Skip to main content

Stabilization of Venus’ climate by a chemical-albedo feedback

Abstract

It has been suggested that the atmospheric concentration of SO2 observed on Venus coincides with the equilibrium concentration over pyrite-magnetite assemblage (pyrite-magnetite buffer). If the atmospheric SO2 abundance is controlled by the chemical reaction at the planetary surface, we expect coupling between the atmospheric SO2 abundance and the surface temperature. Here, we propose that the pyrite-magnetite buffer combined with cloud albedo feedback controls the surface temperature on Venus. We show that this mechanism keeps the surface temperature in a rather narrow range around the presently observed value against large variations of solar luminosity and total atmospheric mass.

References

  1. Bertaux, J.-L., T. Widemann, A. Hauchecorne, V. I. Moroz, and A. P. Ekonomov, VEGA 1 and VEGA 2 entry probes: An investigation of local UV absorption (220–400 nm) in the atmosphere of Venus (SO2, aerosols, cloud structure), J. Geophys. Res., 101, 12709–12745, 1996.

    Article  Google Scholar 

  2. Bézard, B., C. de Bergh, B. Fegley, J.-P. Maillard, D. Crisp, T. Owen, J. B. Pollack, and D. Grinspoon, The Abundance of Sulfur Dioxide Below the Clouds of Venus, Geophys. Res. Lett., 20, 1587–1590, 1993.

    Article  Google Scholar 

  3. Bohren, C. R. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, John Wiley & Sons, New York, 1983.

    Google Scholar 

  4. Bullock, M. A. and D. H. Grinspoon, The stability of climate on Venus, J. Geophys. Res., 101, 7521–7529, 1996.

    Article  Google Scholar 

  5. Bullock, M. A. and D. H. Grinspoon, Geological forcing of surface temperatures on Venus, Lunar Planet. Sci., 29, 1542, 1998.

    Google Scholar 

  6. Chase, M. W., Jr., C. A. Davies, J. R. Downey, Jr., D. J. Frurip, R. A. McDonald, and A. N. Syverud, JANAF Thermochemical Tables, Am. Chem. Soc. and Am. Inst. of Physics, 1985.

  7. DeBergh, C., B. Bézard, T. Owen, D. Crisp, J.-P. Maillard, and B. L. Lutz, Deutrium on Venus: Observations from Earth, Science, 251, 547–549, 1991.

    Article  Google Scholar 

  8. Donahue, T. M. and R. R. Hodges, Jr., Venus methane and water, Geophys. Res. Lett., 20, 591–594, 1993.

    Article  Google Scholar 

  9. Donahue, T. M., D. H. Grinspoon, R. E. Hartle, and R. R. Hodges, Jr., Ion/neutral escape of hydrogen and deuterium: Evolution of water, in Venus II, edited by S. W. Bougher, D. M. Hunten, and R. J. Phillips, pp. 385–414, Univ. Arizona Press, Tucson, AZ, 1997.

    Google Scholar 

  10. Eberstein, I. J., B. N. Khare, and J. B. Pollack, Infrared Transmission Properties of CO, HCl, and SO2 and Their Significance for the Greenhouse Effect on Venus, Icarus, 11, 159–170, 1969.

    Article  Google Scholar 

  11. Fegley, B., Jr. and R. G. Prinn, Estimation of the rate of volcanism on Venus from reaction rate measurements, Nature, 337, 55–58, 1989.

    Article  Google Scholar 

  12. Fegley, B., Jr., and A. H. Treiman, Chemistry of Atmosphere-Surface Interactions on Venus and Mars, in Venus and Mars: Atmospheres, Ionospheres, and Solar Wind Interactions, edited by J. G. Luhmann, M. Tatrallyay, and R. O. Pepin, pp. 7–71, American Geophysical Union, Washington D.C., 1992.

    Google Scholar 

  13. Fegley, B., Jr., K. Lodders, A. H. Treiman, and G. Klingelhöfer, The rate of pyrite decomposition on the surface of Venus, Icarus, 115, 159–180, 1995.

    Article  Google Scholar 

  14. Ford, P. G. and G. H. Pettengill, Venus: Global surface radio emissivity, Science, 220, 1379–1381, 1983.

    Article  Google Scholar 

  15. Gilliland, R. L., Solar Evolution, Global and Planet. Change, 1, 35–55, 1989.

    Article  Google Scholar 

  16. Hashimoto, G. L. and Y. Abe, Albedo on Venus: I Cloud Model, Proc. 29th ISAS Lunar Planet. Symp., 87–90, 1996a.

  17. Hashimoto, G. L. and Y. Abe, Albedo on Venus: I Cloud Model and Present State, Bull. Am. Astron. Soc., 28, 1117, 1996b.

    Google Scholar 

  18. Hashimoto, G. L., Y Abe, and S. Sasaki, CO2 amount on Venus constrained by a criterion of topographic-greenhouse instability, Geophys. Res. Lett., 24, 289–292, 1997.

    Article  Google Scholar 

  19. Klose, K. B., J. A. Wood, and A. Hashimoto, Mineral Equilibria and the High Radar Reflectivity of Venus Mountaintops, J. Geophys. Res., 97, 16353–16369, 1992.

    Article  Google Scholar 

  20. Masursky, H., E. Eliason, P. G. Ford, G. E. McGill, G. H. Pettengill, G. G. Schaber, and G. Schubert, Pioneer Venus Radar Results: Geology from Images and Altimetry, J. Geophys. Res., 85, 8232–8260, 1980.

    Article  Google Scholar 

  21. Nakajima, S., Y.-Y. Hayashi, and Y. Abe, A Study on the “Runaway Greenhouse Effect” with a One-Dimensional Radiative-Convective Equilibrium Model, J. Atmos. Sci., 23, 2256–2266, 1992.

    Article  Google Scholar 

  22. Palmer, K. F. and D. Williams, Optical constants of sulfuric acid; Application to the clouds of Venus?, Appl. Opt., 14, 208–219, 1975.

    Article  Google Scholar 

  23. Pettengill, G. H., P. G. Ford, and S. Nozette, Venus: Global surface radar reflectivity, Science, 217, 640–642, 1982.

    Article  Google Scholar 

  24. Pettengill, G. H., P. G. Ford, and B. D. Chapman, Venus: Surface Electromagnetic Properties, J. Geophys. Res., 93, 14881–14892, 1988.

    Article  Google Scholar 

  25. Pettengill, G. H., P. G. Ford, and R. A. Simpson, Electrical properties of the Venus surface from bistatic radar observations, Science, 272, 1628–1631, 1996.

    Article  Google Scholar 

  26. Pollack, J. B., O.B. Toon, and R. Boese, Greenhouse Models of Venus’ High Surface Temperature, as Constrained by Pioneer Venus Measurements, J. Geophys. Res., 85, 8223–8231, 1980.

    Article  Google Scholar 

  27. Pollack, J. B., J. B. Dalton, D. Grinspoon, R. B. Wattson, R. Freedman, D. Crisp, D. A. Allen, B. Bezard, C. DeBergh, L.P. Giver, Q. Ma, and R. Tipping, Near-Infrared Light from Venus’ Nightside: A Spectroscopic Analysis, Icarus, 103, 1–42, 1993.

    Article  Google Scholar 

  28. Robie, R. A., B. S. Hemingway, and J. R. Fisher, Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (105 Pascals) Pressures and at Higher Temperatures, U. S. Geol. Surv. Bull. No. 1452, 1979.

  29. Ronov, A. B. and A. A. Yaroshevskiy, Chemical Structure of the Earth’s Crust, Geochem. Intl., 13, 1041–1066, 1967.

    Google Scholar 

  30. Suleiman, S. H., M. A. Kolodner, and P. G. Steffes, Laboratory measurement of the temperature dependence of gaseous sulfur dioxide (SO2) microwave absorption with application to the Venus atmosphere, J. Geophys. Res., 101, 4623–4635, 1996.

    Article  Google Scholar 

  31. Yung, Y. L. and W. B. DeMore, Photochemistry of the stratosphere of Venus: Implications for atmospheric evolution, Icarus, 51, 119–247, 1982.

    Article  Google Scholar 

  32. Zolotov, M. Y., Pyrite stability on the surface of Venus, Lunar Planet. Sci., 22, 1569–1570, 1991.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. L. Hashimoto.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hashimoto, G.L., Abe, Y. Stabilization of Venus’ climate by a chemical-albedo feedback. Earth Planet Sp 52, 197–202 (2000). https://doi.org/10.1186/BF03351628

Download citation

Keywords

  • Pyrite
  • Greenhouse Effect
  • Cloud Droplet
  • Cloud Model
  • Lunar Planet