Skip to main content

Light elements synthesized in the He-layer and the H-rich envelope of a type II supernova, II, —Influence of initial chemical compositions—

Abstract

This is the second paper of a series of our studies, in which we have investigated the light element synthesis (Li, Be, B, and the CNO-elements) in the He-layer and the H-rich envelope of supernovae and the aim of this paper is to see the sensitivity of the element synthesis to the chemical compositions in the presupernova stage. First, we deduced the probable range of the chemical composition in the presupernova stage on the basis of the previous studies of stellar evolution as well as the observational studies of stellar chemical compositions. Secondly, we pursued the explosive nucleosynthesis by using artificially modeled chemical compositions composed of only four elements (1H, 4He, 12C, and 16O). Combining these results, we constructed five kinds of diagrams between two isotopic/elemental ratios which are useful for distinguishing presolar grains of supernova origin: 6Li/16O and 9Be/16O to 7Li/16O, and 11B/7Li, 14N/15N, and 16O/17O to 12C/(13C. In conclusion, the uncertainties in the chemical compositions in the presupernova stage brought smaller varieties in the isotopic/elemental ratios of the light elements compared with the varieties investigated in our first paper about the neutrino emission models.

References

  1. Amari, S., P. Hoppe, E. Zinner, and R.S. Lewis, Interstellar SiC with unusual isotopic compositions: grains from a supernova?, Astrophys. J., 394, L43–L46, 1992.

    Article  Google Scholar 

  2. Amari, S., E. Zinner, and R. S. Lewis, Large 18O excesses in circumstellar graphite grains fromthe Murchison meteorite: identification of amassive-star origin, Astrophys. J., 447, L147–L150, 1995.

    Google Scholar 

  3. Amari, S., E. Zinner, and R.S. Lewis, 41Ca in presolar graphite of supernova origin, Astrophys. J., 470, L101–L104, 1996a.

    Article  Google Scholar 

  4. Amari, S., E. Zinner, and R. S. Lewis, A presolar graphite grain with unusual isotopic compositions, Meteoritics & Planet. Sci. Suppl., 31, A7–A8, 1996b.

    Google Scholar 

  5. Andersen, J., B. Gustafsson, and D. L. Lambert, The lithium isotope ratio in F and G stars, Astron. Astrophys., 136, 65–73, 1984.

    Google Scholar 

  6. Blackmon, J. C., A. E. Champagne, M. A. Hofstee, M. S. Smith, R. G. Downing, and G. P. Lamaze, Measurement of the 17O(p,α)14N cross section at stellar energies, Phys. Rev. Lett., 74, 2642–2645, 1995.

    Article  Google Scholar 

  7. Boesgaard, A. M. and K. G. Budge, Beryllium abundances in the lithium-deficient Hyades F stars, Astrophys. J., 338, 875–887, 1989.

    Article  Google Scholar 

  8. Boesgaard, A. M., C. P. Deliyannis, A. Stephens, and D. L. Lambert, Boron in lithium- and beryllium-deficient F stars, Astrophys. J., 492, 727–742, 1998.

    Article  Google Scholar 

  9. Caughlan, G. R. and W. A. Fowler, Thermonuclear reaction rates V, Atom. DataNucl. Data Tables, 40, 283–334, 1988.

    Article  Google Scholar 

  10. Cayrel, R., M. Spite, F. Spite, E. Vangioni-Flam, M. Cassë, and J. Audouze, New high S/N observations of the 6Li/7 Li blend in HD84937 and two other metal-poor stars, Astron. Astrophys., 343, 923–932, 1999.

    Google Scholar 

  11. Giesen, U., C. P. Browne, J. Görres, J. G. Ross, M. Wiescher, R. E. Azuma, J. D. King, J. B. Vise, and M. Buckby, The influence of low-energy resonances on the reaction rate of 18O(α, γ)22 Ne, Nuclear Physics, A567, 146–164, 1994.

    Article  Google Scholar 

  12. Hachisu, I., T. Matsuda, K. Nomoto, and T. Shigeyama, Mixing in ejecta of supernovae. II. Mixing width of 2D Rayleigh-Taylor instabilities in the helium star models for type Ib/Ic supernovae, Astron. Astrophys. Suppl., 104, 341–364, 1994.

    Google Scholar 

  13. Hashimoto, M., private communication, 1999.

  14. Hobbs, L. M. and J. A. Thorburn, Lithium isotope ratios in halo stars. II., Astrophys. J., 491, 772–788, 1997.

    Article  Google Scholar 

  15. Hoffman, R. D. and S. E. Woosley, Tables of reaction rates for nucleosynthesis for charged particle, weak, and neutrino interactions (Z < 45), http://isotopes.lbl.gov/isotopes/hw92_1.html, 1992.

  16. Iwamoto, K., T. R. Young, N. Nakasato, T. Shigeyama, K. Nomoto, I. Hachisu, and H. Saio, Instabilities and mixing in SN 1993J, Astrophys. J., 477, 865–875, 1997.

    Article  Google Scholar 

  17. Lamb, S. A., I. Iben, Jr., and W. M. Howard, On the evolution of massive stars through the core carbon-burning phase, Astrophys. J., 207, 209–232, 1976.

    Article  Google Scholar 

  18. Landré, V, N. Prantzos, P. Aguer, G. Bogaert, A. Lefebvre, and J. P. Thibaud, Revised reaction rates for the H-burning of 17O and the oxygen isotopic abundances in red giants, Astron. Astrophys., 240, 85–92, 1990.

    Google Scholar 

  19. Lemke, M., D. L. Lambert, and B. Edvardsson, The boron abundance of Procyon, Pub. Astron. Soc. Pacific, 105, 468–475, 1993.

    Article  Google Scholar 

  20. Lemoine, M., D. N. Schramm, J. W. Truran, and C. J. Copi, On the significance of population II Li abundances, Astrophys. J., 478, 554–562, 1997.

    Article  Google Scholar 

  21. Meneguzzi, M., J. Audouze, and H. Reeves, The production of the elements Li, Be, B by galactic cosmic rays in space and its relation with stellar observations, Astron. Astrophys., 15, 337–359, 1971.

    Google Scholar 

  22. Meyer, B. S., T. A. Weaver, and S. E. Woosley, Isotopic source table for a 25 M supernova, Meteoritics, 30, 325–334, 1995.

    Article  Google Scholar 

  23. Nittler, L. R., S. Amari, E. Zinner, S. E. Woosley, and R. S. Lewis, Extinct 44Ti in presolar graphite and SiC: proof of a supernova origin, Astrophys. J., 462, L31–L34, 1996.

    Article  Google Scholar 

  24. Nomoto, K. and M. Hashimoto, Presupernova evolution of massive stars, Phys. Rep., 163, 13–36, 1988.

    Article  Google Scholar 

  25. Nomoto, K., F.-K. Thielemann, and K. Yokoi, Accreting white dwarf models for Type I supernovae. III. Carbon deflagration supernovae, Astrophys. J., 286, 644–658, 1984.

    Article  Google Scholar 

  26. Rebolo, R., L. Crivellari, F. Castelli, B. Foing, and J. E. Beckman, Lithium abundances and 7Li/6 Li ratios in late-type population I field dwarfs, Astron. Astrophys., 166, 195–203, 1986.

    Google Scholar 

  27. Sedov, L. I., Similarity and Dimensional Methods in Mechanics, pp. 260–270, Academic Press, New York and London, 1959.

    Google Scholar 

  28. Shigeyama, T. and K. Nomoto, Theoretical light curve of SN 1987A and mixing of hydrogen and nickel in the ejecta, Astrophys. J., 360, 242–256, 1990.

    Article  Google Scholar 

  29. Shigeyama, T, K. Nomoto, M. Hashimoto, and D. Sugimoto, Light-curve models for supernova SN1987A in the Large Magellanic Cloud, Nature, 328, 320–323, 1987.

    Article  Google Scholar 

  30. Smith, V. V, D. L. Lambert, and P. E. Nissen, Isotopic lithium abundances in nine halo stars, Astrophys. J., 506, 405–423, 1998.

    Article  Google Scholar 

  31. Soderblom, D. R., B. F. Jones, S. Balachandran, J. R. Stauffer, D. K. Duncan, S. B. Fedele, and J. D. Hudon, The evolution of the lithium abundances of solar-type stars. III. The pleiades, Astron. J., 106, 1059–1086, 1993.

    Article  Google Scholar 

  32. Thielemann, F.-K., M. Hashimoto, and K. Nomoto, Explosive nucleosynthesis in SN 1987A. II. Composition, radioactivities, and the neutron star mass, Astrophys. J., 349, 222–240, 1990.

    Article  Google Scholar 

  33. Thielemann, F.-K., K. Nomoto, and M. Hashimoto, Core-collapse super-novae and their ejecta, Astrophys. J., 460, 408–436, 1996.

    Article  Google Scholar 

  34. Travaglio, C., R. Gallino, S. Amari, E. Zinner, S. E. Woosley, and R. S. Lewis, Low-density graphite grains and mixing in type II supernovae, Astrophys. J., 510, 325–354, 1999.

    Article  Google Scholar 

  35. Weaver, T. A. and S. E. Woosley, Evolution and explosion of massive stars, Ann. New York Acad. Sci., 336, 335–357, 1980.

    Article  Google Scholar 

  36. Weaver, T. A. and S. E. Woosley, Nucleosynthesis in massive stars and the 12C(α, γ)16O reaction rate, Phys. Rep., 227, 65–96, 1993.

    Article  Google Scholar 

  37. Woosley, S. E. and T. A. Weaver, The physics of supernova explosions, Annu. Rev. Astron. Astrophys., 24, 205–253, 1986.

    Article  Google Scholar 

  38. Woosley, S. E. and T. A. Weaver, The evolution and explosion of massive stars. II. Explosive hydrodynamics and nucleosynthesis, Astrophys. J. Suppl, 101, 181–235, 1995.

    Article  Google Scholar 

  39. Woosley, S. E., D. H. Hartmann, R. D. Hoffman, and W. C. Haxton, The?-process, Astrophys. J., 356, 272–301, 1990.

    Article  Google Scholar 

  40. Woosley, S. E., R. D. Hoffman, F. X. Timmes, T. A. Weaver, and F.-K. Thielemann, Nucleosynthesis in massive stars and supernovae, Nuclear Physics, A621, 445c–452c, 1997.

    Article  Google Scholar 

  41. Yoshida, T., Light element synthesized in the He-layer and the H-rich envelope of type II supernovae, Doctoral Thesis, 2000.

  42. Yoshida, T., H. Emori, and K. Nakazawa, Light elements synthesized in the He-layer and the H-rich envelope of a Type II supernova —Influence of the adopted neutrino emission model—, Earth Planets Space, 52, 203–219, 2000.

    Article  Google Scholar 

  43. Zinner, E., Stellar nucleosynthesis and the isotopic composition of presolar grains from primitive meteorites, Annu. Rev. Earth Planet. Sci., 26, 147–188, 1998.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Takashi Yoshida.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yoshida, T., Nakazawa, K. & Emori, H. Light elements synthesized in the He-layer and the H-rich envelope of a type II supernova, II, —Influence of initial chemical compositions—. Earth Planet Sp 52, 361–376 (2000). https://doi.org/10.1186/BF03351648

Download citation

Keywords

  • Light Element
  • Supernova Explosion
  • Probable Range
  • Initial Abundance
  • Innermost Region