Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Ponderomotive impacts of ion cyclotron waves on the ions in the equatorial zone of the magnetosphere

Abstract

The ponderomotive influence of ion cyclotron waves on the field-aligned distribution and motion of ions in the equatorial zone of the magnetosphere is examined. The hydrodynamic, quasi-hydrodynamic and “test-particle” approaches are used for the study of ponderomotive wave-particle interaction. Particular attention has been given to the challenging questions encountered in applying the general theory to the magnetospheric physics. The closed system of quasi-linear equations describing the ponderomotive effects is derived. Analytical investigation of the basic equations has demonstrated the diverse manifestations of the ponderomotive impact of ion cyclotron waves on the ion population in the magnetosphere. It is found that the redistribution of ion density under the action of ponderomotive force with increase in the wave amplitude follows the pattern of phase transition of the second kind. The density distribution changes qualitatively as the point in plane of the governing parameters of system crosses a demarcation line. It has been found that the magnetic equator is an attractor for heavy ion. The period of the finite (oscillatory) motion of a heavy ion, which is trapped in the potential trough in the vicinity of magnetic equator, depends on the wave frequency, wave amplitude, together with the energy of motion. In addition, the diffusion equilibrium of ions in a multicomponent plasma is considered, and the ponderomotive separation of ions in a binary mixture is demonstrated. It is shown that the heavy ions collect near the magnetic equator provided the waves are comparatively strong. It suggests that the ponderomotive effects play a part in formation of structure and dynamics of the magnetosphere.

References

  1. Allan, W., Ponderomotive mass transport in the magnetosphere, J. Geophys. Res., 97, 8483–8493, 1992.

    Article  Google Scholar 

  2. Allan, W., The ponderomotive force of standing Alfvén waves in a dipolar magnetosphere, J. Geophys. Res., 98, 1409–1417, 1993a.

    Article  Google Scholar 

  3. Allan, W., Plasma energization by the ponderomotive force of magnetospheric standing Alfvén waves, J. Geophys. Res., 98, 11383–11390, 1993b.

    Article  Google Scholar 

  4. Allan, W., J. R. Manuel, and E. M. Poulter, Magnetospheric cavity modes: Some nonlinear effects, J. Geophys. Res., 96, 11461–11473, 1991.

    Article  Google Scholar 

  5. Anderson, B. J., Recent observations of electromagnetic ion cyclotron waves in space, Adv. Space. Res., 17, 1041–1044, 1996.

    Article  Google Scholar 

  6. Anderson, B. J., R. E. Erlandson, and L. J. Zanetti, A statistical study of Pc 1–2 magnetic pulsations in the equatorial magnetosphere: 1, Equatorial occurrence distributions, J. Geophys. Res., 97, 3075–3088, 1992a.

    Article  Google Scholar 

  7. Anderson, B. J., R. E. Erlandson, and L. J. Zanetti, A statistical study of Pc 1–2 magnetic pulsations in the equatorial magnetosphere: 2, Wave properties, J. Geophys. Res., 97, 3089–3101, 1992b.

    Article  Google Scholar 

  8. Barghouthi, I. A., Effect of wave-paricle interaction on H+ and O+ outflow at high latitude: A comparative study, J. Geophys. Res., 102, 22065–22015, 1997.

    Article  Google Scholar 

  9. Bossen, M., R. L. McPherron, and C. T. Russell, Simultaneous Pc 1 observations by the synchronous satellite ATS-1 and ground stations: implications concerning IPDP generation mechanisms, J. Atmosp. Terr. Phys., 38, 1157–1167, 1976.

    Article  Google Scholar 

  10. Erlandson, R. E. and B. J. Anderson, Pc 1 waves in the ionosphere: A statistical study, J. Geophys. Res., 101, 7843–7857, 1996.

    Article  Google Scholar 

  11. Erlandson, R. E., L. J. Zanetti, T. A. Potemra, L. P. Block, and G. Holmgren, Viking magnetic and electric field observations of Pc 1 waves at high latitudes, J. Geophys. Res., 95, 5941–5955, 1990.

    Article  Google Scholar 

  12. Erlandson, R. E., B. J. Anderson, and L. J. Zanetti, Viking magnetic and electric field observations of periodic Pc 1 waves: Pearl pulsations, J. Geophys. Res., 97, 14823–14832, 1992.

    Article  Google Scholar 

  13. Fraser, B. J., J. C. Samson, Y. D. Hu, R. L. McPherron, and C. T. Russell, Electromagnetic ion cyclotron waves observed near the oxygen cyclotron frequency by ISEE 1 and 2, J. Geophys. Res., 97, 3063–3074, 1992.

    Article  Google Scholar 

  14. Gilmore, R., Catastrophe Theory for Scientist and Engineers, 666 pp., John Wiley & Sons, New York, 1981.

    Google Scholar 

  15. Ginzburg, V. L., Propagation of Electromagnetic Waves in a Plasma, 615 pp., Pergamon, New York, 1971.

    Google Scholar 

  16. Ginzburg, V. L., Theoretical Physics and Astrophysics, 416 pp., Nauka, Moskow, 1975 (in Russian).

    Google Scholar 

  17. Guglielmi, A., Ponderomotive forces in the crust and magnetosphere of the Earth, Physics of the Earth, 7, 35–39, 1992 (in Russian).

    Google Scholar 

  18. Guglielmi, A., Comment on the ponderomotive self—action of Alfvén waves, J. Geophys. Res., 102, 209–210, 1997.

    Article  Google Scholar 

  19. Guglielmi, A. V. and O. A. Pokhotelov, Geoelectromagnetic waves, 402 pp., IOP Publishing Ltd, Bristol, 1996.

    Google Scholar 

  20. Guglielmi, A. and R. Lundin, Ponderomotive upward acceleration of ions by ion cyclotron and Alfvén waves over the polar regions, J. Geophys. Res., 105, 2000 (to be published).

  21. Guglielmi, A., O. A. Pokhotelov, F. Z. Feygin, Yu. P. Kurchashov, J. F. McKenzie, P. K. Shukla, L. Stenflo, and A. S. Potapov, Ponderomotive forces in longitudinal MHD waveguides, J. Geophys. Res., 100, 7997–8002, 1995.

    Article  Google Scholar 

  22. Guglielmi, A., J. Kangas, K. Mursula, T. Pikkarainen, O. Pokhotelov, and A. Potapov, Pc 1-induced electromagnetic lift of the background plasma in the magnetosphere, J. Geophys. Res., 101, 21493–21500, 1996.

    Article  Google Scholar 

  23. Gustafsson, G., M. Andre, L. Matson, and H. Koskinen, On waves below the local proton gyrofrequency in auroral acceleration regions, J. Geophys. Res., 95, 5889–5904, 1990.

    Article  Google Scholar 

  24. Hultqvist, B., On the acceleration of positive ions by high-latitude, large-amplitude electric field fluctuations, J. Geophys. Res., 101, 27111–27124, 1996.

    Article  Google Scholar 

  25. Kangas, J., A. Guglielmi, and O. Pokhotelov, Morphology and physics of short-period magnetic pulsations (A Review), Space Sci. Rev., 83, 435–512, 1998.

    Article  Google Scholar 

  26. LaBelle, J. and R. A. Treumann, Poynting vector measurements of electromagnetic ion cyclotron waves in the plasmasphere, J. Geophys. Res., 97, 13789–13797, 1992.

    Article  Google Scholar 

  27. Landau, L. D. and E. M. Lifshitz, Electrodynamics of Continuous Media, 460 pp., Pergamon, Oxford, 1984.

    Google Scholar 

  28. Lundin, R., Acceleration/Heating of plasma on auroral field lines: Preliminary results from the Viking satellite, Ann. Geophys., 6, 143–152, 1988.

    Google Scholar 

  29. Lundin, R. and B. Hultqvist, Ionospheric plasma escape by high-amplitude electric fields: Magnetic moment “pumping”, J. Geophys. Res., 94, 6665–6680, 1989.

    Article  Google Scholar 

  30. Lundin, R. and L. Eliasson, Auroral energization processes, Ann. Geophys., 9, 202–223, 1991.

    Google Scholar 

  31. Lundin, R., G. Gustafsson, A. I. Eriksson, and G. Marklund, On the importance of high-latitude low-frequency electric fluctuations for the escape of ionospheric ions, J. Geophys. Res., 95, 5905–5919, 1990.

    Article  Google Scholar 

  32. Miller, M. A., Motion of charged particles in the high-frequency electromagnetic fields, Radiophysics, 1, No. 3, 110–123, 1958 (in Russian).

    Google Scholar 

  33. Mursula, K., L. G. Blomberg, P.-A. Lindqvist, G. T. Marklund, T. Bräysy, R. Rasinkangas, and P. Tanskanen, Dispersive Pc 1 bursts observed by Freja, Geophys. Res. Letters, 21, 1851–1854, 1994.

    Article  Google Scholar 

  34. Northrop, T. G., The Adiabatic Motion of Charged Particles, 109 pp., Wiley-Interscience, New York, 1963.

    Google Scholar 

  35. Perraut, S., R. Gendrin, A. Roux, and C. de Villedary, Ion cyclotron waves: direct comparison between ground-based measurements and observations in the source region, J. Geophys. Res., 89, 195–202, 1984.

    Article  Google Scholar 

  36. Pitayevsky, L. P., Electric forces in a transparent dispersive medium, JETP, 39, No. 5 (11), 1450–1458, 1960 (in Russian).

    Google Scholar 

  37. Singh, N., Ponderomotive versus mirror force in creation of the filamentary cavities in auroral plasma, Geophys. Res. Lett., 21, 257–260, 1994.

    Article  Google Scholar 

  38. Washimi, H. and V. I. Karpman, On the ponderomotive force of a high frequency electromagnetic field in a dispersive medium, JETP, 71, 1010–1016, 1976 (in Russian).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Guglielmi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guglielmi, A., Hayashi, K., Lundin, R. et al. Ponderomotive impacts of ion cyclotron waves on the ions in the equatorial zone of the magnetosphere. Earth Planet Sp 51, 1297–1308 (1999). https://doi.org/10.1186/BF03351603

Download citation

Keywords

  • Plasma Density
  • Ponderomotive Force
  • Magnetic Equator
  • Equatorial Zone
  • Demarcation Line