Skip to main content

Advertisement

Tectonic significance of magnetic susceptibility fabrics in Plio-Quaternary mudstones of southwestern foothills, Taiwan

Article metrics

  • 274 Accesses

  • 12 Citations

Abstract

Anisotropy of magnetic susceptibility (AMS) was studied in three Plio-Pleistocene turbiditic mudstone sequences accumulated in the foreland basin of southwestern Taiwan. These formations were incorporated in the front units of the collision belt and underwent folding and thrusting during the last 2 Ma. Five types of fabrics were identified from more than 3,000 samples collected in 352 sites, with 251 sites allowing determination of a magnetic lineation. NNE-SSW trends are predominant, minor N-S and NE-SW trends are present. Magnetic lineations are widespread in the lower section where folds are tight, and scarce in the youngest sediments where folds are gentle. The strong correlation between the structural features and the AMS orientations suggests a tectonic origin for most magnetic lineations superimposed on the initial flattening that results from sediment compaction. This is confirmed by tectonic studies based on structural analysis and paleostress tensor reconstructions. The tectonic studies reveal a major WNW-ESE compression, which provide orientations of compressive tectonic regimes consistent for resulting the magnetic lineations. In contrast, the hypothesis of a sedimentary origin can be ruled out in most cases, because the orientations of magnetic lineations and those of depositional fabrics (paleocurrents, sediment supply directions and even slumps) are oblique at a variety of angles. Furthermore, based on magnetostratigraphy, we conclude that this compression culminated about 0.9–1 Ma ago. Earlier minor events, NW-SE and W-E compression, have also been found and we propose that they have occurred in approximately 1 and 2 Ma ago, respectively. Thus, the main cause of AMS trend is thought to be the WNW-ESE Quaternary compression responsible for major folding and thrusting. In addition, the magnetic fabric of tectonic origin is absent, or poorly marked, in formations younger than about 0.9 Ma to the north. However, it is still recognized but decreased after about 0.7 Ma ago to the south. This indicates that the WNW-ESE compression propagated southward between 0.9 and 0.7 Ma ago, consistent with the migration of folding and thrusting during the last Taiwan collision. 527-538

References

  1. Angelier, J., Tectonic analysis of fault slip data sets, J. Geophys. Res., 89(B7), 5835–5848, 1984.

  2. Angelier, J., Inversion of field data in fault tectonics to obtain the regional stress, III. A new rapid direct inversion method by analytical means, Geophys. J. Int., 103, 363–376, 1990.

  3. Angelier, J., E. Barrier, and H. T. Chu, Plate collision and paleostress trajectories in a fold-thrust belt: the Foothills of Taiwan, Tectonophys., 125, 161–178, 1986.

  4. Angelier, J., F. Bergerat, H. T. Chu, and T. Q. Lee, Tectonic-paleomagnetic analyses and the evolution of a curved collision belt: the Hsuehshan Range, northern Taiwan, Tectonophys., 183, 77–96, 1990.

  5. Barrier, E. and J. Angelier, Active collision in eastern Taiwan: the Coastal Range, Tectonophys., 125, 1–3, 39–72, 1986.

  6. Chamley, H., J. Angelier, and L. S. Teng, Tectonic and environmental control of the clay mineral sedimentation in the late Cenozoic orogen of Taiwan, Geodinamica Acta, Paris, 6(2), 135–147, 1993.

  7. Chang, L. S., Definition of the Liushuang Formation, Mem. Geol. Soc. China, 1, 189–192, 1962 (in Chinese).

  8. Chi, W. R., The late Neogene nannobiostratigraphy in the Tainan Foothills region, southern Taiwan, Petrol. Geol. Taiwan, 15, 89–125, 1978.

  9. Chu, H. T., Néotectonique cassante et collision Plio-Quaternaire á Taiwan, Mem. Sc. Terre Univ. P. et M. Curie, Paris, 90-28, 292 pp., 1990.

  10. Déffontaines, B., J. C. Lee, J. Angelier, J. Carvalho, and J. P. Rudant, New geomorphic data on the active Taiwan orogen: a multisource approach, J. Geol. Res., 99(B10), 20243–20266, 1994.

  11. Graham, J. W., Significance of magnetic anisotropy in Appalachian sedimentary rocks, in The Earth Beneath the Continents, edited by J. S. Steinhard et al., pp. 627–648, Geophys. Monogr. 10, AGU, 1966.

  12. Henry, B., Studies of microtectonics, anisotropy of magnetic susceptibility and paleomagnetism of the Permian Dome de Barrot (France): Paleotectonics and paleosedimentological implications, Tectonophys., 17, 61–72, 1973.

  13. Ho, C. S., A synthesis of the geologic evolution of Taiwan, Tectonophys., 125, 1–16, 1986.

  14. Ho, C. S., An Introduction to The Geology of Taiwan: Explanatory Text of the Geologic Map of Taiwan, 2nd edition, 225 pp., Ministry of Economic Affairs, R.O.C., 1988.

  15. Horng, C. S., Magnetic mineralogy and magnetostratigraphic studies of the Tsengwenchi and Erhjenchi sections, southwestern Taiwan, Ph.D. dissertation, Inst. of Oceano., National Taiwan Univ., 323 pp., 1991.

  16. Horng, C. S., J. C. Chen, and T. Q. Lee, Variation in magnetic minerals from two Plio-Pleistocene marine-deposited sections, southwestern Taiwan, J. Geol. Soc. China, 35(4), 323–335, 1992.

  17. Hrouda, F., The strain interpretation of magnetic anisotropy in rocks of the Nizky JesenikMountains (Czechoslovakia), Sbor. Geol. Ved, UG 16, 27–62, 1979.

  18. Hrouda, F. and F. Janak, The changes in shape of the magnetic susceptibility ellipsoid during progressive metamorphism and deformation, Tectonophys., 34, 135–148, 1976.

  19. Hrouda, F., F. Janak, and L. Rejl, Magnetic anisotropy and ductile deformation of rocks in zones of progressive regional metamorphism, Gerl. Beitr. Geophys., 87, 126–134, 1978.

  20. Hu, J. C., Modélisation numérique et analyse tectonique régionale: le cas de Taiwan, Mem. Sc. Terre Univ. P. et M. Curie, Paris, no95-18, 268 pp., 1995 (in French).

  21. Kissel, C., E. Barrier, C. Laj, and T. Q. Lee, Magnetic fabric in “undeformed” marine clays from compressional zones, Tectonics, 5, 769–781, 1986.

  22. Kligfield, R., W. Lowrie, and I. W. D. Dalziel, Magnetic susceptibility as a strain indicator in the Sudbury Basin, Ontario, Tectonophys., 40, 287–308, 1977.

  23. Kligfield, R., W. H. Owens, and W. Lowrie, Magnetic susceptibility anisotropy, strain, and progressive deformation in Permian sediments from the Maritime Alps (France), Earth Planet. Sci. Lett., 55, 181–189, 1982.

  24. Lacombe, O., J. Angelier, and P. Laurent, Les macles de la calcite, marqueurs des compressions récentes dans un orogène actif: l’exemple des calcaires récifaux du sud de Taiwan, C. R. Acad. Sc. Paris, 316(II), 1805–1813, 1993.

  25. Lee, J. C., Structure et déformation active d’un orogène: Taiwan, Mem. Sc. Terre Univ. P. et M. Curie, Paris, no94-17, 328 pp., 1994.

  26. Lee, T. Q., Evolution tectonique et géodynamique neogène et quaternaire de la chaîne côtière de Taiwan: apport du paléomagnètisme, Mem. Sc. Terre Univ. P. et M. Curie, Paris, no89-03, 328 pp., 1989.

  27. Lee, T. Q. and C. S. Horng, Magnetic fabric analysis of the Plio-Pleistocene Tsengwenchi sedimentary rock sequence, southern Taiwan and its tectonic implications, Proc. Geol. Soc. China, 33(4), 373–389, 1990.

  28. Lee, T. Q. and C. S. Horng, Magnetic fabric analysis of late Neogene Hokouchi sedimentary sequence, southern Taiwan and its tectonic implications, J. Geol. Soc. China, 36(1), 1–14, 1993.

  29. Lee, T. Q., C. Kissel, C. Laj, C. S. Horng, and Y. T. Lue, Magnetic fabric analysis of the Plio-Pleistocene sedimentary formations of the Coastal Range of Taiwan, Earth Planet. Sci. Lett., 98, 23–32, 1990.

  30. Lee, T. Q., C. Kissel, E. Barrier, C. Laj, and W. R. Chi, Paleomagnetic evidence for a diachronic clockwise rotation of the Coastal Range, eastern Taiwan, Earth Planet. Sci. Lett., 104, 245–257, 1991a.

  31. Lee, T. Q., J. Angelier, H. T. Chuand, and F. Bergerat, Rotations in the northeastern collision belt of Taiwan: preliminary results from paleomagnetism, Tectonophys., 199, 109–120, 1991b.

  32. Lu, C. Y. and K. J. Hsu, Tectonic evolution of the Taiwan mountain belt, Petrol. Geol. Taiwan, 29, 15–35, 1992.

  33. Lu, C. Y. and J. Malavieille, Oblique convergence, indentation and rotation tectonics in the Taiwan mountain belt: insights from experimental modelling, Earth Planet. Sci. Lett., 121, 477–494, 1994.

  34. Lu, C. Y., J. Angelier, H. T. Chu, and J. C. Lee, Contraction, transcurrent, rotational and extensional, tectonics: a case study in northern Taiwan, Tectonophys., 246, 129–146, 1995.

  35. Lue, Y. T., T. Q. Lee, and Y. Wang, Paleomagnetic study on the collision-related bending of the fold-thrust belt, northern Taiwan, J. Geol. Soc. China, 38(3), 215–227, 1995.

  36. Stach, L. W., Stratigraphic subdivision and correlation of the upper Cenozoic sequence in the foothills region east of Chiayi and Hsinying, Taiwan, China, Proc. Symp. Petrol. Geol. Taiwan, 177–230, 1957.

  37. Suppe, J., Mechanics of mountain building and metamorphism in Taiwan, Mem. Geol. Soc. China, 4, 67–89, 1981.

  38. Teng, L. S., Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan, Tectonophys., 183, 57–76, 1990.

  39. Tsai, Y. B., Seismotectonics of Taiwan, Tectonophys., 125, 17–37, 1986.

  40. Yeh, Y. H., E. Barrier, C. H. Lin, and J. Angelier, Stress tensor analysis in the Taiwan area from focal mechanisms of earthquakes, Tectonophys., 200, 267–280, 1991.

Download references

Author information

Correspondence to Teh-Quei Lee.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, T., Angelier, J. Tectonic significance of magnetic susceptibility fabrics in Plio-Quaternary mudstones of southwestern foothills, Taiwan. Earth Planet Sp 52, 527–538 (2000) doi:10.1186/BF03351660

Download citation

Keywords

  • Bedding Plane
  • Greigite
  • Magnetic Lineation
  • Tectonic Origin
  • Western Foothill