Skip to main content

Long term variability in solar wind velocity and IMF intensity and the relationship between solar wind parameters & geomagnetic activity

Abstract

A study is carried out on the mean monthly values of in situ observations of solar wind velocity (V) and the intensity of interplanetary magnetic field, B to elucidate their long term variations using the technique of singular spectrum analysis. It is shown that B exhibits a clear solar cycle signal with progressively deepening minimum and a well-defined longer period variation but V is marked by a ~9-yr cycle. Time variations in the amplitude of 16-month periodicity, observed sporadically in the velocity earlier by others are clearly brought out, as also the characteristic amplitude changes in a 42-month signal in velocity. It appears that time intervals which show certain significant fluctuations in B are marked by the absence of similar signal in V.

aa index is next used as a proxy for solar wind velocity, after establishing a good correlation between Ap and observed V so that we could examine the evolution of different periodicities over 14 solar cycles. A significant trend with least value in 1900 and a near-linear rise up to 1960 is shown to be the main feature of the velocity change. The solar cycle component in V lags the solar activity peak by ~22 months. Streams emanating from coronal holes in the declining phase seem to be the most dominant contributor to the 11-year variation in velocity. The anomalous pattern of changes in V observed in cycle 20 is not present in any of the other 13 cycles.

Statistical relationships between V, B and plasma density (N) with Ap are studied and it is shown that over three solar cycles (20, 21 and 22) the patterns are almost the same with a slight change observed in cycle 21. IMF B and Ap are linearly related over a wide range of Ap values from close to 0 up to about 60, whereas density/Ap relation appears insignificant. In case of V, an initial rapid rise in V causes moderate changes in Ap but for velocity in excess of 700 km/sec, the enhancement in geomagnetic activity is more rapid. From the statistical relation of several other solar wind/IMF parameters, their variability and combinations with Ap, one sees linear relation for solar wind electric field, n/s component of IMF and variability in the components of B. An estimate is made of the base level of the magnetosphere, corresponding to quiet levels of geomagnetic activity.

References

  • Bieber, J. W., J. Chen, W. H. Mathaeus, C. W. Smith, and M. A. Pomerantz, Long term variations of interplanetary magnetic field spectra with implications for cosmic ray modulation, J. Geophys. Res., 98, 3585–3603, 1993.

    Article  Google Scholar 

  • Bolton, S. J., One year variations in the near earth solar wind, Geophys. Res. Lett., 17, 37–40, 1990.

    Article  Google Scholar 

  • Bruno, R., U. Villante, and A. Stecca, Selected solar wind parameters at 1 AU through two solar activity cycles, Ann. Geophys., 12, 105–112, 1994.

    Article  Google Scholar 

  • Cliver, E. W., V. Boriakoff, and K. H. Bounar, The 22-year cycle of geomagnetic and solar wind activity, J. Geophys. Res., 101, 27094–27109, 1996.

    Google Scholar 

  • Crooker, N. U. and K. I. Gringauz, On the low correlation between long-term averages of solar wind speed and geomagnetic activity after 1976, J. Geophys. Res., 98, 59–62, 1993.

    Article  Google Scholar 

  • Crooker, N. U., J. Feynman, and J. T. Gosling, On the high correlation between long-term averages of solar wind velocity and geomagnetic activity, J. Geophys. Res., 82, 1933–1937, 1977.

    Article  Google Scholar 

  • Dettinger, M. D., M. Ghil, C. M. Strong, W. Weibel, and P. Yiou, Software expedites singular spectrum analysis of noisy time series, EOS Trans. AGU, 76(2), 12, 14, 21, 1995.

    Google Scholar 

  • Feldman, W. C., J. R. Asbridge, and S. J. Bame, Long term variations of selected solar wind properties, IMP 6, 7 and 8 results, J. Geophys. Res., 83, 2177–2189, 1978.

    Article  Google Scholar 

  • Feynman, J., Geomagnetic and solar wind cycles 1900–1975, J. Geophys. Res., 87, 6133–6162, 1982.

    Google Scholar 

  • Feynman, J., Solar cycle and long term changes in the solar wind speed, Rev. Geophys. Space Phys., 21, 338–348, 1983.

    Article  Google Scholar 

  • Feynman, J. and N. U. Crooker, The solar wind at the turn of the century, Nature, 275, 626–627, 1978.

    Article  Google Scholar 

  • Gazis, P. R., Long term enhancements in the solar wind speed, J. Geophys. Res., 101, 415–424, 1996.

    Article  Google Scholar 

  • Gazis, P. R., J. D. Richardson, and K. I. Paularena, Long term periodicity in solar wind velocity during the last three solar cycles, Geophys. Res. Lett., 22, 1165–1168, 1995.

    Article  Google Scholar 

  • Gonzalez, A. L. C. and W. D. Gonzalez, Periodicities in the interplanetary magnetic field polarity, J. Geophys. Res., 92, 4357–4375, 1987.

    Article  Google Scholar 

  • Gosling, J. T., R. T. Hansen, and S. J. Bame, Solar wind speed distributions: 1962–1970, J. Geophys. Res., 76, 1811–1815, 1971.

    Article  Google Scholar 

  • Gosling, J. T., J. R. Asbridge, and W. C. Feldman, Solar wind speed variations: 1962–1974, J. Geophys. Res., 81, 5061–5070, 1976.

    Article  Google Scholar 

  • Gosling, J. T, J. R. Asbridge, and S. J. Bame, An unusual aspect of solar wind speed variation during solar cycle 20, J. Geophys. Res., 82, 3311–3314, 1977.

    Article  Google Scholar 

  • Gussenhoven, M. S., Low altitude convection, precipitation and current patterns in the baseline magnetosphere, Rev. Geophys. Space Phys., 26, 792–808, 1988.

    Article  Google Scholar 

  • Kerns, K. J. and M. S. Gussenhoven, Solar wind conditions for a quiet magnetosphere, J. Geophys. Res., 95, 20869–20875, 1990.

    Google Scholar 

  • King, J. H., Solar cycle variations in IMF intensity, J. Geophys. Res., 84, 5938–5949, 1979.

    Article  Google Scholar 

  • King, J. H., Long-term solar wind variations and associated data sources, J. Geomag. Geoelectr, 43 Suppl., 865–880, 1991.

    Article  Google Scholar 

  • Maer, K. and A. J. Dessler, Comments on the paper by Conway W. Snyder et al., J. Geophys. Res., 69, 2846, 1964.

    Article  Google Scholar 

  • Maezawa, K., Dependence of geomagnetic activity on solar wind parameters, a statistical approach, Solar Terr. Environ. Res. Japan, 2, 103–121, 1978.

    Google Scholar 

  • Mayaud, P. N., Derivation, Meaning and use of geomagnetic indices, 154 pp., Geophys. Monograph 22, AGU, Washington D.C., 1980.

    Book  Google Scholar 

  • Murayama, T. and K. Hakamada, Effect of solar wind on the development of magnetospheric substorms, Planet. Space Sci., 23, 75–91, 1975.

    Article  Google Scholar 

  • Nevanlinna, H. and K. Kataja, Na extension of geomagnetic activity index aa for two solar cycles (1844–1867), Geophys. Res. Lett., 20, 2703–2706, 1993.

    Article  Google Scholar 

  • Paularena, K. I., A. Szabo, and J. D. Richardson, Coincident 1.3-year in the ap geomagnetic index and the solar wind, Geophys. Res. Lett., 22, 3001–3004, 1995.

    Article  Google Scholar 

  • Penland, C., M. Ghil, and K. M. Weickmann, Adaptive filtering and maximum entropy spectra with applications to changes in atmospheric angular momentum, J. Geophys. Res., 96, 22659–22671, 1991.

    Article  Google Scholar 

  • Rangarajan, G. K., Sunspot variability and an attempt to predict cycle 23 by adaptive filtering, Earth Planets Space, 50, 91–100, 1998.

    Article  Google Scholar 

  • Rangarajan, G. K. and T. Araki, Mutiple time scales in the fluctuations of equatorial Dst index through singular spectrum analysis, J. Geomag. Geoelectr., 49, 3–20, 1997.

    Article  Google Scholar 

  • Rangarajan, G. K. and T. Iyemori, Time variations of geomagnetic activity indices Kp and Ap: an update, Ann. Geophys., 15, 1271–1290, 1997.

    Article  Google Scholar 

  • Richardson, J. D., K. I. Paularena, J. W. Belcher, and A. J. Lazarus, Solar wind oscillations with a 1.3-year period, Geophys. Res. Lett., 21, 1559–1560, 1994.

    Article  Google Scholar 

  • Rickett, B. J. and W. A. Coles, Evolution of the solar wind structure over a solar cycle—interplanetary scintillation velocity measurements compared with coronal observations, J. Geophys. Res., 96, 1717–1736, 1991.

    Article  Google Scholar 

  • Russell, C. T. and R. M. McPherron, Semiannual variation in geomagnetic activity, J. Geophys. Res., 78, 92–108, 1973.

    Article  Google Scholar 

  • Silverman, S. M., Magnetic activity at and preceding solar minimum for the past 500 years, J. Geophys. Res., 91, 10157–10161, 1986.

    Article  Google Scholar 

  • Silverman, S. M. and R. Shapiro, Power spectral analysis of auroral occurrence frequency, J. Geophys. Res., 88, 6310–6316, 1983.

    Article  Google Scholar 

  • Slavin, J. A., G. Jungman, and E. J. Smith, The interplanetary magnetic field observations during solar cycle 21: ISEE 3/ICE observations, Geophys. Res. Lett., 13, 513–516, 1986.

    Article  Google Scholar 

  • Smart, D. F., H. B. Garrett, and M. A. Shea, The prediction of AE, ap and Dst at time lags between 0 and 30 hours, in Solar Terrestrial Prediction Proceedings vol. 2, edited by R. F. Donnelly, 733 pp., NOAA, Washington D.C., 1979.

    Google Scholar 

  • Snyder, C. W., M. Neugebaur, and U. R. Rao, The solar wind velocity and its correlation with cosmic ray variation and with solar and geomagnetic activity, J. Geophys. Res., 68, 6361–6370, 1963.

    Article  Google Scholar 

  • Sontakke, K. G., N. K. Thakur, and G. K. Rangarajan, Geomagnetic calm intervals and anomalous solar cycle 20, Proc. Indian Acad. Sci. (Earth Planet. Sci.), 91, 235–239, 1982.

    Google Scholar 

  • Svalgaard, L., Geomagnetic activity: Dependence on solar wind parameters, in Coronal Holes and High Speed Solar Wind Streams, edited by J. B. Zirker, pp. 371–441, 1977.

  • Vautard, R., P. Yiou, and M. Ghil, Singular spectrum analysis: a toolkit for short noisy chaotic signal, Physica, D58, 95–126, 1992.

    Google Scholar 

  • Wang, Y. N. and N. R. Sheeley, Jr., The solar origin of long-term variation of the interplanetary magnetic field strength, J. Geophys. Res., 93, 11227–11236, 1988.

    Article  Google Scholar 

  • Wang, Y.-M. and N. R. Sheeley, Jr., Solar wind speed and coronal flux tube expansion, Ap. J., 355, 726–732, 1990.

    Article  Google Scholar 

  • Webb, D. F. and R. A. Howard, The solar cycle variation of coronal mass ejections and the solar wind mass flux, J. Geophys. Res., 99, 4201–4220, 1994.

    Article  Google Scholar 

  • Zeiger, B., Long term variations inpulsation activity and their relationship to solar wind velocity, geomagnetic activity and F2 region electron density, J. Geophys. Res., 96, 21115–21123, 1991.

    Article  Google Scholar 

  • Zeiger, B. and K. Mursula, Annual variation in the near earth solar wind speed: Evidence for persistent north-south asymmetry related to solar magnetic polarity, Geophys. Res. Lett., 25, 841–844, 1998.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. K. Rangarajan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rangarajan, G.K., Barreto, L.M. Long term variability in solar wind velocity and IMF intensity and the relationship between solar wind parameters & geomagnetic activity. Earth Planet Sp 52, 121–132 (2000). https://doi.org/10.1186/BF03351620

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03351620

Keywords

  • Solar Wind
  • Solar Cycle
  • Coronal Hole
  • Geomagnetic Activity
  • Solar Minimum