Skip to main content

Advertisement

Automatic Waveform Selection method for Electrostatic Solitary Waves

Article metrics

  • 223 Accesses

  • 5 Citations

Abstract

The present paper introduces the Automatic Waveform Selection (AWS) method for identifying the Electrostatic Solitary Waves (ESW) observed by Plasma Wave Instrument (PWI) onboard the Geotail spacecraft. Since the proposed method is based on the bit-pattern comparison, it does not require a lot of computer resources and the process speed is much faster than other pattern matching method using the First Fourier Transformation or the Wavelet transformation. We define the ESW index using the proposed AWS method. The ESW index allows us to perform statistical analyses by calculating it from a huge amount of Geotail data sets. We describe the detailed procedure of this new method for identifying the ESW waveforms and evaluate its efficiency. Further, we show one example of the statistical analyses conducted by using the AWS method, and discuss the result consulting the plasma electron measurements.

References

  1. Bale, S. D., P. J. Kellogg, D. E. Larson, R. P. Lin, K. Goetz, and R. P. Lepping, Bipolar electrostatic structures in the shock transition region: Evidence of electron phase space holes, Geophys. Res. Lett., 25, 2929–2932, 1998.

  2. Bernstein, I. B., J. M. Greene, and M. D. Kruskal, Exact nonlinear plasma oscillations, Phys. Rev., 108, 546–550, 1957.

  3. Ergun, R. E., C. W. Carlson, J. P. McFadden, F. S. Mozer, G. T. Delory, W. Peria, C. C. Chaston, M. Temerin, I. Roth, L. Muschietti, R. Elphic, R. Strangeway, R. Pfaff, C. A. Cattell, D. Klumpar, E. Shelley, W. Peterson, E. Moebius, and L. Kistler, FAST satellite observations of large-amplitude solitary structures, Geophys. Res. Lett., 25, 2041–2044, 1998.

  4. Franz, J. R., P. M. Kintner, J. S. Pickett, POLAR observations of coherent electric field structures, Geophys. Res. Lett., 25, 1277–1280, 1998.

  5. Kojima, H., H. Matsumoto, S. Chikuba, S. Horiyama, M. Ashour-Abdalla, and R. R. Anderson, GEOTAIL Waveform Observations of Broadband/ Narrowband Electrostatic Noise in the Distant Tail, J. Geophys. Res., 102, 14439–14455, 1997a.

  6. Kojima, H., H. Furuya, H. Usui, and H. sMatsumoto, Modulated electron plasma waves observed in the tail lobe: GEOTAIL waveform observations, Geophys. Res. Lett., 24, 3049–3052, 1997b.

  7. Kojima, H., K. Ohtsuka, H. Matsumoto, Y. Omura, R. R. Anderson, Y. Saito, T. Mukai, S. Kokubun, and T. Yamamoto, Plasma waves in slow-mode shocks observed by Geotail spacecraft, Adv. Space Res., 24, 51–54, 1999a.

  8. Kojima, H., Y. Omura, H. Matsumoto, K. Miyaguti, and T. Mukai, Characteristics of electrostatic solitary waves observed in the plasma sheet boundary: Statistical analyses, Nonlinear Processes in Geophysics, 6, 179, 186, 1999b.

  9. Krasovsky, V. L., H. Matsumoto, and Y. Omura, Bernstein-Greene-Kruskal analysis of electrostatic solitary waves observed by Geotail spacecraft, J. Geophys. Res., 102, 22131–22139, 1997.

  10. Mangeney, A., C. Salem, C. Lacombe, J.-L. Bougeret, C. Perche, R. Manning, P. J. Kellog, K. Geotz, S. J. Monson, and J.-M. Bosquend, WIND observations of coherent electrostatic waves in the solar wind, Annales Geophysicae, 17, 307–320, 1999.

  11. Matsumoto, H., I. Nagano, R. R. Anderson, H. Kojima, K. Hashimoto, M. Tsutsui, T. Okada, I. Kimura, Y. Omura, and M. Okada, Plasma wave observations with Geotail spacecraft, J. Geomag. Geoelectr., 46, 59–95, 1994a.

  12. Matsumoto, H., H. Kojima, T. Miyatake, Y. Omura, M. Okada, I. Nagano, and M. Tsutsui, Electrostatic Solitary Waves (ESW) in the Magnetotail: BEN Wave forms observed by GEOTAIL, Geophys. Res. Lett., 21, 2915–2918, 1994b.

  13. Matsumoto, H., H. Kojima, Y. Kasaba, T. Miyake, R. R. Anderson, and T. Mukai, Plasma waves in the upstream and bow shock regions observed by Geotail, Adv. Space Res., 20, 683–693, 1997.

  14. Mukai, T., S. Machida, Y. Saito, M. Hirahara, T. Terasawa, N. Kaya, T. Obara, M. Ejiri, and A. Nishida, The low energy particle (LEP) experiment onboard the Geotail satellite, J. Geomag. Geoelectr., 46, 669–692, 1994.

  15. Omura, Y., H. Kojima, and H. Matsumoto, Computer simulation of Electrostatic Solitary Waves: A nonlinear model of broadband electrostatic noise, Geophys. Res. Lett., 21, 2923–2926, 1994.

  16. Omura, Y., H. Matsumoto, T. Miyake, and H. Kojima, Electron beam instabilities as generation mechanism of electrostatic solitary waves in the magnetotail, J. Geophys. Res., 101, 2685–2697, 1996.

  17. Omura, Y., H. Kojima, N. Miki, T. Mukai, H. Matsumoto, and R. Anderson, Electrostatic solitary waves carried by diffused electron beams observed by the GEOTAIL spacecraft, J. Geophys. Res., 104, 14627–14637, 1999.

  18. Temerin, M., K. Cerny, W. Lotko, and F. S. Mozer, Observations of double layers and solitary waves in the auroral plasma, Phys. Rev. Lett., 48, 1175–1179, 1982.

Download references

Author information

Correspondence to H. Kojima.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kojima, H., Omura, Y., Matsumoto, H. et al. Automatic Waveform Selection method for Electrostatic Solitary Waves. Earth Planet Sp 52, 495–502 (2000) doi:10.1186/BF03351653

Download citation

Keywords

  • Pulse Width
  • Electron Hole
  • Velocity Distribution Function
  • Waveform Data
  • Plasma Sheet Boundary Layer