Skip to main content

Advertisement

Light elements synthesized in the He-layer and the H-rich envelope of a type II supernova, II, —Influence of initial chemical compositions—

Article metrics

  • 196 Accesses

  • 5 Citations

Abstract

This is the second paper of a series of our studies, in which we have investigated the light element synthesis (Li, Be, B, and the CNO-elements) in the He-layer and the H-rich envelope of supernovae and the aim of this paper is to see the sensitivity of the element synthesis to the chemical compositions in the presupernova stage. First, we deduced the probable range of the chemical composition in the presupernova stage on the basis of the previous studies of stellar evolution as well as the observational studies of stellar chemical compositions. Secondly, we pursued the explosive nucleosynthesis by using artificially modeled chemical compositions composed of only four elements (1H, 4He, 12C, and 16O). Combining these results, we constructed five kinds of diagrams between two isotopic/elemental ratios which are useful for distinguishing presolar grains of supernova origin: 6Li/16O and 9Be/16O to 7Li/16O, and 11B/7Li, 14N/15N, and 16O/17O to 12C/(13C. In conclusion, the uncertainties in the chemical compositions in the presupernova stage brought smaller varieties in the isotopic/elemental ratios of the light elements compared with the varieties investigated in our first paper about the neutrino emission models.

References

  1. Amari, S., P. Hoppe, E. Zinner, and R.S. Lewis, Interstellar SiC with unusual isotopic compositions: grains from a supernova?, Astrophys. J., 394, L43–L46, 1992.

  2. Amari, S., E. Zinner, and R. S. Lewis, Large 18O excesses in circumstellar graphite grains fromthe Murchison meteorite: identification of amassive-star origin, Astrophys. J., 447, L147–L150, 1995.

  3. Amari, S., E. Zinner, and R.S. Lewis, 41Ca in presolar graphite of supernova origin, Astrophys. J., 470, L101–L104, 1996a.

  4. Amari, S., E. Zinner, and R. S. Lewis, A presolar graphite grain with unusual isotopic compositions, Meteoritics & Planet. Sci. Suppl., 31, A7–A8, 1996b.

  5. Andersen, J., B. Gustafsson, and D. L. Lambert, The lithium isotope ratio in F and G stars, Astron. Astrophys., 136, 65–73, 1984.

  6. Blackmon, J. C., A. E. Champagne, M. A. Hofstee, M. S. Smith, R. G. Downing, and G. P. Lamaze, Measurement of the 17O(p,α)14N cross section at stellar energies, Phys. Rev. Lett., 74, 2642–2645, 1995.

  7. Boesgaard, A. M. and K. G. Budge, Beryllium abundances in the lithium-deficient Hyades F stars, Astrophys. J., 338, 875–887, 1989.

  8. Boesgaard, A. M., C. P. Deliyannis, A. Stephens, and D. L. Lambert, Boron in lithium- and beryllium-deficient F stars, Astrophys. J., 492, 727–742, 1998.

  9. Caughlan, G. R. and W. A. Fowler, Thermonuclear reaction rates V, Atom. DataNucl. Data Tables, 40, 283–334, 1988.

  10. Cayrel, R., M. Spite, F. Spite, E. Vangioni-Flam, M. Cassë, and J. Audouze, New high S/N observations of the 6Li/7 Li blend in HD84937 and two other metal-poor stars, Astron. Astrophys., 343, 923–932, 1999.

  11. Giesen, U., C. P. Browne, J. Görres, J. G. Ross, M. Wiescher, R. E. Azuma, J. D. King, J. B. Vise, and M. Buckby, The influence of low-energy resonances on the reaction rate of 18O(α, γ)22 Ne, Nuclear Physics, A567, 146–164, 1994.

  12. Hachisu, I., T. Matsuda, K. Nomoto, and T. Shigeyama, Mixing in ejecta of supernovae. II. Mixing width of 2D Rayleigh-Taylor instabilities in the helium star models for type Ib/Ic supernovae, Astron. Astrophys. Suppl., 104, 341–364, 1994.

  13. Hashimoto, M., private communication, 1999.

  14. Hobbs, L. M. and J. A. Thorburn, Lithium isotope ratios in halo stars. II., Astrophys. J., 491, 772–788, 1997.

  15. Hoffman, R. D. and S. E. Woosley, Tables of reaction rates for nucleosynthesis for charged particle, weak, and neutrino interactions (Z < 45), http://isotopes.lbl.gov/isotopes/hw92_1.html, 1992.

  16. Iwamoto, K., T. R. Young, N. Nakasato, T. Shigeyama, K. Nomoto, I. Hachisu, and H. Saio, Instabilities and mixing in SN 1993J, Astrophys. J., 477, 865–875, 1997.

  17. Lamb, S. A., I. Iben, Jr., and W. M. Howard, On the evolution of massive stars through the core carbon-burning phase, Astrophys. J., 207, 209–232, 1976.

  18. Landré, V, N. Prantzos, P. Aguer, G. Bogaert, A. Lefebvre, and J. P. Thibaud, Revised reaction rates for the H-burning of 17O and the oxygen isotopic abundances in red giants, Astron. Astrophys., 240, 85–92, 1990.

  19. Lemke, M., D. L. Lambert, and B. Edvardsson, The boron abundance of Procyon, Pub. Astron. Soc. Pacific, 105, 468–475, 1993.

  20. Lemoine, M., D. N. Schramm, J. W. Truran, and C. J. Copi, On the significance of population II Li abundances, Astrophys. J., 478, 554–562, 1997.

  21. Meneguzzi, M., J. Audouze, and H. Reeves, The production of the elements Li, Be, B by galactic cosmic rays in space and its relation with stellar observations, Astron. Astrophys., 15, 337–359, 1971.

  22. Meyer, B. S., T. A. Weaver, and S. E. Woosley, Isotopic source table for a 25 M supernova, Meteoritics, 30, 325–334, 1995.

  23. Nittler, L. R., S. Amari, E. Zinner, S. E. Woosley, and R. S. Lewis, Extinct 44Ti in presolar graphite and SiC: proof of a supernova origin, Astrophys. J., 462, L31–L34, 1996.

  24. Nomoto, K. and M. Hashimoto, Presupernova evolution of massive stars, Phys. Rep., 163, 13–36, 1988.

  25. Nomoto, K., F.-K. Thielemann, and K. Yokoi, Accreting white dwarf models for Type I supernovae. III. Carbon deflagration supernovae, Astrophys. J., 286, 644–658, 1984.

  26. Rebolo, R., L. Crivellari, F. Castelli, B. Foing, and J. E. Beckman, Lithium abundances and 7Li/6 Li ratios in late-type population I field dwarfs, Astron. Astrophys., 166, 195–203, 1986.

  27. Sedov, L. I., Similarity and Dimensional Methods in Mechanics, pp. 260–270, Academic Press, New York and London, 1959.

  28. Shigeyama, T. and K. Nomoto, Theoretical light curve of SN 1987A and mixing of hydrogen and nickel in the ejecta, Astrophys. J., 360, 242–256, 1990.

  29. Shigeyama, T, K. Nomoto, M. Hashimoto, and D. Sugimoto, Light-curve models for supernova SN1987A in the Large Magellanic Cloud, Nature, 328, 320–323, 1987.

  30. Smith, V. V, D. L. Lambert, and P. E. Nissen, Isotopic lithium abundances in nine halo stars, Astrophys. J., 506, 405–423, 1998.

  31. Soderblom, D. R., B. F. Jones, S. Balachandran, J. R. Stauffer, D. K. Duncan, S. B. Fedele, and J. D. Hudon, The evolution of the lithium abundances of solar-type stars. III. The pleiades, Astron. J., 106, 1059–1086, 1993.

  32. Thielemann, F.-K., M. Hashimoto, and K. Nomoto, Explosive nucleosynthesis in SN 1987A. II. Composition, radioactivities, and the neutron star mass, Astrophys. J., 349, 222–240, 1990.

  33. Thielemann, F.-K., K. Nomoto, and M. Hashimoto, Core-collapse super-novae and their ejecta, Astrophys. J., 460, 408–436, 1996.

  34. Travaglio, C., R. Gallino, S. Amari, E. Zinner, S. E. Woosley, and R. S. Lewis, Low-density graphite grains and mixing in type II supernovae, Astrophys. J., 510, 325–354, 1999.

  35. Weaver, T. A. and S. E. Woosley, Evolution and explosion of massive stars, Ann. New York Acad. Sci., 336, 335–357, 1980.

  36. Weaver, T. A. and S. E. Woosley, Nucleosynthesis in massive stars and the 12C(α, γ)16O reaction rate, Phys. Rep., 227, 65–96, 1993.

  37. Woosley, S. E. and T. A. Weaver, The physics of supernova explosions, Annu. Rev. Astron. Astrophys., 24, 205–253, 1986.

  38. Woosley, S. E. and T. A. Weaver, The evolution and explosion of massive stars. II. Explosive hydrodynamics and nucleosynthesis, Astrophys. J. Suppl, 101, 181–235, 1995.

  39. Woosley, S. E., D. H. Hartmann, R. D. Hoffman, and W. C. Haxton, The?-process, Astrophys. J., 356, 272–301, 1990.

  40. Woosley, S. E., R. D. Hoffman, F. X. Timmes, T. A. Weaver, and F.-K. Thielemann, Nucleosynthesis in massive stars and supernovae, Nuclear Physics, A621, 445c–452c, 1997.

  41. Yoshida, T., Light element synthesized in the He-layer and the H-rich envelope of type II supernovae, Doctoral Thesis, 2000.

  42. Yoshida, T., H. Emori, and K. Nakazawa, Light elements synthesized in the He-layer and the H-rich envelope of a Type II supernova —Influence of the adopted neutrino emission model—, Earth Planets Space, 52, 203–219, 2000.

  43. Zinner, E., Stellar nucleosynthesis and the isotopic composition of presolar grains from primitive meteorites, Annu. Rev. Earth Planet. Sci., 26, 147–188, 1998.

Download references

Author information

Correspondence to Takashi Yoshida.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yoshida, T., Nakazawa, K. & Emori, H. Light elements synthesized in the He-layer and the H-rich envelope of a type II supernova, II, —Influence of initial chemical compositions—. Earth Planet Sp 52, 361–376 (2000) doi:10.1186/BF03351648

Download citation

Keywords

  • Light Element
  • Supernova Explosion
  • Probable Range
  • Initial Abundance
  • Innermost Region