Skip to main content

Advertisement

Stabilization of Venus’ climate by a chemical-albedo feedback

Article metrics

  • 249 Accesses

  • 11 Citations

Abstract

It has been suggested that the atmospheric concentration of SO2 observed on Venus coincides with the equilibrium concentration over pyrite-magnetite assemblage (pyrite-magnetite buffer). If the atmospheric SO2 abundance is controlled by the chemical reaction at the planetary surface, we expect coupling between the atmospheric SO2 abundance and the surface temperature. Here, we propose that the pyrite-magnetite buffer combined with cloud albedo feedback controls the surface temperature on Venus. We show that this mechanism keeps the surface temperature in a rather narrow range around the presently observed value against large variations of solar luminosity and total atmospheric mass.

References

  1. Bertaux, J.-L., T. Widemann, A. Hauchecorne, V. I. Moroz, and A. P. Ekonomov, VEGA 1 and VEGA 2 entry probes: An investigation of local UV absorption (220–400 nm) in the atmosphere of Venus (SO2, aerosols, cloud structure), J. Geophys. Res., 101, 12709–12745, 1996.

  2. Bézard, B., C. de Bergh, B. Fegley, J.-P. Maillard, D. Crisp, T. Owen, J. B. Pollack, and D. Grinspoon, The Abundance of Sulfur Dioxide Below the Clouds of Venus, Geophys. Res. Lett., 20, 1587–1590, 1993.

  3. Bohren, C. R. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, John Wiley & Sons, New York, 1983.

  4. Bullock, M. A. and D. H. Grinspoon, The stability of climate on Venus, J. Geophys. Res., 101, 7521–7529, 1996.

  5. Bullock, M. A. and D. H. Grinspoon, Geological forcing of surface temperatures on Venus, Lunar Planet. Sci., 29, 1542, 1998.

  6. Chase, M. W., Jr., C. A. Davies, J. R. Downey, Jr., D. J. Frurip, R. A. McDonald, and A. N. Syverud, JANAF Thermochemical Tables, Am. Chem. Soc. and Am. Inst. of Physics, 1985.

  7. DeBergh, C., B. Bézard, T. Owen, D. Crisp, J.-P. Maillard, and B. L. Lutz, Deutrium on Venus: Observations from Earth, Science, 251, 547–549, 1991.

  8. Donahue, T. M. and R. R. Hodges, Jr., Venus methane and water, Geophys. Res. Lett., 20, 591–594, 1993.

  9. Donahue, T. M., D. H. Grinspoon, R. E. Hartle, and R. R. Hodges, Jr., Ion/neutral escape of hydrogen and deuterium: Evolution of water, in Venus II, edited by S. W. Bougher, D. M. Hunten, and R. J. Phillips, pp. 385–414, Univ. Arizona Press, Tucson, AZ, 1997.

  10. Eberstein, I. J., B. N. Khare, and J. B. Pollack, Infrared Transmission Properties of CO, HCl, and SO2 and Their Significance for the Greenhouse Effect on Venus, Icarus, 11, 159–170, 1969.

  11. Fegley, B., Jr. and R. G. Prinn, Estimation of the rate of volcanism on Venus from reaction rate measurements, Nature, 337, 55–58, 1989.

  12. Fegley, B., Jr., and A. H. Treiman, Chemistry of Atmosphere-Surface Interactions on Venus and Mars, in Venus and Mars: Atmospheres, Ionospheres, and Solar Wind Interactions, edited by J. G. Luhmann, M. Tatrallyay, and R. O. Pepin, pp. 7–71, American Geophysical Union, Washington D.C., 1992.

  13. Fegley, B., Jr., K. Lodders, A. H. Treiman, and G. Klingelhöfer, The rate of pyrite decomposition on the surface of Venus, Icarus, 115, 159–180, 1995.

  14. Ford, P. G. and G. H. Pettengill, Venus: Global surface radio emissivity, Science, 220, 1379–1381, 1983.

  15. Gilliland, R. L., Solar Evolution, Global and Planet. Change, 1, 35–55, 1989.

  16. Hashimoto, G. L. and Y. Abe, Albedo on Venus: I Cloud Model, Proc. 29th ISAS Lunar Planet. Symp., 87–90, 1996a.

  17. Hashimoto, G. L. and Y. Abe, Albedo on Venus: I Cloud Model and Present State, Bull. Am. Astron. Soc., 28, 1117, 1996b.

  18. Hashimoto, G. L., Y Abe, and S. Sasaki, CO2 amount on Venus constrained by a criterion of topographic-greenhouse instability, Geophys. Res. Lett., 24, 289–292, 1997.

  19. Klose, K. B., J. A. Wood, and A. Hashimoto, Mineral Equilibria and the High Radar Reflectivity of Venus Mountaintops, J. Geophys. Res., 97, 16353–16369, 1992.

  20. Masursky, H., E. Eliason, P. G. Ford, G. E. McGill, G. H. Pettengill, G. G. Schaber, and G. Schubert, Pioneer Venus Radar Results: Geology from Images and Altimetry, J. Geophys. Res., 85, 8232–8260, 1980.

  21. Nakajima, S., Y.-Y. Hayashi, and Y. Abe, A Study on the “Runaway Greenhouse Effect” with a One-Dimensional Radiative-Convective Equilibrium Model, J. Atmos. Sci., 23, 2256–2266, 1992.

  22. Palmer, K. F. and D. Williams, Optical constants of sulfuric acid; Application to the clouds of Venus?, Appl. Opt., 14, 208–219, 1975.

  23. Pettengill, G. H., P. G. Ford, and S. Nozette, Venus: Global surface radar reflectivity, Science, 217, 640–642, 1982.

  24. Pettengill, G. H., P. G. Ford, and B. D. Chapman, Venus: Surface Electromagnetic Properties, J. Geophys. Res., 93, 14881–14892, 1988.

  25. Pettengill, G. H., P. G. Ford, and R. A. Simpson, Electrical properties of the Venus surface from bistatic radar observations, Science, 272, 1628–1631, 1996.

  26. Pollack, J. B., O.B. Toon, and R. Boese, Greenhouse Models of Venus’ High Surface Temperature, as Constrained by Pioneer Venus Measurements, J. Geophys. Res., 85, 8223–8231, 1980.

  27. Pollack, J. B., J. B. Dalton, D. Grinspoon, R. B. Wattson, R. Freedman, D. Crisp, D. A. Allen, B. Bezard, C. DeBergh, L.P. Giver, Q. Ma, and R. Tipping, Near-Infrared Light from Venus’ Nightside: A Spectroscopic Analysis, Icarus, 103, 1–42, 1993.

  28. Robie, R. A., B. S. Hemingway, and J. R. Fisher, Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (105 Pascals) Pressures and at Higher Temperatures, U. S. Geol. Surv. Bull. No. 1452, 1979.

  29. Ronov, A. B. and A. A. Yaroshevskiy, Chemical Structure of the Earth’s Crust, Geochem. Intl., 13, 1041–1066, 1967.

  30. Suleiman, S. H., M. A. Kolodner, and P. G. Steffes, Laboratory measurement of the temperature dependence of gaseous sulfur dioxide (SO2) microwave absorption with application to the Venus atmosphere, J. Geophys. Res., 101, 4623–4635, 1996.

  31. Yung, Y. L. and W. B. DeMore, Photochemistry of the stratosphere of Venus: Implications for atmospheric evolution, Icarus, 51, 119–247, 1982.

  32. Zolotov, M. Y., Pyrite stability on the surface of Venus, Lunar Planet. Sci., 22, 1569–1570, 1991.

Download references

Author information

Correspondence to G. L. Hashimoto.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hashimoto, G.L., Abe, Y. Stabilization of Venus’ climate by a chemical-albedo feedback. Earth Planet Sp 52, 197–202 (2000) doi:10.1186/BF03351628

Download citation

Keywords

  • Pyrite
  • Greenhouse Effect
  • Cloud Droplet
  • Cloud Model
  • Lunar Planet