Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

Net current density of photoelectrons emitted from the surface of the GEOTAIL spacecraft

Abstract

The current density carried by photoelectrons emitted from the GEOTAIL spacecraft is estimated from the electric potential of the spacecraft measured in the single probe mode of GEOTAIL/EFD and plasma density and temperature obtained by GEOTAIL/LEP during the period from September 14, 1993 to October 31, 1998, by assuming balance of the currents carried by photoelectrons and ambient thermal electrons. Behaviour of the photoelectron current as a function of spacecraft potential is consistent with the current profile predicted by Grard (1973), and the emitted photoelectrons consist of several components with different temperatures. The saturation density of the low energy component of the photoelectron current is 85 ± 33 × 10−6 [Am−2]. Number density of the photoelectrons is estimated to be 2.9 ± 1.4 × 109 [m−3] at the surface of the spacecraft, and the average energy of the photoelectrons is 2.1 ±0.5 [eV]. These values are higher than the prediction by Grard but consistent with previous in-flight measurements from GEOS-1, ISEE-1 or Viking.

References

  1. Brace, L. H., W. R. Hoegy, and R. F. Theis, Solar UV measurements at Venus based on photoelectron emission from the Pioneer Venus Langmuir probe, J. Geophys. Res., 93, 7282–7296, 1988.

    Article  Google Scholar 

  2. Escoubet, C. P., A. Pedersen, R. Schmidt, and P. A. Lindqvist, Density in the magnetosphere inferred from ISEE 1 spacecraft potential, J. Geophys. Res., 102, 17595–17609, 1997.

    Article  Google Scholar 

  3. Fahleson, U., Theory of electric field measurements conducted in the magnetosphere with electric probes, Space Sci. Rev., 7, 238–262, 1967.

    Article  Google Scholar 

  4. Fahleson, U. V, M. C. Kelley, and F. S. Mozer, Investigation of the operation of a d.c. electric field detector, Planet. Space Sci., 18, 1551–1561, 1970.

    Article  Google Scholar 

  5. Feuerbacher, B. and B. Fitton, Experimental investigation of photoemission from satellite surface materials, J. Appl. Phys., 43, 1563, 1972.

    Article  Google Scholar 

  6. Grard, R. J. L., Properties of satellite photoelectron sheath derived from photoemission laboratory measurements, J. Geophys. Res., 78, 2885–2906, 1973.

    Article  Google Scholar 

  7. Harvey, C. C., J. Etcheto, J. De Javel, R. Manning, and M. Petit, ISEE electron density experiment, IEEE Trans. Geosci. Electron., GE-16, 231–238, 1978.

    Article  Google Scholar 

  8. Hilgers, A., B. Holback, G. Holmgren, and R. Boström, Probe measurements of low plasma densities with applications to the auroral acceleration region and auroral kilometric radiation sources, J. Geophys. Res., 97, 8631–8641, 1992.

    Article  Google Scholar 

  9. Ishisaka, K., T. Okada, Y. Kasaba, K. Tsuruda, H. Matsumoto, H. Hayakawa, H. Kojima, and F. S. Mozer, Estimation of the electron temperature in the solar wind and electron foreshock by using GEOTAIL spacecraft potentials and plasma waves, The transactions of the institute of electronics, information and communication engineers B (Denshi Joho Tsushin Gakkai Ronbunshi), J82-B, 1239–1246, 1999 (in Japanese).

    Google Scholar 

  10. Matsui, H., T. Mukai, S. Ohtani, K. Hayashi, R. C. Elphic, M. F. Thomsen, and H. Matsumoto, Cold dense plasma in the outer magnetosphere, J. Geophys. Res., 104, 25077–25095, 1999.

    Article  Google Scholar 

  11. Mott-Smith, H. M. and I. Langmuir, The theory of collectors in gaseous discharges, Phys. Rev., 28, 727–763, 1926.

    Article  Google Scholar 

  12. Mozer, F. S., E. W. Hones, Jr., and J. Birn, Comparison of spherical double probe electric field measurements with plasma bulk flows in plasmas having densities less than 1 cm−1, Geophys. Res. Lett., 10, 737–740, 1983.

    Article  Google Scholar 

  13. Mukai, T., S. Machida, Y. Saito, M. Hirahara, T. Terasawa, N. Kaya, T. Obara, M. Ejiri, and A. Nishida, The low energy particle (LEP) experiment onboard the GEOTAIL satellite, J. Geomag. Geoelectr, 46, 669–692, 1994.

    Article  Google Scholar 

  14. Nishida, A., The GEOTAIL mission, Geophys. Res. Lett., 21, 2871–2873, 1994.

    Article  Google Scholar 

  15. Pedersen, A., Solar wind and magnetosphere plasma diagnostics by spacecraft electrostatic potential measurements, Ann. Geophys., 13, 118–129, 1995.

    Article  Google Scholar 

  16. Pedersen, A., R. Grard, K. Knott, D. Jones, A. Confalone, and U. Fahleson, Measurements of quasi-static fields between 3 and 7 earth radii on GEOS-1, Space Sci. Rev, 22, 333–346, 1978.

    Article  Google Scholar 

  17. Pedersen, A., C. A. Cattell, C.-G. Fälthammar, V. Formisano, P.-A. Lindqvist, F. Mozer, and R. Torbert, Quasistatic electric field measurements with spherical double probes on the GEOS and ISEE satellites, Space Sci. Rev, 37, 269–312, 1984.

    Article  Google Scholar 

  18. Schmidt, R. and A. Pedersen, Long-term behaviour of photo-electron emission from the electric field double probe sensors on GEOS-2, Planet. Space Sci., 35, 61–70, 1987.

    Article  Google Scholar 

  19. Tsuruda, K., H. Hayakawa, M. Nakamura, T. Okada, A. Matsuoka, F. S. Mozer, and R. Schmidt, Electric field measurements on the GEOTAIL satellite, J. Geomag. Geoelectr, 46, 693–711, 1994.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tomoko Nakagawa.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nakagawa, T., Ishii, T., Tsuruda, K. et al. Net current density of photoelectrons emitted from the surface of the GEOTAIL spacecraft. Earth Planet Sp 52, 283–292 (2000). https://doi.org/10.1186/BF03351637

Download citation

Keywords

  • Solar Wind
  • Indium Oxide
  • Ambient Plasma
  • Spacecraft Potential
  • Ambient Electron