Skip to main content

Advertisement

A rod-type creepmeter for measurement of displacement in active fault zone

Article metrics

Abstract

A creepmeter has been developed to monitor gradual displacements of near-surface movement in an active fault zone. This rod-type creepmeter is a robust, low-cost instrument that is simple to construct and install. This creepmeter consists of two 3-m invar rods attached to anchored steel piers at each end, straddling the surface traces of active fault. The invar rods are supported by a pair of U-shaped solid steel girders. A mechanical dial-gauge sensor in the middle of the creepmeter is adopted to record the displacement of fault creep, and has a precision of 0.01 mm. Because the creepmeter is installed on the surface, the temperature effect is important. To calibrate and correct for the temperature effect, we carried out hourly measurements over a period of 30 hours to calculate the thermal expansion coefficients for each creepmeter. Thermal corrections could thus be made when readings were taken. Five of these creepmeters have been installed in the Chihshang active fault zone of eastern Taiwan, in the present collision suture zone between the Philippine Sea plate and the Eurasian plate. Readings taken over one year have shown that this rod-type creepmeter is effective in providing a near-continuous record of active fault creep with a good precision.

References

  1. Agnew, D. C., Strainmeters andtiltmeters, Rev. Geophy., 24, 579–624, 1986.

  2. Angelier, J., H. T. Chu, and J. C. Lee, Shear concentration in a collision zone: kinematics of the active Chihshang Fault, Longitudinal Valley, eastern Taiwan, Tectonophys., 274, 117–144, 1997.

  3. Angelier, J., H. T. Chu, J. C. Lee, and J. C. Hu, Active faulting and earthquake hazard: the case study of the Chihshang Fault, Taiwan, J. Geodynamics, 29, 151–185, 2000.

  4. Burford, R. O., Fluctuations in rates of fault creep associated with moderate earthquakes along the central San Andreas fault (abstract), Eos Trans. AGU, 57, 1012, 1976.

  5. Burford, R. O., S. S. Allen, R. J. Lamson, and D. D. Goodreau, Accelerated fault creep along the central San Andreas fault after moderate earthquakes during 1971–1972, in Proceedings of the Conference on Tectonic Problems of the San Andreas Fault System, vol. 13, edited by R. L. Kovach and A. Nur, pp. 268–274, Stanford Univ. Publ. Geol Sci., 1973.

  6. Goulty, N. R. and R. Gilman, Repeated creep events on the San Andreas fault near Parkfield, California, recorded by a strainmeter array, J. Geophys. Res., 83, 5415–5419, 1978.

  7. Goulty, N. R., R. O. Burford, C. R. Allen, R. Gilman, C. E. Johnson, and R. P. Keller, Large creep events on the Imperial fault, California, Bull. Seismol. Soc Am., 68, 517–522, 1978.

  8. Goulty, N. R., P. M. Davis, R. Gilman, and N. Motta, Meteorological noise in wire strainmeter data from Parkfield, California, Bull. Seismol. Soc. Am., 69, 1983–1988, 1979.

  9. Ho, C. S., A synthesis of the geologic evolution of Taiwan, Tectonophys., 125, 1–16, 1986.

  10. Lee, J. C., Structure et déformation active d’un orogène: Taiwan, Mem. Sc. Terre thesis, 94-17, Universite Pierre et Marie Curie, Paris, 281 pp., 1994.

  11. Lee, J. C. and J. Angelier, Location of active deformation and geodetic data analyses: an example of the Longitudinal Valley Fault, Taiwan, Bull. Soc. Geol. France, 164, 533–570, 1993.

  12. Mavko, G. M., Fault interaction near Hollister, California, J. Geophys. Res., 87, 7808–7816, 1982.

  13. Nason, R. D., Measurements and theory of fault creep slippage in central California, Bull. R. Soc. N. Z., 9, 181–187, 1971.

  14. Nason, R. D., F. R. Phillippsborn, and P. A. Yamashita, Catalog of creep-meter measurements in central California from 1968 to 1972, U.S. Geol. Surv. Open File Rep., 1974.

  15. Raleigh, C. B., W. Stuart, and P. W. Harsh, Creep on the Calaveras fault near Coyote Lake (abstract), Eos Trans. AGU, 60(46), 890, 1979.

  16. Schulz, S. S., G. M. Mavko, R. O. Burford, and W. D. Stuart, Long-term fault creep observations in central California, J. Geophy. Res., 87, 6977–6982, 1982.

  17. Smith, S. W. and M. Wyss, Displacement on the San Andreas fault subsequent to the 1966 Parkfield earthquake, Bull. Seismol. Soc. Am., 58, 1955–1973, 1968.

  18. Suppe, J., Kinematics of arc-continent collision, flipping of subduction, and back-arc spreading near Taiwan, Mem. Geol. Soc. China, 6, 21–33, 1984.

  19. Tocher, D., Creep on the San Andreas fault-Creep rate and related measurements at Vineyard, California, Bull. Seismol. Soc. Am., 50, 394–404, 1960.

  20. Tsai, Y. B., Seismotectonics of Taiwan, Tectonophys., 125, 17–38, 1986.

  21. Yu, S. B. and C. C. Liu, Fault creep on the central segment of the longitudinal valley fault, Eastern Taiwan, Proc. Geol. Soc. China, 32, 209–231, 1989.

  22. Yu, S. B., D. D. Jackson, G. K. Yu, and C. C. Liu, Dislocation model for curstal deformation in the Longitudinal Valley area, eastern Taiwan, Tectonophys., 183, 97–109, 1990.

  23. Yu, S. B., H. Y. Chen, and L. C. Kuo, Velocity field of GPS stations in the Taiwan area, Tectonophys., 274, 41–59, 1997.

Download references

Author information

Correspondence to Jian-Cheng Lee.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Keywords

  • Fault Zone
  • Pier
  • Creep Rate
  • Active Fault
  • Creep Data