Skip to main content

Constraints on HIMU and EM by Sr and Nd isotopes re-examined

Abstract

Sr and Nd isotopes together with trace elements for ocean island basalts in the Polynesian region have been analyzed in order to investigate the origin of the HIMU and EM sources. Both whole rocks and cpx phenocrysts were analyzed for isotopic composition. Cpx samples from HIMU islands show quite uniform 87Sr/86Sr ratios (~0.70274), while leached and unleached whole rock samples show variable and higher 87Sr/86Sr than those of cpx samples. These results suggest that even leached whole rock samples have been affected by secondary contaminations of sea water. On the other hand, cpx preserves a pristine isotopic signature with minimal secondary effects.

Using only the cpx analyses, HIMU form a vertical linear trend in the Sr-Nd isotope diagram with small variation in εNd (+3.3~+5.5) and constant 87Sr/86Sr. This trend is explained by a mixing of the HIMU end-member and the MORB source. Since εNd of the HIMU end-member is constrained to be less than +3.3, the HIMU source should include former sediment added to oceanic crust. To explain the vertical nature of the mixing trend, the HIMU end-member should have similar Rb/Sr to the MORB source, or much lower Sr/Nd ratio than the MORB source, which favors a mixing model between extensively dehydrated oceanic crust and sediment as the HIMU source. The correlation between εNd and trace element ratios such as Pb/Ta also supports the model.

References

  1. Allègre, C. J., O. Brévart, B. Dupré, and J. F. Minster, Isotopic and chemical effects produced in a continuously differentiating convecting earth mantle, Philos. Trans. R. Soc. Lond., A297, 447–477, 1980.

    Article  Google Scholar 

  2. Barsczus, H. G., G. Guille, R. Maury, C. Chauvel, and H. Guillou, Two magmatic sources at Rurutu Island (Austral Islands, French Polynesia) and the Austral “Hotline”, EOS, 75, 323, 1994.

    Google Scholar 

  3. Ben Othman, D., W. M. White, and J. Patchett, The geochemistry of marine sediments, island arc magma genesis, and crust-mantle recycling, Earth Planet. Sci. Lett., 94, 1–21, 1989.

    Article  Google Scholar 

  4. Chauvel, C., A. W. Hofmann, and P. Vidal, HIMU-EM: The French Polynesian connection, Earth Planet. Sci. Lett., 110, 99–119, 1992.

    Article  Google Scholar 

  5. Chauvel, C., S. L. Goldstein, and A. H. Hofmann, Hydration and dehydration of oceanic crust controls Pb evolution in the mantle, Chem. Geol., 126, 65–75, 1995.

    Article  Google Scholar 

  6. Chauvel, C., W. McDonough, G. Guille, R. Maury, and R. Duncan, Contrasting old and young volcanism in Rurutu Island, Austral chain, Chem. Geol., 139, 125–143, 1997.

    Article  Google Scholar 

  7. Dostal, J., C. Dupuy, and P. Dudoignon, Distribution of boron, lithium and beryllium in oceanic island basalts from French Polynesia: implications for the B/Be and Li/Be ratios as tracers of subducted components, Mineral. Magazine, 60, 563–580, 1996.

    Article  Google Scholar 

  8. Duncan, R. A. and I. McDougall, Linear volcanism in French Polynesia, J. Volcanol. Geotherm. Res., 1, 197–227, 1976.

    Article  Google Scholar 

  9. Dziewonski, A. M., Mapping the lower mantle: Determination of lateral heterogeneity in P velocity up to degree and order 6, J. Geophys. Res., 89, 5929–5952, 1984.

    Article  Google Scholar 

  10. Eiler, J. M., K. A. Farley, J. W. Valley, E. Hauri, H. Craig, S. R. Hart, and E. M. Stolper, Oxygen isotope variations in ocean island basalt phenocrysts, Geochim. Cosmochim. Acta, 61, 2281–2293, 1997.

    Article  Google Scholar 

  11. Fukao, Y., Seismic tomogram of the Earth’s mantle: geodynamic implications, Nature, 258, 625–630, 1992.

    Google Scholar 

  12. Graham, D. W., S. E. Humphris, W. J. Jenkins, and M. D. Kurz, Helium isotope geochemistry of some volcanic rocks from Saint Helena, Earth Planet. Sci. Lett., 110, 121–131, 1992.

    Article  Google Scholar 

  13. Green, T. H., Experimental studies of trace-element partitioning applicable to igneous petrogenesis—Sedona 16 years later, Chem. Geol., 117, 1–36, 1994.

    Article  Google Scholar 

  14. Green, T. H. and N. J. Pearson, Rare earth element partitioning between clinopyroxene and silicate liquid at moderate to high pressure, Contrib. Mineral. Petrol., 91, 24–36, 1985.

    Article  Google Scholar 

  15. Halliday, A. N., D.-C. Lee, S. Tommasini, G. R. Davies, C. R. Paslick, J. G. Fitton, and D. E. James, Incompatible trace elements in OIB and MORB and source enrichment in the sub-oceanic mantle, Earth Planet. Sci. Lett., 133, 379–395, 1995.

    Article  Google Scholar 

  16. Hanyu, T. and I. Kaneoka, The uniform and low 3He/4He ratios of HIMU basalts as evidence for their origin as recycled materials, Nature, 390, 273–276, 1997.

    Article  Google Scholar 

  17. Hanyu, T., I. Kaneoka, and K. Nagao, Noble gas study of HIMU and EM ocean island basalts in the Polynesian region, Geochim. Cosmochim. Acta, 63, 1181–1201, 1999.

    Article  Google Scholar 

  18. Hauri, E. H. and S. R. Hart, Re-Os isotope systematics of HIMU and EMII oceanic island basalts from the south Pacific Ocean, Earth Planet. Sci. Lett., 114, 353–371, 1993.

    Article  Google Scholar 

  19. Hémond, C., C. W. Devey, and C. Chauvel, Source compositions and melting processes in the Society and Austral plumes (South Pacific Ocean): Element and isotope (Sr, Nd, Pb, Th) geochemistry, Chem. Geol., 115, 7–45, 1994.

    Article  Google Scholar 

  20. Hofmann, A. W., Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust, Earth Planet. Sci. Lett., 90, 297–314, 1988.

    Article  Google Scholar 

  21. Hofmann, A. W., Mantle geochemistry: the message from oceanic volcanism, Nature, 385, 219–229, 1997.

    Article  Google Scholar 

  22. Hofmann, A. W. and W. M. White, Mantle plumes from ancient oceanic crust, Earth Planet. Sci. Lett., 57, 421–436, 1982.

    Article  Google Scholar 

  23. Keppler, H., Constraints from partitioning experiments on the composition of subduction-zone fluids, Nature, 380, 237–240, 1996.

    Article  Google Scholar 

  24. Kogiso, T., Y. Tatsumi, G. Shimoda, and H. G. Barsczus, High μ (HIMU) ocean basalts in southern Polynesia: New evidence for whole mantle scale recycling of subducted oceanic crust, J. Geophys. Res., 102, 8085–8103, 1997.

    Article  Google Scholar 

  25. Makishima, A. and E. Nakamura, Suppression of matrix effects in ICP-MS by high power operation of ICP: Application to precise determination of Rb, Sr, Y, Cs, Ba, REE, Pb, Th and U at ng g−1 levels in milligram silicate samples, Geostand. News Lett., 21, 307–319, 1997.

    Article  Google Scholar 

  26. Makishima, A., E. Nakamura, and T. Nakano, Determination of zirconium, niobium, hafnium and tantalum at ng g−1 levels in geological materials by direct nebulization of back-extracted sample HF solutions into FI-ICPMS, Geostands Newslett., 23, 7–20, 1999.

    Article  Google Scholar 

  27. McDonough, W. F. and C. Chauvel, Sample contamination explains the Pb isotopic composition of some Rurutu island and Sasha seamount basalts, Earth Planet. Sci. Lett., 105, 397–404, 1991.

    Article  Google Scholar 

  28. McDonough, W. F. and S.-S. Sun, The composition of the Earth, Chem. Geol., 120, 223–253, 1995.

    Article  Google Scholar 

  29. McKenzie, D. and R. K. O’Nions, Mantle reservoirs and ocean island basalts, Nature, 301, 229–231, 1983.

    Article  Google Scholar 

  30. McKenzie, D. and R. K. O’Nions, Partial melt distributions from inversion of rare earth element concentrations, J. Petrol., 32, 1021–1091, 1991.

    Article  Google Scholar 

  31. McNutt, M. K. and A. V. Judge, The superswell and mantle dynamics beneath the South Pacific, Science, 248, 969–975, 1990.

    Article  Google Scholar 

  32. McNutt, M. K., D. W. Caress, J. Reynolds, K. A. Jordahl, and R. A. Duncan, Failure of plume theory to explain midplate volcanism in the southern Austral islands, Nature, 389, 479–482, 1997.

    Article  Google Scholar 

  33. Michard, A., F. Albarède, G. Michard, J. F. Minster, and J. L. Charlou, Rare-earth elements and uranium in high-temperature solutions from East Pacific Rise hydrothermal vent field (13°N), Nature, 303, 795–797, 1983.

    Article  Google Scholar 

  34. Nakamura, Y. and M. Tatsumoto, Pb, Nd, and Sr isotopic evidence for a multicomponent source for rocks of Cook-Austral Islands and heterogeneities of mantle plumes, Geochim. Cosmochim. Acta, 52, 2909–2924, 1988.

    Article  Google Scholar 

  35. Palacz, Z. A. and D. Saunders, Coupled trace element and isotope enrichment in the Cook-Austral-Samoa islands, southwest Pacific, Earth Planet. Sci. Lett., 79, 270–280, 1986.

    Article  Google Scholar 

  36. Reisberg, L., A. Zindler, F. Marcantonio, W. White, D. Wyman, and B. Weaver, Os isotope systematics in ocean island basalts, Earth Planet. Sci. Lett., 120, 149–167, 1993.

  37. Roy-Barman, M. and C. J. Allègre, 187Os/186Os in oceanic island basalts: tracing oceanic crust recycling in the mantle, Earth Planet. Sci. Lett., 129, 145–161, 1995.

    Article  Google Scholar 

  38. Saal, A. E., S. R. Hart, N. Shimizu, E. H. Hauri, and G. D. Layne, Pb isotopic variability in melt inclusions from oceanic island basalts, Polynesia, Science, 282, 1481–1484, 1998.

    Article  Google Scholar 

  39. Shibata, T. and E. Nakamura, Across-arc variations of isotope and trace element compositions from Quaternary basaltic volcanic rocks in northeastern Japan: Implications for interaction between subducted oceanic slab and mantle wedge, J. Geophys. Res., 102, 8051–8064, 1997.

    Article  Google Scholar 

  40. Sun, S.-S. and W. F. McDonough, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, in Magmatism in the Ocean Basins, edited by A. D. Saunders, M. J. Norry, pp. 313–345, Geol. Soc. Spec. Pub. No. 42, 1989.

  41. Sylvester, P. J., I. H. Campbell, and D. A. Bowyer, Niobium/uranium evidence for early formation of the continental crust, Science, 275, 521–523, 1997.

    Article  Google Scholar 

  42. Turner, D. L. and R. D. Jarrard, K-Ar dating of the Cook-Austral island chain: a test of the hot-spot hypothesis, J. Volcanol. Geotherm. Res., 12, 187–220, 1982.

    Article  Google Scholar 

  43. Vidal, P. and L. Dosso, Core formation: Catastrophic or continuous? Sr and Pb isotope constraints, Geophys. Res. Lett., 5, 169–172, 1978.

    Article  Google Scholar 

  44. Vidal, P., C. Chauvel, and R. Brousse, Large mantle heterogeneity beneath French Polynesia, Nature, 307, 536–538, 1984.

    Article  Google Scholar 

  45. Vollmer, R., Earth degassing, mantle metasomatism, and isotopic evolution of the mantle, Geology, 11, 452–454, 1983.

    Article  Google Scholar 

  46. Weaver, B. L., The origin of ocean island basalt end-member compositions: trace element and isotopic constraints, Earth Planet. Sci. Lett., 104, 381–397, 1991.

    Article  Google Scholar 

  47. Woodhead, J. D., Extreme HIMU in an oceanic setting: the geochemistry of Mangaia Island (Polynesia), and temporal evolution of the Cook-Austral hotspot, J. Volcanol. Geotherm. Res., 72, 1–19, 1996.

    Article  Google Scholar 

  48. Yoshikawa, M. and E. Nakamura, Precise isotope determination of trace amounts of Sr in magnesium-rich samples, J. Min. Petr. Econ. Geol., 88, 548–561, 1993.

    Article  Google Scholar 

  49. Zindler, A. and S. Hart, Chemical geodynamics, Ann. Rev. Earth Planet. Sci., 14, 493–571, 1986.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Takeshi Hanyu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hanyu, T., Nakamura, E. Constraints on HIMU and EM by Sr and Nd isotopes re-examined. Earth Planet Sp 52, 61–70 (2000). https://doi.org/10.1186/BF03351614

Download citation

Keywords

  • Earth Planet
  • Rock Sample
  • Oceanic Crust
  • 86Sr
  • Mantle Plume