Skip to main content

Advertisement

Simulation of space weathering of planet-forming materials: Nanosecond pulse laser irradiation and proton implantation on olivine and pyroxene samples

Article metrics

  • 600 Accesses

  • 106 Citations

Abstract

For the purpose of simulating the surface alteration process called “space weathering”, experiments of pulse laser irradiation, proton implantation, and laser irradiation to proton implanted samples were performed and reflectance spectra of altered materials were measured. To simulate the impact heating by micrometeorite bombardments, we made a new apparatus using a pulse laser whose pulse duration is 6–8 nanoseconds, comparable with a timescale of micrometeorite impacts. We find that the degree of space weathering, i.e., change of reflectance spectrum should depend on mineral composition. Laser irradiation onto olivine produces the largest reduction of albedo and the highest reddening of reflectance spectrum. In general, variation of olivine spectra is much larger than that of pyroxenes. Depths of absorption bands do not change in the scaled spectra. The olivine spectrum after the laser irradiation can match spectra of some olivine asteroids within a subtype of S-type asteroids. Comparison of Vesta spectrum with altered pyroxene spectra suggests that Vesta surface would be relatively older than olivine asteroids. We also investigate the influence of solar wind proton and pyroxene FeO content. The proton implantation causes small changes in olivine and enstatite spectra. Implanted protons do not influence spectral change by the laser irradiation: the laser irradiation and the proton implantation do not produce multiplicative but additive changes on the reflectance spectra. FeO content of pyroxenes does not relate to the degree of reflectance change.

References

  1. Allen, C. C., R. V. Morris, H. V. Lauer, Jr., and D. S. McKay, Microscopic iron metal on glass and minerals—A tool for studying regolith maturity, Icarus, 104, 291–300, 1993.

  2. Chapman, C. R., S-type asteroids, ordinary chondrites, and space weathering: The evidence from Galileo’s fly-bys of Gaspra and Ida, Meteorit. Planet. Sci., 31, 699–725, 1996.

  3. Clark, B. E., F. P. Fanale, and J. W. Salisbury, Meteorite-asteroid spectral comparison: The effects comminution, melting, and recrystallization, Icarus, 97, 288–297, 1992.

  4. Dukes, C. A., R. A. Baragiola, and L. A. McFadden, Surface modification of olivine by H+ and He+ bombardment, J. Geophys. Res., 104, 1865–1872, 1999.

  5. Gaffey, M. J., J. F. Bell, R. H. Brown, T. H. Burbine, J. L. Piatek, K. L. Reed, and D. A. Chaky, Mineralogical variations within the S-Type asteroid class, Icarus, 106, 573–602, 1993.

  6. Grün, E., H. Fechtig, M. S. Hanner, J. Kissel, B.-A. Lindblad, D. Linkert, G. Morfill, and H. A. Zook, In-situ exploration of dust in the solar system and initial results from the Galileo Dust Detector, in Origin and Evolution of Interplanetary Dust, edited by A. C. Levasseur-Regourd and H. Hasegawa, pp. 21–32, Kluwer Academic Press, Dordrecht, 1991.

  7. Hapke, B. Why is the moon dark?, Lunar Planet. Sci., XXIV, 605–606, 1993.

  8. Helfenstein, P., J. Veverka, P. C. Thomas, D. P. Simonelli, P. Lee, K. Klaasen, T. V. Johnson, H. Brenemen, J. W. Head, S. Murchie, F. Fanale, M. Robinson, B. Clark, J. Granahan, H. Garbeil, A. S. McEwen, R. L. Kirk, M. Davies, G. Neukum, S. Mottola, R. Wagner, M. Belton, C. Chapman, and C. Pilcher, Galileo Photometry of Asteroid 951 Gaspra, Icarus, 107, 37–60, 1994.

  9. Helfenstein, P., J. Veverka, P. C. Thomas, D. P. Simonelli, K. Klaasen, T. V. Johnson, F. Fanale, J. Granahan, A. S. McEwen, M. Belton, and C. Chapman, Galileo Photometry of Asteroid 243 Ida, Icarus, 120, 48–65, 1996.

  10. Hiroi, T. and H. Takeda, Reflectance spectroscopy and mineralogy of primitive achondrites-lodranites, Proc. NIPR Symp. Antarct. Meteorites, 4, 163–177, 1991.

  11. Johnson, R. E. and R. Baragiola, Lunar surface: Sputtering and secondary ion mass spectrometry, Geophys. Res. Lett., 18, 2169–2172, 1991.

  12. Keller, L. P. and D. S. McKay, The nature and origin of rims on lunar soil grains, Geochim. Cosmochim. Acta., 61, 2331–2341, 1997.

  13. Kissel, J. and F. R. Krueger, Ion formation by impact of fast dust particles and comparison with related techniques, Appl. Phys. A, 42, 69–85, 1987.

  14. McCord, T. B., J. B. Adams, and T. V. Johnson, Asteroid Vesta: Spectral reflectivity and compositional implications, Science, 168, 1445–1447, 1970.

  15. Moroz, L. V., A. V. Fisenko, L. F. Semjonova, C. M. Pieters, and N. N. Korotaeva, Optical effects of regolith processes on S-asteroids as simulated by laser shots on ordinary chondrite and other mafic materials, Icarus, 122, 366–382, 1996.

  16. Ohashi, H., Y. Koizumi, and K. Kobayashi, Carbon-coated film method PIXE for thick and insulating samples, Nucl. Instr. and Meth., B75, 140–143, 1993.

  17. Ohtake, M. and H. Ohtake, Change of mineral reflectance spectra caused by melting and reduction, in 29th Annual Lunar and Planetary Science Conference, 1570 pp., 1998.

  18. Pieters, C. M., E. M. Fischer, O. Rode, and A. Basu, Optical effects of space weathering: The role of the finest fraction, J. Geophys. Res., 98, 20817–20824, 1993.

  19. Wasson, J. T., C. M. Pieters, A. V. Fisenko, L. F. Semjonova, and P. H. Warren, Simulation of space weathering of eucrites by laser impulse irradiationm, in 29th Annual Lunar and Planetary Science Conference, 1940 pp., 1998.

  20. Vaniman, D., R. Reedy, G. Heiken, G. Olhoeft, and W. Mendell, The lunar environment, in Lunar Source Book, edited by G. Heiken, D. Vaniman, and B. French, pp. 27–60, Cambridge, 1991.

Download references

Author information

Correspondence to Maho Yamada.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yamada, M., Sasaki, S., Nagahara, H. et al. Simulation of space weathering of planet-forming materials: Nanosecond pulse laser irradiation and proton implantation on olivine and pyroxene samples. Earth Planet Sp 51, 1255–1265 (1999) doi:10.1186/BF03351599

Download citation

Keywords

  • Olivine
  • Laser Irradiation
  • Space Weathering
  • Enstatite
  • Pulse Laser Irradiation