar dust flow near the heliopause: the importance of secondary electron emission for the grain charging

Abstract

The deflection of interstellar dust grains in the magnetic field near the heliopause depends on their surface electric charge. We study the electric charging of the grains with emphasis on the secondary electron emission because of its importance in the hot plasma environment near the heliopause. We correct previous models of the secondary electron emission that overestimate the electric charge of dust near the heliopause. Our model calculations of the grain charge, when combined with results from in situ measurements of interstellar dust in the heliosphere, place an upper limit on the magnetic field strength. We find that the detection of interstellar dust with mass of 10−18 kg indicates the component of the magnetic field perpendicular to the interstellar dust flow to be less than 0.4 nT.

References

  1. Andersen, H. H. and J. F. Ziegler, Hydrogen: Stopping Powers and Ranges in All Elements, 317 pp., Pergamon Press, New York, 1977.

    Google Scholar 

  2. Axford, I. W., The interaction of the solar wind with the interstellar medium, in Solar Wind, edited by C. P. Sonett, P. J. Coleman, Jr., and J. M. Wilcox, pp. 609–660, NASA SP-308, Washington, D. C., 1972.

    Google Scholar 

  3. Baguhl, M., E. Grün, and M. Landgraf, In situ measurements of interstellar dust with the Ulysses and Galileo spaceprobes, Space Sci. Rev., 78, 165–172, 1996.

    Article  Google Scholar 

  4. Baranov, V. B., K. V. Krasnobaev, and M. S. Ruderman, On the model of the solar wind-local interstellar medium interaction with two shock waves, Astrophys. Space Sci., 41, 481–490, 1976.

    Article  Google Scholar 

  5. Baranov, V. B. and Yu. G. Malama, Model of the solar wind interaction with the local interstellar medium: numerical solution of self-consistent problem, J. Geophys. Res., 98, 15157–15163, 1993.

    Article  Google Scholar 

  6. Baranov, V. B. and Yu. G. Malama, Axisymmetric self-consistent model of the solar wind interaction with the LISM: basic results and possible ways of development, Space Sci. Rev., 78, 305–316, 1996.

    Article  Google Scholar 

  7. Baroody, E. M., A theory of secondary electron emission from metals, Phys. Rev., 78, 780–787, 1950.

    Article  Google Scholar 

  8. Bruining, H., Physics and Applications of Secondary Electron Emission, 128 pp., Pergamon Press, London, 1954.

    Google Scholar 

  9. Burke, E. A., Secondary emission from polymers, IEEE Trans. Nucl. Sci., NS-27, 1760–1764, 1980.

    Google Scholar 

  10. Caron, M., M. Beuve, H. Rothard, B. Gervais, A. Dubus, and M. Rösler, Experimental and theoretical study of target thickness dependent electron yields induced by electrons in carbon, Nucl. Instr. Meth. Phys. Res. B, 135, 436–442, 1998.

    Article  Google Scholar 

  11. Chow, V. W., The role of grain size in secondary and photoelectric emission from dust grains, in Advances in Dusty Plasmas, edited by P. K. Shukla, D. A. Mendis, and T. Desai, pp. 77–86, World Scientific, Singapore, 1997.

    Google Scholar 

  12. Chow, V. W., D. A. Mendis, and M. Rosenberg, Role of grain size and particle velocity distribution in secondary electron emission in space plasmas, J. Geophys. Res., 98, 19065–19076, 1993.

    Article  Google Scholar 

  13. Chow, V. W., D. A. Mendis, and M. Rosenberg, Secondary emission from small dust grains at high electron energies, IEEE Trans. Plasma Sci., 22, 179–186, 1994.

    Article  Google Scholar 

  14. Dorschner, J., Properties of interstellar dust, in Physics, Chemistry and Dynamics of Interplanetary Dust, edited by B. A. S. Gustafson and M.S. Hanner, pp. 487–496, Astronomical Society of the Pacific, San Francisco, 1996.

    Google Scholar 

  15. Draine, B. T., Photoelectric heating of interstellar gas, Astrophys. J. Suppl. Ser., 595–619, 1978.

    Google Scholar 

  16. Draine, B. T., Charging processes for interstellar dust, in Evolution of Interstellar Dust and Related Topics, edited by A. Bonetti, J. M. Greenberg, and S. Aiello, pp. 91–101, Elsevier Science, New York, 1989.

    Google Scholar 

  17. Draine, B. T. and H. M. Lee, Optical properties of interstellar graphite and silicate grains, Astrophys. J., 285, 89–108, 1984.

    Article  Google Scholar 

  18. Draine, B. T. and E. E. Salpeter, On the physics of dust grains in hot gas, Astrophys. J., 231, 77–94, 1979.

    Article  Google Scholar 

  19. Fitting, H. J., Transmission, energy distribution, and SE excitation of fast electrons in thin solid films, Phys. Stat. Sol. (a), 26, 525–535, 1974.

    Article  Google Scholar 

  20. Frisch, P. C., Characteristics of nearby interstellar matter, Space Sci. Rev., 72, 499–592, 1995.

    Article  Google Scholar 

  21. Frisch, P. C., J. M. Dorschner, J. Geiss, J. M. Greenberg, E. Grün, M. Landgraf, P. Hoppe, A. P. Jones, W. Krätschmer, T. J. Linde, G. E. Morfill, W. Reach, J. D. Slavin, J. Svestka, A. N. Witt, and G. P. Zank, Dust in the local interstellar wind, Astrophys. J., 525, 492–516, 1999.

    Article  Google Scholar 

  22. Gayley, K. G., G. P. Zank, H. L. Pauls, P. C. Frisch, and D. E. Welty, One-versus two-shock heliosphere: constraining models with Goddard High Resolution Spectrograph Lyα spectra toward α Centauri, Astrophys. J., 487, 259–270, 1997.

    Article  Google Scholar 

  23. Gelfort, St., H. Kerkow, R. Stolle, V. P. Petukhov, and E. A. Romanovskii, Secondary electron yield induced by slowly moving heavy ions, Nucl. Instr. Meth Phys. Res. B, 125, 49–52, 199

    Article  Google Scholar 

  24. Gloeckler, G., L. A. Fisk, and J. Geiss, Anomalously small magnetic field in the local interstellar cloud, Nature, 386, 374–377, 1997.

    Article  Google Scholar 

  25. Göller, J. R. and E. Grün, Calibration of the GALILEO/ULYSSES dust detectors with different projectile materials and at varying impact angles, Planet. Space Sci., 37, 1197–1206, 1989.

    Article  Google Scholar 

  26. Greenberg, J. M., Interstellar dust, in Cosmic Dust, edited by J. A. M. McDonnell, pp. 187–294, Wiley-Interscience, New York, 1978.

    Google Scholar 

  27. Grün, E., B. Gustafson, I. Mann, M. Baguhl, G. E. Morfill, P. Staubach, A. Taylor, and H. A. Zook, Interstellar dust in the heliosphere, Astron. Astrophys., 286, 915–924, 1994.

    Google Scholar 

  28. Grün, E., M. Baguhl, D. P. Hamilton, J. Kissel, D. Linkert, G. Linkert, and R. Riemann, Reduction of Galileo and Ulysses dust data, Planet. Space Sci., 43, 941–951, 1995a.

    Article  Google Scholar 

  29. Grün, E., M. Baguhl, N. Divine, H. Fechtig, D. P. Hamilton, M. S. Hanner, J. Kissel, B.-A. Lindblad, D. Linkert, G. Linkert, I. Mann, J. A. M. McDonnell, G. E. Morfill, C. Polanskey, R. Riemann, G. Schwehm, N. Siddique, P. Staubach, and H. A. Zook, Three years of Galileo dust data, Planet. Space Sci., 43, 953–969, 1995b.

    Article  Google Scholar 

  30. Grün, E., M. Baguhl, N. Divine, H. Fechtig, D. P. Hamilton, M. S. Hanner, J. Kissel, B.-A. Lindblad, D. Linkert, G. Linkert, I. Mann, J. A. M. McDonnell, G. E. Morfill, C. Polanskey, R. Riemann, G. Schwehm, N. Siddique, P. Staubach, and H. A. Zook, Two years of Ulysses dust data, Planet. Space Sci., 43, 971–999, 1995c.

    Article  Google Scholar 

  31. Grün, E., P. Staubach, M. Baguhl, D. P. Hamilton, H. A. Zook, S. Dermott, B. A. Gustafson, H. Fechtig, J. Kissel, D. Linkert, G. Linkert, R. Srama, M. S. Hanner, C. Polanskey, M. Horanyi, B. A. Lindblad, I. Mann, J. A. M. McDonnell, G. E. Morfill, and G. Schwehm, South-north and radial traverses through the interplanetary dust cloud, Icarus, 129, 270–288, 1997.

    Article  Google Scholar 

  32. Hachenberg, O. and W. Brauer, Secondary electron emission from solids, Adv. Electron. Electron Phys., 11, 413–499, 1959

    Article  Google Scholar 

  33. Hall, T. D. and W. W. Beeman, Secondary electron emission from beams of polystyrene latex spheres, J. Appl. Phys., 47, 5222–5225, 1976.

    Article  Google Scholar 

  34. Hasselkamp, D., S. Hippler, A. Scharmann, and T. Schmehl, Electron emission from clean solid surfaces by fast ions, Ann. Phys., 47, 555–567, 1990.

    Article  Google Scholar 

  35. Havnes, O., G. E. Morfill, and F. Melandsø, Effects of electromagnetic and plasma drag forces on the orbit evolution of dust in planetary magneto-spheres, Icarus, 98, 141–150, 1992.

    Article  Google Scholar 

  36. Heroux, L., M. Cohen, and J. E. Higgins, Electron densities between 110 and 300 km derived from solar EUV fluxes of August 23, 1972, J. Geophys. Res., 79, 5237–5244, 1974.

    Article  Google Scholar 

  37. Higgins, J. E., The solar EUV flux between 230 and 1220 Å on November 9, 1971, J. Geophys. Res., 81, 1301–1305, 1976.

    Article  Google Scholar 

  38. Holzer, T. E., Interaction between the solar wind and the interstellar medium, Ann. Rev. Astron. Astrophys., 27, 199–234, 1989.

    Article  Google Scholar 

  39. Horányi, M., S. Robertson, and B. Walch, Electrostatic charging properties of simulated lunar dust, Geophys. Res. Lett., 22, 2079–2082, 1995.

    Article  Google Scholar 

  40. ICRU, ICRU Report 49, Stopping Powers and Ranges for Protons and Alpha Particles, 286 pp., International Commission on Radiation Units and Measurements, Bethesda, 1993.

    Google Scholar 

  41. ICRU, ICRU Report 55, Secondary Electron Spectra from Charged Particle Interactions, 114 pp., International Commission on Radiation Units and Measurements, Bethesda, 1996.

    Google Scholar 

  42. Jacobsson, H., Fundamental processes in SiO2 under ion bombardment, Ph.D. dissertation, Chalmers University of Technology, 109 pp., Göteborg, 1993.

    Google Scholar 

  43. Jacobsson, H. and G. Holmén, The dependence of Si and SiO2 electron emission on the angle of ion incidence, J. Appl. Phys., 74, 6397–6400, 1993.

    Article  Google Scholar 

  44. Jacobsson, H. and G. Holmén, Electron emission from ion-bombarded SiO2 thin films, Phys. Rev. B, 49, 1789–1795, 1994.

    Article  Google Scholar 

  45. Jones, A. P., W. W. Duley, and D. A. Williams, Interstellar extinction correlations, Mon Not. Roy. Astron. Soc., 229, 213–221, 1987.

    Article  Google Scholar 

  46. Jonker, J. L. H., On the theory of secondary electron emission, Philips Res. Rep., 7, 1–20, 1952.

    Google Scholar 

  47. Jurac, S., R. A. Baragiola, R. E. Johnson, and E. C. Sittler, Jr., Charging of ice grains by low-energy plasmas: Application to Saturn’s E ring, J. Geophys. Res., 100, 14821–14831, 1995.

    Article  Google Scholar 

  48. Kanaya, K., S. Ono, and F. Ishigaki, Secondary electron emission from insulators, J. Phys. D.: Appl. Phys., 11, 2425–2437, 1978.

    Article  Google Scholar 

  49. Katz, I., D. E. Parks, M. J. Mandell, J. M. Harvey, D. H. Brownell, Jr., S. S. Wang, and M. Rotenberg, A three dimensional dynamic study of electrostatic charging in materials, Contractor Report (NASA CR-135256), NASA Lewis Research Center, Cleveland, 1977.

  50. Kimura, H. and I. Mann, The electric charging of interstellar dust in the solar system and consequences for its dynamics, Astrophys. J., 499, 454–462, 1998a.

    Article  Google Scholar 

  51. Kimura, H. and I. Mann, Charging of dust in the very local interstellar medium, in Physics of Dusty Plasmas, edited by M. Horányi, S. Robertson, and B. Walch, pp. 321–328, American Institute of Physics, Woodbury, 1998b.

    Google Scholar 

  52. Kimura, H. and I. Mann, Selection effects on interstellar dust in heliosphere, Adv. Space Res., 25(2), 299–302, 1999.

    Article  Google Scholar 

  53. Kimura, H., I. Mann, and A. Wehry, Interstellar dust in the solar system, Astrophys. Space Sci., 264, 213–218, 1999.

    Article  Google Scholar 

  54. Kollath, R., Sekundärelektronen-Emission fester Körper bei Bestrahlung mit Elektronen, in Electron-Emission · Gas Discharges I, edited by S. Flügge, pp. 232–303, Springer-Verlag, Berlin, 1956 (in German).

    Google Scholar 

  55. Krüger, H., E. Grün, D. P. Hamilton, M. Baguhl, S. Dermott, H. Fechtig, B. A. Gustafson, M. S. Hanner, M. Horányi, J. Kissel, B. A. Lindblad, D. Linkert, G. Linkert, I. Mann, J. A. M. McDonnell, G. E. Morfill, C. Polanskey, R. Riemann, G. Schwehm, R. Srama, and H. A. Zook, Three years of Galileo dust data II: 1993–1995, Planet. Space Sci., 47, 85–106, 1999a.

    Article  Google Scholar 

  56. Krüger, H., E. Grün, M. Landgraf, M. Baguhl, S. Dermott, H. Fechtig, B. A. Gustafson, D. P. Hamilton, M. S. Hanner, M. Horányi, J. Kissel, B. A. Lindblad, D. Linkert, G. Linkert, I. Mann, J. A. M. McDonnell, G. E. Morfill, C. Polanskey, G. Schwehm, R. Srama, and H. A. Zook, Three years of Ulysses dust data: 1993–1995, Planet. Space Sci., 47, 363–383, 1999b.

    Article  Google Scholar 

  57. Laor, A. and B. T. Draine, Spectroscopic constraints on the properties of dust in active galactic nuclei, Astrophys. J., 402, 441–468, 1993.

    Article  Google Scholar 

  58. Linde, T. J., T. I. Gombosi, P. H. Roe, K. G. Powell, and D. L. DeZeeuw, Heliosphere in the magnetized local interstellar medium: Results of a three-dimensional MHD simulation, J. Geophys. Res., 103, 1889–1904, 1998.

    Article  Google Scholar 

  59. Lye, R. G. and A. J. Dekker, Theory of secondary emission, Phys. Rev., 107, 977–981, 1957. Mann, I. and H. Kimura, Interstellar dust properties derived from mass density, mass distribution and flux rates in the heliosphere, J. Geophys. Res., 2000 (in press).

    Article  Google Scholar 

  60. Mathis, J. S. and G. Whiffen, Composite interstellar grains, Astrophys. J., 341, 808–822, 1989.

    Article  Google Scholar 

  61. Meckbach, W., G. Braunstein, and N. Arista, Secondary-electron emission in the backward and forward directions from thin carbon foils traversed by 25–250 keV proton beams, J. Phys. B.: Atom. Molec. Phys., 8, L344–L349, 1975.

    Article  Google Scholar 

  62. Meyer-Vernet, N., “Flip-flop” of electric potential of dust grains in space, Astron. Astrophys., 105, 98–106, 1982.

    Google Scholar 

  63. Mezger, P. G., J. S. Mathis, and N. Panagia, The origin of the diffuse galactic far infrared and sub-millimeter emission, Astron. Astrophys., 105, 372–388, 1982.

    Google Scholar 

  64. Millet, J. M. and J.-P. J. Lafon, Secondary-electron emission from porous solids, Phys. Rev. A, 52, 433–438, 1995.

    Article  Google Scholar 

  65. Mukai, T, On the charge distribution of interplanetary grains, Astron. Astrophys., 99, 1–6, 1981.

    Google Scholar 

  66. Mullan, D. J. and C. N. Arge, Structure of the heliospheric MHD bow shock: Effects of ion-atom drifts, J. Geophys. Res., 101, 2535–2545, 1996.

    Article  Google Scholar 

  67. Nerney, S., S. T. Suess, and E. J. Schmahl, Flow downstream of the heliospheric terminal shock: the magnetic field on the heliopause, J. Geophys. Res., 98, 15169–15176, 1993.

    Article  Google Scholar 

  68. Pauls, H. L. and G. P. Zank, Interaction of a nonuniform solar wind with the local interstellar medium, J. Geophys. Res., 101, 17081–17092, 1996.

    Article  Google Scholar 

  69. Pauls, H. L. and G. P. Zank, Interaction of a nonuniform solar wind with the local interstellar medium 2. A two-fluid model, J. Geophys. Res., 102, 19779–19787, 1997.

    Article  Google Scholar 

  70. Ratkiewicz, R., A. Barnes, G. A. Molvik, J. R. Spreiter, S. S. Stahara, M. Vinokur, and S. Venkateswaran, Effect of varying strength and orientation of local interstellar magnetic field on configuration of exterior heliosphere: 3D MHD simulations, Astron. Astrophys., 335, 363–369, 1998.

    Google Scholar 

  71. Reach, W. T. and F. Boulanger, Infrared emission from interstellar dust in the local interstellar medium, in The Local Bubble and Beyond, edited by D. Breitschwerdt, M. J. Freyberg, and J. Trümper, pp. 353–362, Springer-Verlag, Berlin, 1998.

    Google Scholar 

  72. Richardson, J. D., The heliosphere-interstellar medium interaction: One shock or two?, Geophys. Res. Lett., 24, 2889–2892, 1997.

    Article  Google Scholar 

  73. Ritzau, S. M. and R. A. Baragiola, Electron emission from carbon foils induced by keV ions, Phys. Rev. B, 58, 2529–2538, 1998.

    Article  Google Scholar 

  74. Salow, H., Über den Sekundäremissionfaktor elektronenbestrahlter Isolatoren, Zeitschr. f. techn Physik, 21, 8–15, 1940 (in German).

    Google Scholar 

  75. Santry, D. C. and R. D. Werner, Energy loss of 4 He ions in Al2O3 and SiO2, Nucl. Instr. Meth Phys. Res. B, 14, 169–172, 1986.

    Article  Google Scholar 

  76. Schou, J., Secondary electron emission from solids by electron and proton bombardment, Scanning Microscopy, 2, 607–632, 1988.

    Google Scholar 

  77. Sternglass, E. J., Theory of secondary electron emission under electron bombardment, Scientific Paper 6-94410-2-P9, Westinghouse Research Laboratories, Pennsylvania, 1957.

    Google Scholar 

  78. Suess, S. T., The heliopause, Rev. Geophys., 28, 97–115, 1990.

    Article  Google Scholar 

  79. Svedhem, H., R. Münzenmayer, and H. Iglseder, Detection of possible interstellar particles by the HITEN spacecraft, in Physics, Chemistry, and Dynamics of Interplanetary Dust, edited by B. Å. S. Gustafson and M.S. Hanner, pp. 27–30, Astronomical Society of the Pacific, San Francisco, 1996.

    Google Scholar 

  80. Vernazza, J. E., E. H. Avrett, and R. Loeser, Structure of the solar chromosphere. II. the underlying photosphere and temperature-minimum region, Astrophys. J. Suppl. Ser., 30, 1–60, 1976.

    Article  Google Scholar 

  81. Voreades, D., Secondary electron emission from thin carbon films, Surf. Sci, 60, 325–348, 1976.

  82. Washimi, H. and T. Tanaka, 3-D magnetic field and current system in the heliosphere, Space Sci. Rev., 78, 85–94, 1996.

    Article  Google Scholar 

  83. Whang, Y. C., L. F. Burlaga, and N. F. Ness, Locations of the termination shock and the heliopause, J. Geophys. Res., 100, 17015–17023, 1995.

    Article  Google Scholar 

  84. Whiddington, R., The transmission of cathode rays through matter, Proc. Roy. Soc. Lond. (A), 86, 360–370, 1912.

    Article  Google Scholar 

  85. Yong, Y. C., J. T. L. Thong, and J. C. H. Phang, Determination of secondary electron yield from insulators due to a low-kev electron beam, J. Appl. Phys., 84, 4543–4548, 1998.

    Article  Google Scholar 

  86. Young, J. R., Penetration of electrons in aluminum oxide films, Phys. Rev., 103, 292–293, 1956.

    Article  Google Scholar 

  87. Zank, G. P. and H. L. Pauls, Modelling the heliosphere, Space Sci. Rev., 78, 95–106, 1996.

    Article  Google Scholar 

  88. Zank, G. P., H. L. Pauls, L. L. Williams, and D. T. Hall, Interaction of the solar wind with the local interstellar medium: A multifluid approach, J. Geophys. Res., 101, 21639–21655, 1996.

    Article  Google Scholar 

  89. Ziegler, J. F., Helium: Stopping Powers and Ranges in All Elemental Matter, 367 pp., Pergamon Press, New York, 1977.

    Google Scholar 

  90. Ziegler, J. F., Handbook of Stopping Cross-Sections for Energetic Ions in All Elements, 432 pp., Pergamon Press, New York, 1980.

    Google Scholar 

  91. Ziemann, P. J., P. Liu, D. B. Kittelson, and P. H. McMurry, Electron impact charging properties of size-selected, submicrometer organic particles, J. Chem. Phys., 99, 5126–5138, 1995.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Kimura.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kimura, H., Mann, I. Filtering of the interstellar dust flow near the heliopause: the importance of secondary electron emission for the grain charging. Earth Planet Sp 51, 1223–1232 (1999). https://doi.org/10.1186/BF03351596

Download citation

Keywords

  • Dust
  • Solar Wind
  • Secondary Electron
  • Dusty Plasma
  • Yield Curve