Skip to main content

Theoretical approach to dependence of crack growth mechanism on confining pressure

Abstract

We calculated the stress field on and around an elliptical open crack located in an elastic medium under various confining pressures. The problems were treated as two-dimensional ones by using complex potentials, and the considerable differences between uniaxial and triaxial crack growth mechanisms were recognized. A uniaxial condition allows a certain elliptical open crack to develop by itself (without any crack-crack interactions) along its major semi-axis, whereas a triaxial condition does not. This is the principal mechanism of transition from uniaxial to triaxial crack growth. Our transition model, derived using a theoretical approach, explains the dependence of experimental results, such as crack distribution and internal friction angle, on confining pressure well. We conclude that uniaxial and triaxial crack growth mechanisms fundamentally differ from each other, and that attention must be paid to experimental conditions when applying experimental results to phenomena in the Earth.

References

  1. Baud, P., T. Reuschlé, and P. Charlez, An improved wing crack model for the deformation and failure of rock in compression, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr., 33, 539–542, 1996.

    Article  Google Scholar 

  2. Berg, C. A., Deformation of fine cracks under high pressure and shear, J. Geophys. Res., 70, 3447–3452, 1965.

    Article  Google Scholar 

  3. Brace, W. F., B. W. Paulding, Jr., and C. H. Scholz, Dilatancy in the fracture of crystalline rocks, J. Geophys. Res., 71, 3939–3953, 1966.

    Article  Google Scholar 

  4. Digby, P. J. and S. A. F. Murrell, The deformation of flat ellipsoidal cavities under large confining pressures, Bull. Seism. Soc. Am., 66, 425–431, 1976.

    Google Scholar 

  5. Griffith, A. A., The phenomena of rupture and flow in solids, Phil. Trans. Roy. Soc. London, Ser. A, Math. Phys. Sci, 211, 163–198, 1921.

    Article  Google Scholar 

  6. Hallbauer, D. K., H. Wagner, and N. G. W. Cook, Some observations concerning the microscopic and mechanical behaviour of quartzite specimens in stiff, triaxial compression tests, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr., 10, 713–726, 1973.

    Article  Google Scholar 

  7. Horii, H. and S. Nemat-Nasser, Compression-induced microcrack growth in brittle solids: Axial splitting and shear failure, J. Geophys. Res., 90, 3105–3125, 1985.

    Article  Google Scholar 

  8. Jaeger, J. C. and N. G. W. Cook, Fundamentals of Rock Mechanics, 2nd ed., 593 pp., Chapman and Hall, London, 1976.

    Google Scholar 

  9. Jeyakumaran, M. and J. W. Rudnicki, The sliding wing crack-Again!, Geophys. Res. Lett., 22, 2901–2904, 1995.

    Article  Google Scholar 

  10. Kawakata, H. and M. Shimada, Frequency-magnitude relation of AE in fracture process of rocks athigh confining pressures, Proc. 8th Int. Congr. Rock Mech., 1, 207–210, 1995.

    Google Scholar 

  11. Kawakata, H., A. Cho, T. Yanagidani, and M. Shimada, The observations of faulting in Westerly granite under triaxial compression by X-ray CT scan, Int. J. Rock Mech. Min. Sci., 34: 3/4, Paper No. 151, 1997.

  12. Kawakata, H., A. Cho, T. Kiyama, T. Yanagidani, and M. Shimada, The observations of fault formation in Westerly granite by X-ray CT scan, Tectonophys., 313, 293–305, 1999.

    Article  Google Scholar 

  13. Lin, P. and J. M. Logan, The interaction of two closely spaced cracks: a rock model study, J. Geophys. Res., 96, 21,667–21,675, 1991.

    Article  Google Scholar 

  14. Lockner, D. A. and T. R. Madden, A multiple-crack model of brittle fracture, 1. Non-time-dependent simulations, J. Geophys. Res., 96, 19,623–19,642, 1991.

    Article  Google Scholar 

  15. Lockner, D. A., J. D. Byerlee, V. Kuksenko, A. Ponomarev, and A. Sidorin, Observations of quasi-static fault growth from acoustic emissions, in Fault Mechanics and Transport Properties of Rocks, edited by B. Evans and T.-F. Wong, pp. 3–31, Academic Press, San Diego, Calif., 1992.

    Google Scholar 

  16. McClintock, F. A. and J. B. Walsh, Friction on Griffith cracks in rocks under pressure, Proc. 4th U. S. Nat. Congr. Appl. Mech., 2, 1015–1022, 1962.

    Google Scholar 

  17. Murrell, S. A. F. and P. J. Digby, The theory of brittle fracture initiation under triaxial stress conditions - I, Geophys. J. Roy. Astron. Soc., 19, 309–334, 1970a.

    Article  Google Scholar 

  18. Murrell, S. A. F. and P. J. Digby, The theory of brittle fracture initiation under triaxial stress conditions - II, Geophys. J. Roy. Astron. Soc., 19, 499–512, 1970b.

    Article  Google Scholar 

  19. Orowan, E., Fracture and strength of solids, Repts. Prog. Phys., 12, 185–232, 1949.

    Article  Google Scholar 

  20. Reches, Z. and D. A. Lockner, Nucleation and growth of faults in brittle rocks, J. Geophys. Res., 99, 18,159–18,173, 1994.

    Article  Google Scholar 

  21. Scholz, C. H., The Mechanics of Earthquakes and Faulting, 439 pp., Cambridge University Press, Cambridge, 1990.

    Google Scholar 

  22. Segall, P. and D. D. Pollard, Mechanics of discontinuous faults, J. Geophys. Res., 85, 4337–4350, 1980.

    Article  Google Scholar 

  23. Shimada, M. and A. Cho, Two types of brittle fracture of silicate rocks under confining pressure and their implication inthe earth’s crust, Tectonophys., 175, 221–235, 1990.

    Article  Google Scholar 

  24. Wawersik, W. R. and W. F. Brace, Post-failure behavior of a granite and diabase, Rock Mech., 3, 61–85, 1971.

    Article  Google Scholar 

  25. Yanagidani, T., S. Ehara, O. Nishizawa, K. Kusunose, and M. Terada, Localization of dilatancy in Ohshima granite under constant uniaxial stress, J. Geophys. Res., 90, 6840–6858, 1985.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. Kawakata.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kawakata, H., Shimada, M. Theoretical approach to dependence of crack growth mechanism on confining pressure. Earth Planet Sp 52, 315–320 (2000). https://doi.org/10.1186/BF03351642

Download citation

Keywords

  • Fault Plane
  • Tangential Stress
  • Open Crack
  • Crack Density
  • Wing Crack