Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Electromagnetic signals related to incidence of a teleseismic body wave into a subsurface piezoelectric body

Abstract

This paper presents acase study of Electromagnetic (EM) signals associated with earthquakes due to the piezoelectricity of crustal rocks. For a simple model of crustal structure with a subsurface piezoelectric body, a mathematical expression was obtained that describes the behavior of piezoelectric EM signals due to incidence of a teleseismic body wave. Using this expression, we evaluated expected EM signals with physical parameters reasonable for crustal rocks. Results of the frequency domain analysis suggested that the intensity of the signal decreases with decreasing frequency due to decreasing stress rate at lower frequencies, and decreases with increasing frequency due to EM attenuation in the conducting medium at higher frequencies. However, the latter (the skin effect) was shown to be negligible at the dominant frequency range of seismic waves so far as a shallower piezoelectric body is concerned. Numerical results also indicated a resonant feature of the piezoelectric EM signals corresponding to geometry of the subsurface piezoelectric body. However, numerical calculations suggested that such signals cannot be detected except for strong motions. If detected, on the other hand, their spatial and frequency characteristics will provide information on the geometry of the subsurface piezoelectric body.

References

  1. Aki, K. and P. G. Richards, Quantitative Seismology, Theory and Methods, Vol. 1, 557 pp., W. H. Freeman and company, New York, 1980.

    Google Scholar 

  2. Anderson, W. L., Fast Hankel transforms using related and lagged convolutions, ACM Trans. Math. Softw., 8, 344–368, 1982.

    Article  Google Scholar 

  3. Bishop, J. R., Estimating quartz fabrics from piezoelectric measurements, Math. Geol., 13, 261–289, 1981a.

    Article  Google Scholar 

  4. Bishop, J. R., Piezoelectric effects in quartz-rich rocks, Tectonophys., 77, 297–321, 1981b.

    Article  Google Scholar 

  5. Eleman, F., The response of magnetic instrument to earthquake waves, J. Geomag. Geoelectr, 18, 43–72, 1965.

    Article  Google Scholar 

  6. Fraser-Smith, A. C., A. Bernardi, P. R. McGill, M. E. Ladd, R. A. Heliwell, and O.G. Villard, Jr., Low-frequency magnetic field measurements near the epicenter of the Ms 7.1 Loma Prieta earthquake, Geophys. Res. Lett., 17, 1465–1468, 1990.

    Article  Google Scholar 

  7. Ghomshei, M. M. and T. L. Templeton, Piezoelectric and a-axes fabric along a quartz vein, Phys. Earth Planet. Inter., 55, 374–386, 1989.

    Article  Google Scholar 

  8. Ghomshei, M. M., B. B. Narod, T. L. Templeton, A. S. Arrott, and R. D. Russell, Piezoelectric pole figure of a vein quartz sample, Text. Microstruct., 7, 303–316, 1988.

    Article  Google Scholar 

  9. Gokhberg, M. B., V. A. Morgounov, T. Yoshino, and I. Tomizawa, Experimental measurement of electromagnetic emissions possibly related to earthquakes in Japan, J. Geophys. Res., 87, 7824–7828, 1982.

    Article  Google Scholar 

  10. Huang, Q., Theoretical and experimental study on seismoelectric signals and earthquake-related phenomena, Ph. D. thesis, Osaka University, 107 pp., 1999.

  11. Ikeda, T., Fundamentals of Piezoelectricity, 263 pp., Oxford university press, Oxford, 1990.

    Google Scholar 

  12. Johnston, M. J. S., R. J. Mueller, and Y. Sasai, Magnetic field observation in the near-field the 28 June 1992 Mw 7.3 Landers, California, earthquake, Bull. Seis. Soc.Am., 84, 792–798, 1994.

    Google Scholar 

  13. Kepic, A. W., M. Maxwell, and R. D. Russell, Field trials of a seismoelectric method for detecting massive sulfides, Geophys., 60, 365–373, 1995.

    Article  Google Scholar 

  14. Mikhailov, O. V, M. W. Haartsen, and M. N. Toksöz, Electroseismic investigation of the shallow subsurface: Field measurements and numerical modeling, Geophys., 62, 97–105, 1997.

    Article  Google Scholar 

  15. Mueller, R. J. and M. J. S. Johnston, Seismomagnetic effect generated by the October 18, 1989, Ml 7.1 Loma Prieta, California, Earthquake, Geophys. Res. Lett., 17, 1231–1234, 1990.

    Article  Google Scholar 

  16. Ogawa, T. and H. Utada, Coseismic piezoelectric effects due to a dislocation 1: An analytic far and early-time field solution in a homogeneous whole space., Phys. Earth Planet. Inter., 2000 (submitted).

  17. Parkhomenko, E. I., Electrification Phenomena in Rocks, 314 pp., Plenum Press, New York, 1971 (Translated from Russian by George V. Keller).

    Google Scholar 

  18. Russell, R. D. and A. S. J. Barker, Seismo-electric exploration: expected signal amplitudes, Geophys. Prospect., 39, 105–118, 1991.

    Article  Google Scholar 

  19. Sasai, Y., Tectonomagnetic modeling on the basis of the linear piezomagnetic effect, Bull. Earthq. Res. Inst., 66, 585–722, 1991.

    Google Scholar 

  20. Stoyer, C. H., Electromagnetic fields of dipoles in stratified media, IEEE Trans. Ant. Propag., 25, 547–552, 1977.

    Article  Google Scholar 

  21. Tuck, G. J., F. D. Stacey, and J. Starkey, A search for the piezoelectric effect in quartz-bearing rocks, Tectonophys., 39, T7–T11, 1977.

    Article  Google Scholar 

  22. Warwick, J. W., C. Stoker, and T. R. Meyer, Radio emission associated with rock fracture: Possible application to the great Chilean earthquake of May 22, 1960, J. Geophys. Res., 87, 2851–2859, 1982.

    Article  Google Scholar 

  23. Watson, G. N., A Treatiseonthe Theory of Bessel Functions, second edition, 804 pp., Cambridge University Press, London, 1944.

    Google Scholar 

  24. Yoshida, S., P. Manjgaladze, D. Zilpimiani, M. Ohnaka, and M. Nakatani, Electromagnetic emissions associated with frictional sliding of rock, in Electromagnetic Phenomena Related to Earthquake Prediction, edited by M. Hayakawa and Y. Fujinawa, pp. 307–322, Terrapub, Tokyo, 1994.

    Google Scholar 

  25. Yoshii, T., Crustal Structure in Japan, 121 pp., University of Tokyo Press, Tokyo, 1979 (in Japanese).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tsutomu Ogawa.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ogawa, T., Utada, H. Electromagnetic signals related to incidence of a teleseismic body wave into a subsurface piezoelectric body. Earth Planet Sp 52, 253–260 (2000). https://doi.org/10.1186/BF03351634

Download citation

Keywords

  • Seismic Wave
  • Half Space
  • Crustal Rock
  • Skin Effect
  • Green Tensor