Skip to main content

Advertisement

Light elements synthesized in the He-layer and the H-rich envelope of a type II supernova—Influence of the adopted neutrino emission model—

Article metrics

  • 226 Accesses

  • 10 Citations

Abstract

In order to establish a suitable manner for finding presolar grains of supernova origin, we simulated the explosive nucleosynthesis of light elements, i.e., CNO-elements and X-elements (Li, Be, and B), in the He-layer and the H-rich envelope of a 16.2 M supernova and calculated their final abundances and abundance ratios using the nuclear reaction network. We also investigated the response of the synthesized abundances of light elements to the change of strength and duration of the neutrino emission, about which we have not a precise knowledge. The obtained results are as follows. The amounts of 6Li and 9Be produced during the supernova explosion are quite small. The ratios of 6Li/7Li and 9Be/7Li are less than 2 × 10−4, which are much smaller than the corresponding solar-system values. The other X-elements and CNO-elements (except 12C and 16O) are synthesized, more or less, and their abundances depend strongly on the internal mass coordinate as well as the adopted neutrino emission model. However, 11B/7Li ratio and isotopic ratios of CNO-elements are confined within one order of magnitude or so. On the basis of the above results, we finally proposed useful diagrams between two isotopic (elemental) ratios, which would help us to find presolar grains of supernova origin.

References

  1. Amari, S., E. Anders, A. Virag, and E. Zinner, Interstellar graphite in meteorites, Nature, 345, 238–240, 1990.

  2. Anders, E. and N. Grevesse, Abundances of the elements: Meteoritic and solar, Geochim. Cosmochim. Acta, 53, 197–214, 1989.

  3. Arnett, W. D., Explosive nucleosynthesis in stars, Astrophys. J., 157, 1369–1380, 1969.

  4. Arnett, W. D., J. N. Bahcall, R. P. Kirshner, and S. E. Woosley, Supernova 1987A, Annu. Rev. Astron. Astrophys., 27, 629–700, 1989.

  5. Bahcall, J. N., Neutrino Astrophysics, pp. 428–432, Cambridge University Press, Cambridge, 1989.

  6. Blackmon, J. C., A. E. Champagne, M. A. Hofstee, M. S. Smith, R. G. Downing, and G. P. Lamaze, Measurement of the 17O(p, α 14N cross section at stellar energies, Phys. Rev. Lett., 74, 2642–2645, 1995.

  7. Buchmann, L., New stellar reaction rate for 12C(α, γ 16O, Astrophys. J., 468, L127–L130, 1996.

  8. Buchmann, L., Errata, Astrophys. J., 479, L153, 1997.

  9. Burrows, A. and J. M. Lattimer, Neutrinos from SN 1987A, Astrophys. J., 318, L63–L68, 1987.

  10. Caughlan, G. R. and W. A. Fowler, Thermonuclear reaction rates V, Atom. Data Nucl. Data Tables, 40, 283–334, 1988.

  11. Cooperstein, J., Neutrinos in supernovae, Phys. Rep., 163, 95–126, 1988.

  12. Epstein, R. I., S. A. Colgate, and W. C. Haxton, Neutrino-induced r-process nucleosynthesis, Phys. Rev. Lett., 61, 2038–2041, 1988.

  13. Hachisu, I., T. Matsuda, K. Nomoto, and T. Shigeyama, Mixing in ejecta of supernovae. II. Mixing width of 2D Rayleigh-Taylor instabilities in the helium star models for type Ib/Ic supernovae, Astron. Astrophys. Suppl., 104, 341–364, 1994.

  14. Hoffman, R. D. and S. E. Woosley, Tables of reaction rates for nucleosynthesis for charged particle, weak, and neutrino interactions (Z< 45), (unpublished; http://isotopes.lbl.gov/isotopes/hw921.html), 1992.

  15. Hoppe, P., S. Amari, E. Zinner, and R. S. Lewis, Isotopic compositions of C, N, O, Mg, and Si, trace element abundances, and morphologies of single circumstellar graphite grains in four density fractions from the Murchison meteorite, Geochim. Cosmochim. Acta, 59, 4029–4056, 1995.

  16. Hutcheon, I. D., G. R. Huss, A. J. Fahey, and G. J. Wasserburg, Extreme 26Mg and 17O enrichments in an Orgueil corundum: identification of a presolar oxide grain, Astrophys. J., 425, L97–L100, 1994.

  17. Iwamoto, K., T. R. Young, N. Nakasato, T. Shigeyama, K. Nomoto, I. Hachisu, and H. Saio, Instabilities and mixing in SN 1993J, Astrophys. J., 477, 865–875, 1997.

  18. Käppeler, F., M. Wiescher, U. Giesen, J. Görres, I. Baraffe, M. El Eid, C. M. Raiteri, M. Busso, R. Gallino, M. Limongi, and A. Chieffi, Reaction rates for 18O(α, γ22Ne, 22Ne(α, γ26Mg, and 22Ne(α, n25Mg in stellar helium burning and s-process nucleosynthesis in massive stars, Astrophys. J., 437, 396–409, 1994.

  19. Lamb, S. A., I. Iben, Jr., and W. M. Howard, On the evolution of massive stars through the core carbon-burning phase, Astrophys. J., 207, 209–232, 1976.

  20. Landre, V, N. Prantzos, P. Aguer, G. Bogaert, A. Lefebvre, and J. P. Thibaud, Revised reaction rates for the H-burning of 17O and the oxygen isotopic abundances in red giants, Astron. Astrophys, 240, 85–92, 1990.

  21. Lattimer, J. M. and A. Yahil, Analysis of the neutrino events from supernova 1987A, Astrophys. J., 340, 426–434, 1989.

  22. Mckeegan, K. D., R. M. Walker, and E. Zinner, Ion microprobe isotopic measurements of individual interplanetary dust particles, Geochim. Cosmochim. Acta, 49, 1971–1987, 1985.

  23. Meyer, B. S., T. A. Weaver, and S. E. Woosley, Isotopic source table for a 25 M supernova, Meteoritics, 30, 325–334, 1995.

  24. Myra, E. S. and A. Burrows, Neutrinos from type II supernovae: the first 100 milliseconds, Astrophys. J., 364, 222–231, 1990.

  25. Nakamura, T, H. Umeda, K. Nomoto, F.-K. Thielemann, and A. Burrows, Nucleosynthesis in Type II supernovae and the abundances in metal-poor stars, Astrophys. J., 517, 193–208, 1999.

  26. Nittler, L. R., S. Amari, E. Zinner, S. E. Woosley, and R. S. Lewis, Extinct Ti in presolar graphite and SiC: proof of a supernova origin, Astrophys. J., 462, L31–34, 1996.

  27. Nomoto, K. and M. Hashimoto, Presupernova evolution of massive stars, Phys. Rep., 163, 13–36, 1988.

  28. Nomoto, K., F.-K. Thielemann, and K. Yokoi, Accreting white dwarf models for Type I supernovae. III. Carbon deflagration supernovae, Astrophys. J., 286, 644–658, 1984.

  29. Rolfs, C. E. and W. S. Rodney, Cauldrons in the Cosmos, pp. 376–379, Chicago Press, Chicago and London, 1988.

  30. Saio, H., K. Nomoto, and M. Kato, Nitrogen and helium enhancement in the progenitor of supernova 1987A, Nature, 334, 508–510, 1988.

  31. Sedov, L. I., Similarity and Dimensional Methods in Mechanics, pp. 260–270, Academic Press, New York and London, 1959.

  32. Shigeyama, T. and K. Nomoto, Theoretical light curve of SN 1987A and mixing of hydrogen and nickel in the ejecta, Astrophys. J., 360, 242–256, 1990.

  33. Shigeyama, T, K. Nomoto, M. Hashimoto, and D. Sugimoto, Light-curve models for supernova SN1987A in the Large Magellanic Cloud, Nature, 328, 320–323, 1987.

  34. Spergel, D. N., T. Piran, A. Loeb, J. Goodman, and J. N. Bahcall, A simple model for neutrino cooling of the Large Magellanic Cloud Supernova, Science, 237, 1471–1473, 1987.

  35. Swart, P. K., M. M. Grady, C. T. Pillinger, R. S. Lewis, and E. Anders, Interstellar carbon in meteorites, Science, 220, 406–410, 1983.

  36. Thielemann, F.-K., M. Hashimoto, and K. Nomoto, Explosive nucleosynthesis in SN 1987A. II. Composition, radioactivities, and the neutron star mass, Astrophys. J., 349, 222–240, 1990.

  37. Thielemann, F.-K., K. Nomoto, and M. Hashimoto, Core-collapse supernovae and their ejecta, Astrophys. J., 460, 408–436, 1996.

  38. Travaglio, C., R. Gallino, S. Amari, E. Zinner, S. E. Woosley, and R. S. Lewis, Low-density graphite grains and mixing in type II supernovae, Astrophys. J., 510, 325–354, 1999.

  39. Weaver, T. A. and S. E. Woosley, Evolution and explosion of massive stars, Ann. New York Acad. Sci., 336, 335–357, 1980.

  40. Wiescher, M., J. Gorres, S. Graff, L. Buchmann, and F.-K. Thielemann, The hot proton-proton chains in low-metallicity objects, Astrophys. J., 343, 352–364, 1989.

  41. Woosley, S. E., SN 1987A: After the peak, Astrophys. J., 330, 218–253, 1988.

  42. Woosley, S. E. and T. A. Weaver, The physics of supernova explosions, Annu. Rev. Astron. Astrophys., 24, 205–253, 1986.

  43. Woosley, S. E. and T. A. Weaver, The evolution and explosion of massive stars. II. Explosive hydrodynamics and nucleosynthesis, Astrophys. J. Suppl, 101, 181–235, 1995.

  44. Woosley, S. E., D. H. Hartmann, R. D. Hoffman, and W. C. Haxton, The v-process, Astrophys. J., 356, 272–301, 1990.

  45. Yoshida, T., Light elements synthesized in the He-layer and the H-rich envelope of type II supernovae, Doctoral Thesis, 2000.

  46. Yoshida, T., K. Nakazawa, and H. Emori, Light elements synthesized in the He-layer and the H-rich envelope of a Type II supernova. II—Influence of initial chemical compositions—, Earth, Planets and Space, 1999 (submitted).

  47. Zinner, E., Stellar nucleosynthesis and the isotopic composition of presolar grains from primitive meteorites, Annu. Rev. Earth Planet. Sci., 26, 147–188, 1998.

  48. Zinner, E., M. Tang, and E. Anders, Interstellar SiC in the Murchison and Murray meteorites: Isotopic composition of Ne, Xe, Si, C, and N, Geochim. Cosmochim. Acta, 53, 3273–3290, 1989.

Download references

Author information

Correspondence to Takashi Yoshida.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yoshida, T., Emori, H. & Nakazawa, K. Light elements synthesized in the He-layer and the H-rich envelope of a type II supernova—Influence of the adopted neutrino emission model—. Earth Planet Sp 52, 203–219 (2000) doi:10.1186/BF03351629

Download citation

Keywords

  • Neutron Star
  • Light Element
  • Supernova Explosion
  • Neutrino Emission
  • Neutrino Irradiation